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Abstract. In this work a machine learning approach for identifying the multi-omics
metabolic regulatory control circuits inside the pathways is described. Therefore, the
identification of bacterial metabolic pathways that are more regulated than others in term
of their multi-omics follows from the analysis of these circuits . This is a consequence
of the alternation of the omic values of codon usage and protein abundance along the
circuits. In this work, the E.Coli’s Glycolysis and its multi-omic circuit features are
shown as an example.

1 Background
In the bacterial metabolic pathways, it is possible to identify different small circuits

that lead from an intermediate compound to another. Each bacterial pathway could
be considered as a highly specific directed graph that presents more than one multi-
omic circuit (MOC). In standard conditions is possible to identify which pathways are
more regulatory than others in terms of their alternating multi-omic contribution. The
MOCs that belong to specific pathway could be discovered through the flux-balance
analysis [1]. On the other hand, in this work, we propose a machine learning approach
to study the MOCs. This method takes into account multi-omic values and looks for
the information derived from alternate sequences of multi-omic values. The proteins
are ordered in a sequence with respect to their position on the circuit. Omic values
of protein abundance and codon usage are associated with these proteins. An upper
bound corresponding to the ideal sequence of alternated omic values is given. Then,
the alternated sequence of omic values is compared with the ideal alternation. It is
possible that the presence of alternated omic values reflects the metabolic regulatory
control behaviour of the specific circuit inside the metabolic pathways. The more the
alternated values in the sequence are different from the upper bound, the less the circuit
is regulated and vice versa [2]. Another important consequence strictly related to the
identification of the MOCs is concerning the importance of identifying the intermediate
compound in the circuit output. For example, the intermediate compound at the end of
a circuit could be considered as a result of a regulatory control path and could have for
this reason a strategical importance in the design of a metabolic network. In this setting,
this work may be useful in the metabolic networks reconstruction based on metabolic
functional data [3, 4].

2 Materials and Methods
Our analyses are based on the Glycolysis of Escherichia coli K-12 MG1655. The

codon adaptation index (CAI) is a codon usage index computed as described by Sharp
and Li [5]. The second omic value considered is the protein abundance (PA) in standard
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conditions and is extracted by the PaxDb database [6]. PA and CAI are two omics that
could be considered correlated. In fact, in an integrated analysis of multi-omic MOCs,
the CAI stabilises the measures variability of PA, that in turn presents a correlation
with the mRNA transcript [9]. The information about genes, proteins and metabolic
pathways is extracted from NCBI Gene Bank [8] and KEGG [7].

2.1 Machine Learning Approach
An MOC presents a starting point, that we could call starting protein (SP) and an

end point, that we could call ending protein (EP). Between this two points a different
number of proteins with their own PA and CAI could be present.

Figure 1: (a) In this metabolic pathway 2 MOCs of length 5 are found. (b) The position
of the genes on the double strand and the proteins codified at the network level are
shown. (c) The two MOCs are selected with 2 different criteria. The former is based on
the selection of SP and EP merging the double strand and considering the positions of
the genes as merged. The latter selects the SP and EP from the strand (5’-3’) or from the
strand (3’-4’). In this last is impossible to have a circuit that has an SP from the 5’-3’
strand and an EP from the 3’-5’ strand.

