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Abstract

Motivation: Genomic data are often produced in batches due to practical restrictions, which may lead to unwanted
variation in data caused by discrepancies across batches. Such ‘batch effects’ often have negative impact on down-
stream biological analysis and need careful consideration. In practice, batch effects are usually addressed by specif-
ically designed software, which merge the data from different batches, then estimate batch effects and remove them
from the data. Here, we focus on classification and prediction problems, and propose a different strategy based on
ensemble learning. We first develop prediction models within each batch, then integrate them through ensemble
weighting methods.

Results: We provide a systematic comparison between these two strategies using studies targeting diverse popula-
tions infected with tuberculosis. In one study, we simulated increasing levels of heterogeneity across random sub-
sets of the study, which we treat as simulated batches. We then use the two methods to develop a genomic classifier
for the binary indicator of disease status. We evaluate the accuracy of prediction in another independent study tar-
geting a different population cohort. We observed that in independent validation, while merging followed by batch
adjustment provides better discrimination at low level of heterogeneity, our ensemble learning strategy achieves
more robust performance, especially at high severity of batch effects. These observations provide practical guide-
lines for handling batch effects in the development and evaluation of genomic classifiers.

Availability and implementation: The data underlying this article are available in the article and in its online supple-
mentary material. Processed data is available in the Github repository with implementation code, at https://github.
com/zhangyuqing/bea_ensemble.

Contact: gp@jimmy.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Statistical learning models based on genomic information have been
widely used for prognostication and prediction across a range of
precision medicine applications, including cancer (Golub et al.,
1999; Papaemmanuil et al., 2016; Riester et al., 2014; Silvestri
et al., 2015) and infectious diseases (Leong et al., 2018; Seib et al.,
2009), and have shown great potential in facilitating clinical and
preventative decision making (Badani et al., 2015). To fully achieve
such potential, it is critical to develop prediction algorithms with
generalizable prediction performance on independent data, which
are transferable to clinical use (Simon et al., 2003). However, the
presence of ‘study effects’, or heterogeneity across genomic studies,
makes it challenging to develop generalizable prediction models. In

particular, it has been established that cross-study validation per-
formance of genomic classifiers is often inferior to internal cross-
validation (Bernau et al., 2014; Chang and Geman, 2015; Ma et al.,
2014), and that this gap cannot be entirely explained by the most
easily identifiable sources of study heterogeneity (Zhang et al.,
2018b). Further research is needed to better understand and address
the impact of heterogeneity on predictor performance.

In this study, we focus on a particular component of study
effects, known as batch effects (Leek et al., 2010), and aim to ad-
dress its unwanted impact in binary classification problems. Batch
effects are variation across batches of data that are unrelated to the
biological question of interest. Strictly, batch effects refer to tech-
nical differences across experimental processing batches. However,
in practice, batch effects are often used in a broader sense, with

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1521

Bioinformatics, 37(11), 2021, 1521–1527

doi: 10.1093/bioinformatics/btaa986

Advance Access Publication Date: 27 November 2020

Original Paper

http://orcid.org/0000-0002-6247-6595
https://github.com/zhangyuqing/bea_ensemble
https://github.com/zhangyuqing/bea_ensemble
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa986#supplementary-data
https://academic.oup.com/


varied definitions for different contexts (Lazar et al., 2013). It is
common to use batch adjustment methods for integrating not only
technical batches, but also datasets across experimental platforms or
types of biological samples, for the same purpose of analysis (Bobak
et al., 2019; Butler et al., 2018; Larsen et al., 2014; Zhang et al.,
2018a). Existence of batch effects threatens the reproducibility of
genomic findings (Kupfer et al., 2012). And therefore, it is necessary
to develop efficient methods to remove the undue influence of batch
effects.

