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Abstract

Motivation: Single-cell RNA-sequencing (scRNA-seq) has opened the opportunities to dissect
the heterogeneous cellular composition and interrogate the cell-type-specific gene expression
patterns across diverse conditions. However, batch effects such as laboratory conditions and
individual-variability hinder their usage in cross-condition design.

Results: We present single-cell Generative Adversarial Network (scGAN). Our main contribu-
tion is to introduce an adversarial network to predict batch effects using the embeddings from
the variational autoencoder network, which does not only need to maximize the Negative Bi-
nomial data likelihood of the raw scRNA-seq counts but also minimize the correlation between
the latent embeddings and the batch effects. We demonstrate scGAN on three public scRNA-
seq datasets and show that our method confers superior performance over the state-of-the-art
methods in forming clusters of known cell types and identifying known psychiatric genes that
are associated with major depressive disorder.

Availability: The code is available at
https://github.com/1li-lab-mcgill/singlecell-deepfeature

Contact: yueli@cs.mcgill.ca
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) technologies profile the transcriptomes of individual
cells rather than bulk samples [1,2]. The wide adoption of sScRNA-seq technologies enables
the investigations of the molecular footprints at the unprecedentedly high-resolution for a wide
spectrum of human diseases including cancer [3], autoimmune diseases [4,[5], Alzheimer’s
disease [6], and major depressive disorder (MDD) [7]. However, single-cell data analysis still
remains challenging due to confounding and nuisance factors, that manifest as individual vari-
ations or experimental biases such as different scRNA-seq technologies rather than biological
variation. These confounding factors are often known as batch effects. Batch effects are the
subsets of measurements that have different distributions because of being affected by labo-
ratory conditions, reagent lots and personnel differences. [8]. The massive parallel sequenc-
ing [1] enable measurements with more than tens of thousands single-cell samples cross tens
of human subjects in a single study (e.g., [3},6]) further underscores the importance of address-
ing subject-level demographic confounders such as age and sex. Currently, there is a lack of
highly scalable and robust model that enables systematic analysis of large-scale datasets while
accounting for various confounding batch effects.

A number of methods have been developed for normalization, batch-effect correction, embed-
ding, visualization and clustering of scRNA-seq gene expression profiles. [9] used mutual near-
est neighbors (MNN) matching to account for batch effects. MNN operates on either the orig-
inal space of the raw gene expression counts or the projected linear embedding space from
the principal components analysis (PCA). However, MNN may be inadequate to model the
non-linear effects known to exist in the scRNA-seq data [8]. Seurat [10] is another useful ap-
proach, which requires the users to carry out normalization, transformation, decomposition,
embedding, and clustering of the gene expression samples in a step-by-step procedure. Each
step is optimized empirically and independently of the other steps. Therefore, Seurat can be
time-consuming to perform and it is a pipeline and not an end-to-end machine learning model.
On the other hand, neural networks have demonstrated great promises in a wide range of do-
mains and tasks such as computer vision, speech recognition, natural language processing,
and computational biology [11]. Recently, neural networks have been exploited in scRNA-seq
data mining. In particular, standard autoencoding neural networks were used to embed single-
cell into low dimensional embedding without addressing the batch effect [12-14]. [15] described
an autoencoder model for integrating cross-condition scRNA-seq data by learning their embed-
ding via a random walk approach.

Variational autoencoders (VAE) [16] are efficient probabilistic models. Standard VAE assumes
a Gaussian distribution both on the latent and observed variables, which is efficient to approxi-
mate the true posterior distribution by a variational distribution based on neural networks. VAEs
are superior to standard autoencoders especially in modeling noisy data such as scRNA-seq
profiles. This is attributable to their abilities to generate samples from the variational posterior
distribution thereby approximating the marginal likelihood function in a principled Bayesian
framework. However, in standard VAE, the generative distribution (i.e., encoder) py(z|z) is as-
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sumed to be Gaussian (N (2 ; ug(2),051)), which is not ideal for modeling the scRNA-seq data.
This is because the scRNA-seq experiment yield discrete integer counts with high dispersion,
for which Negative Binomial (NB) are among superior and natural choices [17].