In Figure 1 (a) two circuits individuated from two different SPs (s) (1** and 1*) and
that lead to a single EP (5 (t)) are shown. We can see that the EP is chosen as the end of
the circuit because there is a directed path from the SPs to this protein. Obviously, we
are maintaining the order of the genes (related to these proteins) on the double strand
while we identify the SP and EP . For example, in Figure 1 (b) both the 1* and the
1** genes are positioned before the gene labelled as 5 (t). The found paths (violet and
orange) are the shortest paths of length 5 but, in this case, there is a relevant difference
between the position of the SP (s). In fact, the first SP is positioned in the same direction
(5’-3’) of the EP. Instead, the second one is positioned in the direction 3’-5’ with respect
to the (5’-3’) EP. This exchange of direction between the genes may be also relate to
genes that are located in between the circuit and not only at the extremes. Therefore, it
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is of fundamental interest to find if the genes that are on the same DNA strand produce
proteins that are belonging to the same MOC. Moreover, this is related to the way the
MOCs are formed: if their genes are in the same 5’-3’ or 3-5’ single strand or alternating
in the double strand. This information could be helpful to the purpose of understanding
the metabolic regulatory control. As described in Figure 1 (c) we can consider a sort of
merged double strand into a single one. As a consequence, all the couples of SP and EP
are organised in a single sequence and this merged strand contains 2 MOCs (orange and
violet). On the other hand, if we consider each single strand separately we can have only
a MOC, the violet one (Figure 1 (d)). In particular, the typical bacterial polycistronic
organisation suggests that each polycistronic mRNA carries the information of more
than one gene [10]. In effect, the genes are organised in operons and for this reason are
located on the same single DNA strand. Therefore, these operons codify enzymes with
related functions and frequently are involved in the same metabolic pathway. This type
of characteristic reflects the functional necessity of rapidly responding to the external
environment, activating a particular metabolic pathway. This might suggest that, when
we think about MOCs, the model that considers the SP and the EP that comes from the
same strand (Figure 1 (d)), could be better than the model that consider these points in
a merged DNA strand (Figure 1 (c)). The objective of this work is to propose a method
to find MOCs and to show they are relevant in a metabolic pathway. An exhaustive
search for selecting all the couples of SP-EP is applied. Then the models composed by
a merged single strand and considering the strands separately are built. As illustrated
in [11] it is possible to find a function Ψ to compute the number of classes for the
normalised multi omic values of the MOCs. In this way, as illustrated in Figure 2 we
can transform the multi omic values into a vector of integers v.

Figure 2: The multi-omic values of the orange MOC are transformed in integers by the
function Ψ. This circuit presents alternating multi-omic values ( v ).

For each v we can obtain a score of the relative distances between the omics in their
incremental position, as described in [12]. Then, it is possible to obtain a similarity mea-
sure σ between the scored MOC’sv and the ideal sequence. Figure 3 plots the similarity
measures against the circuit lengths, from zero to one corresponding to increasing size
dots. Moreover, in Figure 3 the proteins produced by a single DNA strand are coloured
in yellow, those produced by double strands are in violet.
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3 Results
We have extracted all the possible MOCs from the Glycolysis.Ψ returns the number

of classes equal to 7. The number of proteins of this metabolic pathway is of 40. We
computed for all the MOC’s sequences the score for the multi-omic contributions of
the CAI and PA. All the values before being transformed by Ψ are normalised with a
standard normalisation, summed in and averaged. The metabolic pathway of Glycolysis
presents 134 potential MOCs, in the direction from the SP to the EP.

Figure 3: The plot shows the circuits extracted from the Glycolysis metabolic path-
way. The similarity σ is displayed on the axis x, while the circuit length is on the axis
y. Furthermore, this plot underlines the relationship between the circuit length and its
similarity σ to the ideal alternate sequence of multi-omic values. The similarity in-
creases with the size of the dots. The proteins produced by a single DNA strand (SS)
are coloured in yellow, those produced by double strands (DS) are in violet

In particular, in Figure 3 the MOC of Glycolysis presents a length varying from 2
to 6 proteins. The number of single strand MOCs on the Glycolysis are 47 over 134
MOCs in total. The yellow dots in Figure 3 are only on MOCs of length 2 and 3. In the
Glycolysis, there are only 4 operons, and only two of them form two MOCs that cover
the proteins aceE, aceF, lpd and ascF, ascB, with a σ ≤ 0.25. In this example there is
not any operon that in the metabolic network represents a MOC with a high σ.

4 Conclusion
We presented a machine learning approach for the individuation of metabolic regu-

latory control circuits inside the bacterial metabolic pathways. The MOCs were inves-
tigated in relation to multi omics data. We have shown that the proteins related to the
operons have not a key role when their proteins are present in the MOCs. Moreover in
this pathway, a different distribution with respect to the length of the MOCs between the
single strand and double strand models is showed. Obviously, is necessary to extend the
analyses to the whole genome and to the study the variations caused by external factors.
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