Many batch effect adjustment methods have been proposed for
gene expression microarray (Benito et al., 2004; Gagnon-Bartsch
et al., 2013; Gagnon-Bartsch and Speed, 2012; Johnson et al., 2007;
Leek and Storey, 2007) and sequencing data (Leek, 2014; Risso
et al., 2014). These methods share the general strategy to first merge
all batches, estimate parameters representing differences in batch
distributions, and then remove them from the data, resulting in a
single adjusted dataset for downstream analysis. Here, we adopt a
different perspective, and propose to address batch effects with en-
semble learning. Contrary to the traditional batch effect adjustment
methods, our proposed framework is based on the integration of
predictions rather than the integration of data. This is a simpler task
for prediction, as it operates in one dimension rather than many.
Also, it is possible to reward predictors that show good performance
across batches and thus altogether ignore, rather than trying to re-
pair, features that are preferentially affected by batch effects.

Although ensemble learning is a well-established method, it has
only recently been discussed in the context of training replicable pre-
dictors. Patil and Parmigiani (2018) found that ensembles of learn-
ers trained on multiple studies generate predictions with more
replicable accuracy. In their framework, a cross-study learner (CSL)
is specified by three choices: (i) a data subsetting strategy; (ii) a list
of one or more single-study learners (SSLs), which can be any ma-
chine learning algorithm producing a prediction model using a single
study; and (iii) a combination approach utilizing multiple prediction
models to deliver a single prediction rule. In our case, we subset the
data by batch, and use the same CSL with batches in place of stud-
ies. Guan et al. (2019) provide theoretical insights in the comparison
between merging and ensembling in training learners from multiple
studies, and conclude that although merging is better than ensem-
bling when the studies are relatively homogeneous, ensembling
yields better performing models at higher levels of study
heterogeneity.

In this article, we explore using ensemble learning in the context
of batch effect adjustment for the first time. We provide both realis-
tic simulations and real data examples to demonstrate the utility of
our ensembling framework, and compare it with traditional merging
strategies for addressing batch effects.

2 Materials and methods

2.1 Addressing batch effects via ensemble learning
We structure the problem as follows: in a binary classification prob-
lem on genomic data, we have a training set for learning prediction
models (Strn), and another independent test set (Stst) where predic-
tions are to be made. Subjects in the training set are associated with
a binary label indicating their phenotype. Examples of the pheno-
type could be disease status (e.g. cancer versus normal) or response
to a treatment. In addition, expressions of genes for all individuals
are profiled for use as predictors. Individuals in the test set also have
measured gene expressions, and the goal is to train a model that can
accurately predict the disease label for them based on their gene ex-
pression profiles. We assume that the training set is generated in B
batches S1

trn; S
2
trn; . . . ; SB

trn, possibly due to practical or technical
restrictions. We assume that each batch contains a sufficient number
of samples to train a prediction model and that there are both addi-
tive and multiplicative batch effects (Johnson et al., 2007), which
cause differences in the mean and the variance of gene expressions
across batches.

Consider a collection of L learning algorithms to use for training.
Multi-study learning begins by training each of the algorithms

within each of the batches. This results in the collection Ŷ
l

bðxÞ, l ¼
1; . . . ;L and b ¼ 1; . . . B, where Ŷ

l

bðxÞ is the prediction function
trained on batch b with learning algorithm l. In the binary classifica-

tion setting, Ŷ are the probabilities of samples belonging to the posi-
tive class. The final cross-study learner’s (CSL) prediction is

calculated by a weighted average of predictions from each model,
that is:

Ŷ ðxÞ ¼
XL

l¼1

XB

b¼1

wlbŶ
l

bðxÞ: (1)

The performance of a CSL relies critically on the weights wlb, as
these have the function of rewarding elements of the ensemble which

show stable predictive performance across batches. We explore five
weighting strategies, which fall into three categories, as described in

Patil and Parmigiani (2018). The first are sample size weights, which
use scaled batch sizes as weights for models trained in the corre-
sponding batches, and make no direct effort to reward robustness to

batches via weights. The second are cross-study weights, for which
we evaluate how well each learned model performs when applied to

the other batches within the training set, and assign higher weights
to models that have better prediction performances. The last cat-
egory is stacking regression weights (Breiman, 1996), for which we

use each model to make predictions of the training data, and esti-
mate the weights as regression coefficients between stacked predic-

tions of the training samples and their labels. The association
coefficients are estimated using non-negative least squares. A more
detailed description of the weighting strategies is available in the

Supplementary Materials.