Recently, [18] and [19] used variational autoencoders as the generative frameworks for inferring
the single-cell latent embeddings. A variational inference model called scVI proposed by [18]
is the most relevant work to ours in terms of integrating both embedding and batch correction
into one unified probabilistic model. However, scVI accounts for the batch effects by separating
the batch variable from the rest of the biological variables in the latent space. Although this
separation showed some improvements in practice, there is no guarantee that it will lead to a
batch-free encoding of the single-cell samples without a more explicit constraint.

The new emerging paradigm of adversarial training has gained its momentum with the advent
of Generative Adversarial Networks (GAN). GAN consists of a generative network and a dis-
criminative network, both of which are optimized via a shared objective function corresponding
to a minimax two-player game: the generator network tries to capture the true distribution by
maximizing the loss function of discriminator [20]. Since its inception, many studies adopted
the adversarial training procedure in different areas including visual domain adaptation [21] and
single-cell modeling [22]. In particular, [22] utilized a GAN architecture to infer low dimensional
single-cell embedding by jointly training a discriminator to distinguish fake scRNA-seq profiles
generated from the generator from real scRNA-seq profiles. In contrast to our proposed sc-
GAN model, their model does not correct for batch effects and is therefore unsuitable to model
cross-condition heterogeneous scRNA-seq data.

In this paper, we present single-cell GAN (scGAN) to integrate both the single-cell embedding
and batch correction procedure into a single unified and end-to-end deep generative model.
One major contribution of our model is its unique ability to correct for continuous batch effects
such as age, which is quite important in studying human subjects. We evaluate our model

on several public scRNA-seq datasets including mouse/human pancreatic datasets and the
recently available single-nucleus transcriptomic data from 17 MDD and 17 non-MDD subjects
[7]. In all of these applications, scGAN demonstrates superior performance over the state-of-
the-art (SOTA) methods in terms of clustering cells by known cell types, batch effect removal,
and identifying biologically relevant and cell-type-specific genes that exhibit differential gene
expression between MDD cases and healthy controls.

2 Methods

2.1 scGAN model details
2.1.1 Model overview

Our proposed model consists of a Negative Binomial (NB) distributed variational autoencoder
(NB-VAE) module to model the data likelihood of the scRNA-seq raw read counts and an
adversarial-trained batch discriminator network to predict batch effect using the encoding from
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Figure 1 Single-cell Generative Adversarial Network (scGAN). The variational autoencoder
(VAE) component of the scGAN model consists of the Encoder and Decoder networks. The
Encoder projects each single-cell gene expression profile onto a low dimensional embedding.
The Decoder takes the embedding as input and predicts the sufficient statistics of the Negative
Binomial data likelihood of the scRNA-seq counts. The Discriminator, being trained adversar-
ially alongside the Encoder network, predicts the batch effects using as input the Encoder’s
embedding. Encoder, Decoder and the Discriminator are all parametric neural networks with
learnable parameters denoted as @, 0 and w, respectively. The input single-cell gene expres-
sion profile and the batch label for cell i in subject j are denoted as x;; and b;, respectively. The
reconstructed expression and the predicted batch label by the discriminator network for the
input sample cell 7 in subject j are denoted as x;; and Bj, respectively. The latent variable as
the gene expression embedding is denoted as z;;.

the NB-VAE module (Fig.[T). The objective of the NB-VAE network is to map the single-cell
gene expression profiles into a low dimensional embedding, which dictates the sufficient statis-
tics of NB data likelihood. To achieve this, the encoder needs to distill the most salient biolog-
ical information from each scRNA-seq profile. Meanwhile, the encoder network also needs to
minimize the correlation between its encoding and the confounding batch variable for each cell
sample. The discriminator on the other hand learns to predict the batch variable using as input
the embedding generated by the encoder network. The two network modules are learned in an
adversarial fashion, each trying to improve themselves in adapting to the updates of the other
opponent network. The following subsections contain the details of learning in each network
module.