2.2 Data
We use a collection of 7 RNA-Seq and microarray studies targeting
subjects infected with tuberculosis (TB) to apply and evaluate our
ensemble learning method, and make comparisons with the trad-

itional strategy of merging followed by batch adjustment (‘merg-
ing’). Subjects involved in this collection of studies can be divided in

three phenotypes based on their disease progression status: (i) latent
infection (LTBI)/non-progressing, (ii) in ‘progression’, or those that
will progress to disease in the near future and (iii) active TB disease.

For simplicity and sample size considerations, we use two types of
patients in each analysis to form a binary classification problem,

and focus on different phenotypes for simulation and application of
our methods. In simulations, we focus on predicting progressors
against not progressors, as this separation yields the largest sample

size in the training set. In real data, since there are no known batch
effects within any single study, we aim to separate subjects with la-

tent infection from those with active disease instead, so we have a
sufficient number of studies in the collection. We merge studies for
training while treating the differences between studies as ‘batch

effects’.
Table 1 summarizes information on the samples used in simula-

tion studies and real data analysis. This collection of studies share a
similar purpose: to develop genomic biomarkers for patients with
different tuberculosis progression status. It is common in practice to

consider them as ‘batches’ for the uniform purpose. However, these
studies differ in both biological and technical aspects. For example,

study A (Zak et al., 2016) targets only adolescents between the ages
of 12 and 18, and study C (Anderson et al., 2014) measures only
children under the age of 15. The remaining studies contain subjects

in a much wider age spectrum, including both children and adults.
In the collection, the geographical source of populations includes

India (study D), the United States (study E) and different regions in
Africa (studies A, B, C, F, G). Studies are also generated from vari-
ous array and sequencing platforms (Table 1). We recommend cau-

tion when interpreting the results of analyses that consider studies as
batches, as study differences may be a mixture of biological and arti-
factual differences.
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2.3 Simulation for comparing merging and ensembling
We consider two datasets in simulation, A and B, which are col-
lected from the African population, with the goal of predicting TB
progression, as described in Table 1. We use study A for training,
and study B for independent validation. For the training set only, we
randomly assign individuals to disjoint subsets which will be simu-
lated to be batches, and simulate differences in the moments of gene
expression distributions across batches as described below. No
batch effects are added to the validation set. We train predictors
using both merging and ensembling on this dataset with simulated
batch effects, then make predictions in the other independent study.
We evaluate the two approaches using discrimination in the inde-
pendent study.

2.3.1 Simulation of batch effects

We transformed the sequencing data into the logarithm of fragments
per kilobase of transcript per million mapped reads (logFPKMs),
and selected the top 1000 genes with the highest variances for build-
ing the classifiers. Then, we randomly took subsets of individuals
from the training set to form 3 batches, each batch containing 10
non-progressors and 10 progressors. We then simulated batch
effects across the 3 batches.

Our data generating model for batch effects is the linear model
assumed in the ComBat batch adjustment method (Johnson et al.,
2007). Specifically, we estimate two components from the original
training data: (i) the expression of gene g among the negative sam-
ples, and (ii) the biological effect (i.e. the expression changes due to
biological perturbations or conditions of interest). We then specify
batch effect parameters affecting the mean (cgb) and the variance
(dgb) of expression in gene g caused by batch b. As in Johnson et al.
(2007), cgb and dgb are randomly drawn from hyper-distributions

cgb � Nðgb; s
2
bÞ; dgb � InvGammaðkb; hbÞ: (2)

ComBat assumes an additive batch effect for the mean, and a
multiplicative batch effect for the variance. To set the hyper-
parameters, we first specify a value to represent the severity of batch
effects, as reported in columns sevmean and sevvar in Supplementary
Table S2. We selected three severity levels (sevmean 2 f0; 3;5g) for
batch effect on the mean, and five levels (sevvar 2 f1;2; 3; 4;5g) for
batch effect on variance. Given a severity level for batch effects, we
fixed values for sbs and hbs, so that the variance of cgb and dgb over
genes are 0.01. We varied the mean of these two parameters, so that
the hyper mean gb is ð�sevmean;0;þsevmeanÞ, and the hyper variance
kb is ð1=sevvar;

1=sevvarþsevvar

2 ; sevvarÞ for the three batches. The parame-
ters are then added or multiplied to the expression mean and vari-
ance of the original study. The characteristics of simulated batches
are also summarized in Supplementary Table S2. Supplementary

Figure S2 shows an example training set where we simulated three
batches with both mean and variance differences. The magnitudes

of batch effects are selected based on what we previously observed
in real data (Zhang et al., 2018a, 2020).