2.1.2 Encoder

Each gene expression sample for cell i in subject j is an N-dimensional vector x;; with the size
equal to the total number of genes. We assume that the scRNA-seq data generative process
is determined by a K-dimensional latent variable z,;, where K << N. Our task is to infer the
true posterior distribution of the latent variable p(z;;|x). We assume that the latent variable z;; is
sampled from a standard Gaussian distribution z;; ~ A (0, ). The marginal posterior p(z|x) =
=) requires calculating the partition function by integrating out z: p(x) = |, p(x|2)p(z)dz,

p(x)
which is intractable. We approximate the true posterior p(z|x) with a variational distribution
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q(z|x), which is represented by the encoder neural network, i.e., ¢(z|x) = £4(x). The marginal
log-likelihood can be written as:

log p(x) = K L(qe(2|x)||p(z]x)) + L(O, @;x) (1)

in which the first term is the KL divergence of the estimated posterior ¢(z|x) from real posterior
p(z|x) and the second term is the evidence lower bound (ELBO):

‘C(e7 (p;X) = Eq(p(z\x) [1Og pG(X|Z>] - KL[Q(P(Z|X) || p(Z)] (2)

where the first term is the expected negative reconstruction loss and the second term is the
KL divergence of the approximate posterior g4 (z|x) and the prior distribution p(z) of z. As the
marginal likelihood log p(x) in Equation (1) is a constant, maximizing the ELBO L(0, ¢; x) is
equivalent to minimizing the KL divergence. The variational expectations in Equation (2) are
approximated by taking the average over the randomly sampled data from the encoder network.
The encoder network parameters are in turn optimized using stochastic gradient descent via
back-propagation, which is made possible by the reparameterization trick due to the Gaussian
latent variable [16]:

zij ~ N(E(pij; Xij, @), 1) + E(07; %45, @) x N(0,1) (3)

1)

2.1.3 Decoder

We use the decoder network Dy (x, b) to model the sufficient statistics of a Negative Binomial
(NB) distribution of the input data p(x|z, b), including the reparameterized mean and variance of
the NB distribution:

Taii + Qgii — 1 Bgz’j Qgij 1 Tgij
e Qgij — 1 1+ Byij 1+ Byij

where «ay;; and 3,,; are the parameters for the NB function for cell i in subject j for gene g. We
re-parameterize the NB function based on the mean ,;; and variance o;; of the gene expres-
sion count, both of which are determined by the decoder neural network:

Qgij

Hoig =5 == Dolttgigs 2i5, bs)
g1

gii = g = Del0y;3 2ij, bj)
g1y

Notably, in order to generate realistic input gene expression %;;, our decoder network uses both
the embedding z;; and the batch label b, for cell i in subject j to model the NB parameters.
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2.1.4 Discriminator

We train a discriminator ©,(z) to predict the categorical or continuous batch effect label b;
based on the latent embedding z;; for cell i in subject j, which are sampled from the £, (Equa-
tion (3)). To create the adversarial interactions between the decoder and discriminator net-
works, we train the encoder to maximize the negative loss likelihood of the discriminator ©.,,.
In other words, we optimize the parameters of the encoder and the discriminator in a max min
function:

maX min B o, sy 108 D(0;2i5)] (4)
where b; is the batch labels for single cell i that belong to subject j with scCRNA profile mea-
sured as x;;. If the batch label is a discrete variable, we approximate objective function with the
cross entropy (CE):
maxmin » | CE(Daw(Ey(xi)). by) (5)
7‘7.]
For continuous batch effect variable (e.g. the age of subject j), we use a univariate standard
Gaussian to model its likelihood, which is equivalent to the negative sum of squared errors
(SSE):
i SSE(®w(Ee(xii)),b;i). 6

mgxmugnizj (Do (E(x55)). ) (6)
Optimizing the adversarial loss according to Equations (5) and (6) is proportional to simultane-
ously maximizing the ELBO while minimizing the correlation between the latent embedding and
the batch label.

2.1.5 Learning

To learn scGAN, we combine the ELBO in Equation (2) and the adversarial term of Equation (4)
to give the following overall objective function:

max £(0, @;X) + a maxmin E,_,x)[log p(b|z)] (7)
0,9 e W

where L(0, ¢; z) is the ELBO (2) and « is a free weighting coefficient that determines the impor-
tance of the adversarial term against the ELBO term from the VAE. We fine-tune the weighting
coefficient o using a validation set.

In some applications, the parameters of the encoder network ¢ are optimized after training the
batch discriminator network ©,. This means that the discriminator is trained until convergence
given the encoder network. In our case, we do not wait until the discriminator is fully trained
before updating the encoder in each iteration which leads to a faster training time.


https://doi.org/10.1101/2020.04.29.066464
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.29.066464; this version posted April 29, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2.1.6 Deep differential analysis of single-cell gene expression

Due to small sample size in the scRNA-seq data, conventional hypothesis testing methods are
often inadequate for identifying biologically meaningful differentially expressed genes (DEGs)
that are associated with a biological condition of interest. For instance, our snRNA-seq MDD
dataset only contain 34 subjects. To address this, we devised a powerful way by leveraging
our deep neural network architecture to detect DEGs. For the ease of reference, we call this
approach scDeepDiff. Our approach is inspired an early technique introduced in the deep
learning community [23], which pre-trains an autoencoder on a large collection of unlabeled
imaging data and then fine-tuning the pre-trained network weights for a classification task.
Specifically, we first train our unsupervised scGAN until convergence. Then, we impose a two-
layer feedforward neural network to predict whether a cell i comes from a subject ; who has
the disease phenotype (i.e., the 17 MDD cases among the 34 subjects in the MDD snRNA-
seq dataset). In particular, the classifier uses as input the embeddings z;; generated from the
pretrained network by the encoder &;(x;;) and outputs a probability from the logistic output unit
as the prediction.

To assess the importance of each gene, we back-propagated the partial derivatives from the
output unit of the network classifier all the way to the input units of the encoder, each repre-
senting an individual gene g (i.e., a‘gﬂ). We aggregated these derivatives either within each
cell cluster or over all cell clusters. These aggregated gradients indicate the importance of
each gene in predicting the condition. We then sorted the genes by their aggregated deriva-
tives and selected the top M genes as our predicted DEG candidates. This idea is inspired by
DeeplLift [24], which tackles a related but different problems from ours.

For scVI, we used their built-in function to perform the differential analysis. For Seurat, PCA,
and MNN, we performed linear mixed model using the R package 1me4 [25] and 1merTest [26]
to test DEGs within each of the clusters generated by these methods. In particular, we re-
gressed the expression of each gene within each cluster on a set of covariates. We treated
the biological conditions as fixed effects and the combined subject identifiers and batch identi-
fiers as the random effects. The latter is to account for subject-dependent and batch-dependent
variations that are distinct from the biological conditions. For each gene, we took either the
sum or the maximum absolute test statistics (i.e., Bayes Factors for scVI and Wald-test statistic
from LMM) across clusters to represent their association with the biological condition. We then
chose the top M genes from the sorted gene list to represent the candidate DEGs.

2.2 Datasets

We evaluated our scGAN using three publicly available scRNA-Seq datasets with different
types of batch effects as described below.

Mouse Pancreas Single-cell RNA-Seq Dataset: The mouse pancreas dataset contains 1,886
cells with 14,878 genes in 13 cell types after the exclusion of hybrid cell [27]. We downloaded
this dataset from Gene Expression Omnibus (GEO accession number: GSE84133). The
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dataset was originally used to study the cell population structures of the human and mouse
pancreas transcriptomic maps. The dataset contains populations from two distinct mice. We
treated these two mice as two different batches because the distribution of their gene expres-
sion may be different due to their underlying conditions.

Human Pancreatic Islet Cells Dataset: The human pancreatic dataset consists of 6,321
pancreatic islet cells with 34,363 genes sequenced by four distinct sequencing technologies,
CelSeq (GSE81076), CelSeqg2 (GSE85241), Fluidigm C1 (GSE86469), and SMART-Seq2
(E-MTAB-5061) [28,[29]. The dataset was downloaded from the GEO database based on the
above access numbers. Sequencing technologies have different cell dissociation and handling
protocols. These technical variability can lead to strong batch effects. We used this dataset to
demonstrate the capability of our scGAN in terms of multi-class batch effect correction.

Major depressive disorder single-nucleus RNA-seq Dataset: This is a newly available droplet-
based single-nucleus transcriptomics dataset (GEO accession number: GSE144136). The
dataset measures single-nucleus transcriptomes of 77,613 cells with 33,694 genes sequenced
from the dorsolateral prefrontal cortex of 34 male post-mortum brains. Half of them are healthy
controls and the other half are patients with Major Depressive Disorder (MDD) [7]. The num-
ber of cells is about the same for each subject. The subjects vary in ages ranging from 20 up
to 80 years old. The age were distributed equally across cases and controls. We do not ob-
serve strong effects from the batch identifiers or subject identifiers in this dataset. However, the
wide range of the subjects’ age prompted us to explore the benefits of accounting for age as a
continuous batch-effect variable using our SCGAN.