2.3.2 Comparing ensemble learning with merging

We then use the dataset with simulated batch effects to train classi-
fiers for predicting patient phenotypes. We perform the ensemble

learning strategy as described above. For the merging strategy, we
pooled the three batches together, and applied ComBat to remove

batch effects. We then used the whole adjusted data to train a single
model, and make one set of predictions on the independent test set.
We trained learners LASSO (Tibshirani, 1996), Random Forest (RF,

Breiman, 2001) and Support Vector Machines (SVM, Cortes and
Vapnik, 1995), after performing the two batch adjustment strat-
egies. In ensemble learning, we evaluated aggregating predictions

both from a single learning algorithm (L¼1), and across all algo-
rithms (L¼3). The accuracy of performance was measured by the

area under ROC curve (AUC). We repeated batch correction and
predictions to generate 100 discrimination scores, and compared
them between the two strategies.

2.4 Applying ensemble learning in real data batch

effects
To demonstrate a realistic application setting for our ensemble
learning method, we took 6 TB studies as summarized in Table 1.

Our goal in this context will be to distinguish between active and la-
tent TB. We iteratively treat each of these studies as the independent
test set. The remaining studies are used as batches forming the train-

ing set.
The original data contains more than 15 000 genes, resulting in

too unfavorable a situation to support method comparisons. For ex-
ample, LASSO was not able to get a prediction AUC above 0.5 on
the independent samples. We thus prefiltered genes to select a subset

of the 1000 most highly variable, and used the same subsets of genes
for both ensembling and merging.

We trained three learning algorithms: LASSO, RF and SVM, and
integrated predictions both from each single learning algorithm, and

from all three learning algorithms in the ensemble framework. The
remaining methods for batch effect adjustment, predictions and
model evaluations are the same as those for simulation studies. We

performed 100 bootstrap replicates on the test set, to obtain a confi-
dence interval for model performance scores. Performance is eval-
uated using both AUC and mean cross-entropy loss, defined as

Table 1. Summary statistics of the TB datasets used in simulation studies and real data applications

Data Platform No. of subjects No. of Pos (prevalence) %age � 18

Simulations A (Train) RNA-Seq Illumina HiSeq 2000 181 77 (42.5%) 100%

B (Test) RNA-Seq Illumina HiSeq 2000 399 95 (23.8%) 26.3%

Application A RNA-Seq Illumina HiSeq 2000 120 16 (13.3%) 100%

C microarray Illumina HumanHT-12 V4.0 expression

beadchip

70 20 (28.6%) 100%

D RNA-Seq Illumina NextSeq 500 44 25 (56.8%) 2.3%

E microarray Affymetrix Human Gene 1.1 ST Array 70 35 (50%) 0%

F microarray Illumina HumanHT-12 V4.0 expression

beadchip

94 46 (48.9%) 0%

G microarray Illumina HumanHT-12 V4.0 expression

beadchip

86 51 (59.3%) 0%

Note: No. of subjects: total number of individuals in each study. No. of Pos: number of positive samples. They refer to progressors in simulation studies, and

active patients in real data application. The negative samples are subjects with latent infections in both cases. Prevalence: percentage of positive samples in the

study. Study A targets only adolescents between ages of 12 and 18. Study C measures only children under the age of 15. The remaining studies contain both chil-

dren and adults. %age � 18 is the percentage of samples of age 18 or less. Studies F and G are published together as two separate studies with different popula-

tions. References for the datasets are available in Supplementary Table S1.
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mxe ¼ � 1

N

XN

i¼1

ðyi log ðpiÞ þ ð1� yiÞ log ð1� piÞÞ;

where N is the number of samples, yi is the true label for sample i, (0
if latent TB, 1 if active TB) and pi is the predicted probability of
sample i having active TB. We show the cross-entropy loss in the
main paper, and include AUC results in Supplementary Materials.
Compared to AUC, cross-entropy loss is sensitive to changes in pre-
dicted probabilities which may not affect the overall ranking of pre-
diction. Cross-entropy loss is also a proper scoring rule (Gneiting
and Raftery, 2007), unlike the AUC.