2.3 Experimental setting and scGAN implementation

For scGAN, we used a three layer neural network (two hidden layers and one output layer) for
both Encoder and Decoder networks with 64 hidden units each. We set the latent space dimen-
sion to 10 for all the experiments. Our discriminator network was a two-layer network with 10
input units, which is the latent dimension of the embedding z, and a single hidden layer of size
20. We used Rectified Linear Unit (ReLU) [30] as the activation function for all of the hidden lay-
ers. The latent embeddings z are linear without the ReLU activation. The discriminator’s output
is a softmax for discrete batch variables and linear function for continuous batch variables. We
used mini-batch stochastic Adam [31] algorithm for optimization with the learning rate fixed at
0.001.

2.4 Evaluation

We used two criteria to measure the performance of our method in comparison with the SOTA
methods. The first measure is Batch Mixing Entropy (BE). BE measures how well the effect of
confounding variable is removed from the latent embedding [18]. To calculate BE, we first ran-
domly sampled a cell from the cell population. We then found the 50 nearest neighbors of the
sampled cell based on the cell embeddings (which vary depending on the method). We mea-
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sured the batch label frequency of the 50 nearest neighbor cells, which was used to calculate
the entropy of the categorical batch variable. We repeated this for 100 randomly sampled cells
and took the averaged results as the measurement for the BE.

By definition, if the distributions of p,,(z|b) are the same for each batch class label, we have

a perfectly batch-corrected embeddings with the maximum BE. The range of BE measure
depends on the number of batch labels (k, = number of batches) and will be [0, log(k;)]. For
continuous batch variables like the age of the subjects, we discretized the batch variable by
dividing it into small 25% percentile bins and then measure the mixing entropy in the same way
as for the discrete batch labels.

We also measured the clustering quality based on the Adjusted Rand Index (ARI). ARI shows
the similarity between the clustering found by our model using the cell embedding and the
clusters of the ground truth biological cell-type groups. To calculate ARI, we needed to perform
a discrete clustering on the cell embeddings derived from each method. We experimented
with several clustering algorithms including k-means, Gaussian mixture modeling, and louvain
cluster [32]. Our preliminary results showed that louvain clustering gave the most accurate
clustering for all of the methods we compared, which is consistent to the published single-cell
analysis by [33].

2.5 Method comparisons

To compare with scGAN, we chose three SOTA methods that can generate single-cell embed-
dings with batch-effect correction. In particular, we ran Mutual Nearest Neighbors (MNN) [9]),
scVI [18], and Seurat [10] on the 3 benchmark datasets.

For the mouse pancreatic and human pancreas islet dataset, we provided the same batch
identifiers to all of the methods including scGAN. Seurat, MNN, and scVI do not work with
continuous batch effect variables such as age in the MDD dataset. Because the age range is
between 18 and 87 years old, we grouped the subjects into 8 age groups from 10 years to 90
years with 10 years interval (i.e., 10-20, 20-30, ..., 80-90). We then provided the 3 methods
with the age groups as the batch class labels.

As a baseline method, we also ran simple PCA. To demonstrate the advantage and effective-
ness of the discriminator network component of our approach, we also ran the same scGAN
model but without correcting batch effects, i.e., removing the adversarial term from the objec-
tive function in Equation (7).

3 Results

3.1 Qualitative comparison of single-cell clustering

For the mouse pancreatic dataset, we first ran PCA followed by t-SNE visualization using
the first 10 PCs. We observed that cells clearly cluster by the two animals rather than by cell
types (Supplementary Fig.[ST). Moreover, the human pancreatic cells projected by the first