3 Results

3.1 Impact of mean and variance batch effects on

discrimination of predictions
Figure 1 summarizes results over 100 simulated datasets, representa-
tive of the patterns we observe across simulation studies. We used a
Random Forests learner for both merging and ensembling. Random
Forests achieve a 0.685 AUC on the test set when using the original
training study without simulated batch effects. When adding batch
effects to the data, we observed drops in discrimination in the test
set. Mean and variance batch effects affect prediction performance

in different ways. Model discrimination is not strongly affected by
batch if batch effect only affects the variance. A sufficient size of the
mean differences across batches in the training set is necessary to
cause a drop in prediction accuracy. On the other hand, when batch
affects the mean, an increase in variance differences across batches
will lead to a further drop in discrimination.

3.2 Ensemble learning achieves more stable

discrimination than merging at high severity of batch

effects
Supplementary Table S2 shows the levels of batch differences we
created in simulation studies, corresponding to the results in
Figure 1. At a low level of batch effects, with no mean difference
and a variance fold change smaller than three, the merging method
yields better discrimination. However, we observed a turning point
in the severity of batch effect, after which ensemble learning starts
to achieve higher discrimination. This turning point is characterized
by general stability or small improvements in the performance of the
ensembling approaches and large drops in the performance of the
unadjusted and batch-adjusted merged data approaches. We consid-
ered ensembling both using a single learning algorithm, and using all
three learning algorithms together. We observed similar perform-
ance gains across levels of batch effects. Rather than comparing the
absolute performance of algorithms, our observation highlights the
robustness of ensembling compared to merging across increasing de-
gree of batch effects, a common pattern shared by LASSO, SVM and
RF.

The turning point in the magnitude of batch effects differs by the
selected learning algorithms. Supplementary Figures S3, S4 and S5
show the simulation results of training with all algorithms. When
training with SVM, for example, we see that discrimination from en-
semble learning is already comparable with that using the merging
method in data with no mean batch effect and a variance fold
change of two, though at this level, merging still out-performs
ensembling when training with Random Forests. Also, at high level
of batch discrepancies, stacking regression weights yield better pre-
diction results than the sample-size weights when building ensemble
with SVM alone, though they are more comparable when using
Random Forests.

We also observed that ensembling across different learning algo-
rithms does not necessarily improve the final prediction compared
to ensembling with a single algorithm. We see in Figure 1 that en-
semble learning across algorithms generates worse performance
than using only Random Forests. The optimal weighting approach
also depends on the learners involved in the ensemble. When using
Random Forests only, the sample-size weights and the stacked re-
gression weights generate better accuracy than the cross-study
weights. But the latter is better in integrating across all algorithms.
Note that despite the difference in rankings of the three types of
weights, all three ensemble weighting methods out-perform merging
and batch correction with ComBat at high level of batch differences.

Finally, we repeated the simulations with a larger sample size,
and larger number of batches. To increase batch size, we took 3 sub-
sets as batches, each containing 20 non-progressors and 20 progres-
sors, in contrast to our previous results which use 10 individuals per
condition per batch. For a larger number of batches, we took five
subsets of subjects as simulated batches. We observed consistent pat-
terns in both situations, as shown in Supplementary Figures S6 and
S7.

3.3 Predicting tuberculosis disease phenotype
We now present a classification case study using real data with
batch effects. Specifically, we selected six studies designed to dis-
cover biomarkers of TB disease (versus control). We iteratively treat
one as the test set, and use the others for training. The study label
serves as the batch. We applied both ensembling and merging to ad-
dress batch effects, and trained three types of learning algorithms:
LASSO, RF and SVM. Ensemble predictions are aggregated using
each learning algorithm, and from all algorithms. That is three L¼1
experiments, each with one of the algorithms, and another L¼3

Fig. 1. Comparison between ensembling and merging when using Random Forests.