9
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Figure 2 Cells clustering based on scGAN embeddings. (a) Mouse Pancreatic Cells dataset
with the size of 1,886 cells from two mice, each treated as a batch. (b) Human Pancreatic Islet
Cells dataset of size 6,321 cells sequenced by 4 different sequencing technologies of CelSeq,
CelSeqg2, Fluidigm C1 and SMART-Seq2. (c) MDD snRNA-seq dataset of size 77,613 con-
founded by the age variable of 34 patients. The left column shows the cells colored by batch
labels. The right column shows the cells colored by the ground-truth cell types.
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10 PCs clustered by the scRNA-seq technologies rather than by the underlying cell types
(Supplementary Fig.[S2). To correct these batch effects in the data, we ran our scGAN along
with the three SOTA methods (Section[2.5). The resulting clusters by each method exhibit im-
proved separation of the known cell types (Fig.[2a and b, Supplementary Fig.[S1]and Supple-
mentary Fig.[S2). Notably, none of the methods uses the ground truth cell types. They were
evaluated entirely based on their unsupervised ability to cluster cells by their transcriptomes.
By visual inspection, scGAN conferred relative larger separation of cell clusters by their cell
types relative to the SOTA methods.

For the MDD dataset, although the distribution of ages are similar in cases and controls, we
found that many cells tend to cluster by age when visualized based on PCA (Supplementary
Fig.[S3). This confounds our investigation on the cell-type-specific differential gene expres-
sion between the MDD case and control groups. Our scGAN accounts for the confounding age
effects by the adversarial networks training. Here, we treated the age as a continuous batch ef-
fect variable. As a result, our scGAN discourages its encoder from generating embedding that
can be used to predict age accurately by its discriminator, thereby generating cell embeddings
of lesser age confounding effects (Section[2.1). Our approach led to clearer separation of cell
types compared to the clusters generated by the baseline methods (Fig. [2t). Therefore, these
qualitative results indicate the effectiveness of batch correction used by our method and also
the higher flexibility of the non-linear embedding approaches compared with the linear PCA
embeddings approach in general.

3.2 Quantitative comparison by clustering metric

We quantified the clustering quality based on Batch mixing entropy (BE) and Adjusted Rand
Index (ARI) metrics (Section [2.4). scGAN compared quite competitively against all of the SOTA
methods (Fig.[3). Also, we observed that the superior performance is largely attributable to

5cGAN 5cGAN 5cGAN

SCGAN ~ SCGAN ~ SCGAN ~

scvi scv! scv!

Seurat Seurat Seurat

MNN MNN MNN

. ARI . ARI . ARI

PCA = BE PCA = BE = BE

b T T T T b T T T T T b T T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Embedding Metrics Embedding Metrics Embedding Metrics

(a) Mouse Pancreatic (b) Human Pancreatic Islet (¢) Human Brain Cells

Figure 3 Comparison of clustering methods on 3 scRNA-seq or snRNA-seq datasets. Ad-
justed Rand Index (ARI) measures the consistency of embedding clusters with respect to the
ground truth cell type groups. Batch Mixing Entropy (BE) measures the mixing of samples of
different batches with each other. For both metric, the higher the better. The barplots display
the ARI and BE scores for six embedding methods on the benchmark scRNA-seq datasets.
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the adversarial networks we introduced in our scGAN. In particular, when modeling the same
dataset without using the adversarial component (sScGAN~), we saw a drastic decrease in
terms of both ARI and BE. In both mouse pancreatic and MDD datasets, our scGAN performs
the best among all methods in terms of ARI. In human pancreatic islet data, scGAN is the sec-
ond best led by Seurat. Notably, the human pancreatic islet was used in the original paper of
Seurat [34], and it was possible that the method has been carefully fine-tuned on this dataset.
We also observed that PCA has the worst performance in all 3 datasets, implying the linear
approach is inadequate in modeling the scRNA-seq or snRNA-seq data. Surprisingly, the other
deep learning model namely scVI (besides ours) does not perform very well on these three
datasets. This is possibly due to the implicit way of modeling batch effects in scVI in contrast to
our adversarial-network approach. Notably, scVI and our scGAN~ (without the batch correction)
perform similarly in these three datasets. The overall clustering quality for mouse single-cell

is higher than for the two human single-cell datasets possibly because of the homogeneous
animals with identical genetic backgrounds and similar micro-environments compared to the
human subjects.

3.3 scGAN identified MDD-enriched cell clusters

We focused our analysis on the MDD snRNA-seq dataset because it is the largest snRNA-seq
dataset by far on human psychiatric phenotype based on the Brodmann Area 9 (BA9) region of
the patient postmortem brains [7]. We first sought to identify the cell clusters that were enriched
for MDD subjects. Within each cluster, we computed the hypergeometric enrichment based
on the number of cells that came from MDD patients relative to the total number of cells in
that cluster and total number of MDD cells in the entire dataset. Out of the 10 clusters, we
found two of them were significantly enriched for MDD (Hypergeometric p-value < 5e-25 and <
0.0086, respectively) (Fig. [4).

Interestingly, both of these clusters (Cluster 0 and 1) are labeled with excitatory neuronal cell
type (Ex). Indeed, this is consistent with the original findings by [7] via both empirical analysis
and experimental validation. Besides ours, we found those clusters based on PCA, Seurat, and
scVI each also yielded two MDD-enriched clusters (i.e., all of the methods except for MNN). All
of these MDD-enriched clusters are also labelled as excitatory neuronal cell type. Therefore,
these reassuring results demonstrated the consistency of our finding, in which the excitatory
cells are significantly associated with the MDD phenotype among the 77,613 cells collected
from the 34 male brains. However, because the excitatory cells represent the largest cluster,
we must take caution in interpreting the biological implications of these results due to unbal-
anced number of cells per cell type cluster.

3.4 scGAN discovers more known MDD-associated genes

To identify differentially expressed genes (DEGs), we present a deep learning approach called
scDeepDiff that uses the pre-trained weights by our scGAN to predict whether a given cell
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Figure 4 MDD-enrichment of cell clusters. We clustered the cells from MDD dataset and col-
ored them based on a. cell types, b. MDD or controls, ¢. Louvain predicted cluster IDs, and d.
MDD-enrichment scores. For each cluster, we tested whether the cells within the cluster are
enriched for cells that came from the 17 MDD subjects. The statistical significance is assessed
by hypergeometric test. The cells are colored by red with the intensity proportional to the -log,
p-values of the test.

comes from one of the 17 MDD subjects or the 17 control subjects within each cluster. During
the training, the gradients were back-propagated from the feedforward neural network to fine-
tune the pre-trained weights for the prediction task. After training the model, we aggregated
the error derivatives or gradients at each input gene of the classifer (i.e, the input units of the
original encoder in the scGAN) (Section[2.1.6). For each gene, we further aggregated the gradi-
ents over all of the cells within each cluster or across all clusters to represent the importance of
each gene in predicting MDD cels.

To validate our approach, we first took 90% of the cells for training and 10% for testing. For the
largest cluster that were labelled as Excitatory (Ex) cell type, we achieved 78% accuracy on
the testing cells, which is reasonably good provided the small sample size of only 34 subjects.
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Overlapping DEGs with PsyGeNet for MDD genes
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Figure 5 The number of PsyGeNet genes among the top ranked MDD-associated genes. We
generated differentially expressed genes (DEGs) in the cell population collected from the 17
MDD subijects with respect to the cell population from the 17 controls. We then ranked the
genes by the DE scores generated by each method. We chose the top M = {5, 10,50} genes
as the candidate MDD-associated genes and overlap them with the known psychiatric genes
from PsyGeNet. The barplot displays the number of PsyGeNet genes found among the top
rank genes by each method.

We then ranked the genes by the total sum of gradients across all clusters. We took the top
M € {5,10,50} genes and counted among these genes the number of PsyGeNET genes
[35]. We found that there are more PsyGeNet genes found by our method compared to other
approaches at every rank (Fig.[5; Supplementary Table [ST). We also experimented using
LMM on our scGAN clusters and found much fewer genes overlapping with the PsyGeNET
genes: 1, 2, 7 PsyGeNET genes among the top 5, 10, 50 ranks. The results therefore suggest
the improved power of using our scDeepDiff approach over the linear approach.

We further checked the PsyGeNet gene hits within each cluster. Here, we took top 50 genes
per cluster and overlapped them with the PsyGeNet genes. Since only a few clusters are as-
sociated with MDD, we took the maximum number of PsyGeNet gene hits across all clusters
as the representative score for each method. Once again, our approach ranks the best among
all method with 22 PsyGeNet hits out of 50 top ranked genes, leading far in front of the second
best method namely PCA and MNN (Fig. [6). Remarkably, the scGAN cluster that gives rise to
the largest PsyGeNet hits is also the excitatory cluster that is the most significantly enriched for
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Figure 6 The maximum number PsyGeNet hits from one cluster. We generated differentially ex-
pressed genes (DEGs) in the cell population collected from the 17 MDD subjects with respect
to the cell population from the 17 controls. We then ranked the genes by the DE scores. We
perform this analysis in each cluster. We chose the top 50 genes per cluster and overlap them
with the known psychiatric genes from PsyGeNet. The barplot illustrates the maximum number
of PsyGeNet hits across all clusters for each method. The dots are the individual PsyGeNet
hits for each cluster.