Three out of our five choices of ensembling weights are displayed: batch size

weights, cross-study weights and stacking regression weights (see Section 2 for

details)
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experiment ensembling across all algorithms. To obtain a bootstrap
confidence interval of model performance, we generated 100 boot-
strap samples from the test set. Since study effects are often consid-
ered to be more severe and complicated than technical batch effects,
this application example represents a high level of batch differences.

The cross-entropy loss and the weights assigned to learners
trained from each training batch, using only random forest learners,
are shown in Supplementary Figure S8. Whenever study A is
included as a batch in training, the stacking weights are dominated
by weights assigned to the learner from study A. Meanwhile, cross-
study weights consider it to be the worst-performing when generaliz-
ing to the other batches in the training set. In addition, though such
patterns in the assigned weights are consistent across test sets, we
observe different rankings of merging and the three ensembling
methods in mean cross-entropy loss when different studies are used
as the test set. Cross-study weights achieve the lowest average loss
among all methods on studies D, F and G, and among the three en-
semble methods on study E, while stacking regression weights yield
the worst loss. This ranking is reversed when A or C is used as the
test set. These observations of model performance are consistent
when aggregating predictions from all three learning methods, as
shown in Figure 2. The corresponding results using AUC as the
evaluation metric are shown in Supplementary Figure S9. We also
explored the options of choosing the top 10, 100 and 10 000 genes
with the highest marginal variances (Supplementary Fig. S10), in-
stead of the 1000 used for the main analysis. These choices do affect
the absolute performance of models, but the general conclusions
about the relative merits of ensembling and merging strategies re-
main valid.

To investigate the reasons behind these observations, we have
noticed and mentioned that the six studies include populations in
different age ranges. The two studies which generate different rank-
ing of methods, A and C, only include children or adolescents. It is
well-established that young age is a risk factor for progression from
TB infection to active disease (Narasimhan et al., 2013).
Tuberculosis in childhood and adulthood is also different in clinical
features and pathogenesis (Alcaı̈s et al., 2005). When each of the six
studies are used as the test set, we merged the other five studies after
z-score standardization within each study, and selected 1000 genes
with the highest marginal variance. Among these 1000 genes, we

used limma (Smyth, 2005) to perform differential expression in each
study and identified the 50 most significant genes ranked by FDR-
adjusted P-values. We then took the overlapping genes across test
studies, resulting in 11 up-regulated and 16 down-regulated genes
that are common across studies. We measured the average expres-
sion of these up- and down-regulated genes in each study, as sum-
marized in Supplementary Table S3, and visualized their expression
distribution in Supplementary Figure S11. This analysis shows that
the top differentially expressed genes are not those with the clearest
biological signal in studies A and C. These results suggest that the
difference in age may be confounded with batch, which may explain
the inconsistent observations in the six-study analysis. For example,
when training in the other batches and validating in A or C, the
training data consists of a mixture of children and adults, in which
we are not able to develop a predictor that generalizes well specific-
ally for children/adolescents.

We then took the four studies with both children and adults,
namely D, E, F and G, and re-applied both ensembling and merging
strategies. In this case, the four studies are more representative of
what are usually considered ‘batch effects’, as they serve the same
purpose of developing TB biomarkers across children and adults.
The bottom row in Figure 2 shows the mean cross-entropy loss of
predictions, where ensemble predictions are aggregated across all
three algorithms. We observed that the average performance of en-
semble learning approaches is consistently better than that of merg-
ing in all test studies. When training with Random Forests as the
sole learner, the mean cross-entropy loss and the weights assigned to
each learner are shown in Supplementary Figure S12.

Due to the relatively small sample sizes, we also observed a high
variance in model performance. Therefore, we also compared
ensembling against merging within each bootstrap sample in the
four-study analysis. The proportions of bootstrap samples where
each method achieves the lowest cross-entropy loss are summarized
and annotated in Figure 2, which shows that in the four-study ana-
lysis, in almost all situations, addressing batch effects via ensemble
learning yields more robustly performing models with respect to dis-
crimination. These results are broadly consistent with our observa-
tions in simulations that when there are severe differences across
batches, ensemble learning is a more robust strategy for addressing
the impact of batch effects on prediction.