MDD among all of the clusters (Fig. [4).

We also checked the overlap with reported genes that are associated with depressive orders in
genome-wide association studies (GWAS). We obtained a list of 253 uniquely reported MDD
GWAS loci from the GWAS catalog with Experimental Ontology ID (EFO) EFO_0003761.
We found 187 GWAS-associated genes that were also measured among the 33,694 genes

in the snRNA-seq MDD dataset. Among the top 50 genes ranked by scDeepDiff, we found 3
genes namely CLDN5, ITPKB, VCAN that are associated with the MDD GWAS loci (hyperge-
ometric enrichment p-value = 0.000173). Interestingly, the /ITPKB loci is associated with Han
Chinese ancestry MDD GWAS [37], whereas CLDN5 and VCAN are associated with Scotland
and/or UK Biobank MDD GWAS, respectively [38,[39]. In contrast, the top 50 genes from scVI,
PCA, Seurat and MNN contain no MDD-associated GWAS genes. Overall, the overlap be-
tween transcriptome-wide DEGs and GWAS genes is small. Our results echos the low heritabil-
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ity of the MDD found in the recent GWAS [40] and underscores the importance of considering
environments and epigenetic imprints that go beyond the germline mutations of the subjects.

4 Discussion

The advent of single-cell RNA sequencing (scRNA-seq) has unlocked the cell transcriptome at
cellular-level resolution, providing theoretically optimal resolution potential. Extensive single cell
surveys of tissues in mice [41] or humans [42] provide a portrait of variation in gene expression
of cell-types in different tissue contexts. Compared to bulk RNA-seq, however, scRNA-seq is
a much newer technology with more unknown technical biases, is much more expensive, is
more challenging to perform, and is less sensitive to detect lowly expressed genes and prone
to sequencing error [43,44].

To address these challenges, we present scGAN as a deep embedding model to analyze
scRNA-seq data. The main contribution of our method is the ability to simultaneously extract
biologically meaningful embeddings and remove batch effects from each scRNA-seq profile.
We demonstrated the utility of our approach on public scRNA-seq datasets. In particular, our
approach does not only generate biologically meaningful single-cell clusters but also led to the
discovery of MDD-associated cell types and MDD-associated genes. We attributed the success
of our approach to the flexibility of the deep generative model and the adversarial network that
we have introduced into the VAE framework.

As future works, we will further explore our approach in its ability to model massive scale single-
cell sequencing data including cross-species, multi-omics (e.g., simultaneously modeling single-
cell RNA-seq, single-cell ATAC-seq, and single-cell methylation while accounting for platform-
dependent batch effects), multi-tissues, and multi-subjects. We will harness recently available
human/mouse atlas data [41,42] and disease-focused data such as scRNA-seq in patients with
Alzheimer’s disease [6] and cancer patients tumors [45].

From methodological stand-point, like all of the neural network-based method, scGAN requires
specification of the network architecture before training. In our preliminary experiments, we
observed that scGAN is largely robust to the size of the architecture including the size and num-
ber of hidden layers in the encoder, decoder, and discriminator networks. This is attributable to
the weight decay and dropout rates we have deployed in each network. Choosing the best
network will require more extensive cross-validation ideally using a Bayesian optimization
method [46]. Although our deep generative model demonstrates superior performance over
some of the linear approaches such as Seurat and PCA, there is a further room for improve-
ment in terms of its interpretability. In our future work, we will extend scGAN to incorporate
prior biological annotations of cell-types-specific gene regulatory networks established from
large reference atlas data such as the human scRNA landscape [42].
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5 Conclusion

In summary, we demonstrate the utility of attenuating batch effects via an adversarial network
while learning the low-dimensional single-cell embedding from the high dimensional scRNA-
seq profiles. Our approach provides a crucial step towards discoveries of cell-type-specific
differentially expressed genes in biological conditions of interest.
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