Fig. 2. Application of ensemble learning to predicting active TB against latent infection. We iteratively selected one of the studies in Table 1 as the independent test study. The

remaining studies are viewed as ‘batches’ in the training set. We trained LASSO, Random Forest and SVM, then aggregated predictions from all three algorithms to construct

the ensemble. The figure shows average prediction performance over 100 bootstrap samples of the test data, with error bars showing 95% confidence intervals. Above the bars

we note the percentage of bootstrap experiments where each method achieves the lowest mean cross-entropy loss. When the four homogeneous studies are used, the average

performance using the three ensemble strategies are better than the merging strategy, which is consistent with observations from the simulation study at high severity of batch

effects. Different ensemble methods can be the best in a different test set (the optimal study—ensemble combination: D—batch-size weights, E—stacking regression weights,

G—cross-study weights). For study F, the three ensemble methods are roughly equal, each wins 33% of the time
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Finally, the changes in results from using six studies compared to
those using four are largely due to the fact that study A contains a
different population from the other studies, is highly imbalanced,
and is also much larger in size than the other studies. Having only
16 active TB samples among 120 subjects in study A makes it chal-
lenging to develop a generalizable predictor from study A. However,
this predictor is assigned more weight by the stacking regression
method due to the large proportion of the total of the observations
across all studies, which are aggregated for the stacking regression.
To verify this conjecture, we upsampled the smallest study (D) in the
four-study collection to be five times its original size, and repeated
the experiments. In another set of experiments we downsampled
study A to have 16 active and 16 latent patients. Comparing the
upsampling (Supplementary Fig. S13) and the downsampling
(Supplementary Fig. S14) results with the weight assignment in the
main results, we see that stacking weights assigned to study D in-
deed increased after upsampling, and the weights for study A
decreased after downsampling. This suggests that the stacking
method can indeed be sensitive to the size of the studies.

4 Discussion and conclusions

We proposed a novel perspective for addressing batch effects when
developing genomic classifiers. Our proposal is to use multi-study
ensemble learning, treating batches as separate studies. We provided
both realistic simulations and real data applications to compare
ensembling with the traditional approach, which is to analyze all
batches together to remove batch effects, and use the adjusted data
for prediction. We observed in both simulations and real data that,
though merging is able to generate better performing models when
batch effects are modest, ensemble learning achieves more robust
discrimination in independent validation across different levels of se-
verity of batch effects. Our observations suggest that ensembling is
more likely to provide robust prediction performance when the het-
erogeneity level is unknown, while merging plus batch correction
comes with the risk of substantial performance loss. These findings
are consistent with those described in Guan et al. (2019), who pro-
vides theoretical insights into the comparison between merging and
ensembling in training cross-study learners. We explored different
training algorithms, different batch sizes and number of batches,
and observed consistent patterns of such transition.

The philosophy behind the standard approach of merging and
batch adjustment is to remove undesired batch-associated variation
from as many of the genomic features as feasible, and then use the
‘cleaned’ data in classification as though the batch effects never
existed. This has been the standard in the literature and can be quite
successful (Engchuan et al., 2016; Luo et al., 2010; Riester et al.,
2014). Multi-study ensemble learning provides a different perspec-
tive: ensemble weights reward prediction functions that, while
trained in one batch, continue to predict well in other batches.
These are likely to avoid using features affected by batch effect, in
contrast to cleaning them and potentially losing useful biological
signal.

In our application with four studies, we observed patterns broad-
ly consistent with those seen in the simulations. In contrast, in the
analysis with six studies, the advantages and disadvantages of
ensembling and merging are less clear, because studies A and C con-
tain radically different populations compared to the others.
Furthermore, study A is large in size, causing the stacking regression
strategy to assign a high weight to the learner trained from A when-
ever it is included as a training batch. Here one batch is large and
confounded with another variable which strongly influences the pre-
diction. Then, ensembling does not provide a model with generaliz-
able performance. We therefore recommend to thoroughly evaluate
the available information in the data, and identify any confounders
for prediction. The studies or batches of data to be jointly used
should contain the samples and study designs suitable for addressing
the same biological question.

In simulations, we observed that ensembling generates more ro-
bust performance compared to merging, especially at high levels of
batch effects. The specific level where ensembling begins to

outperform merging was different for each of the three learning
algorithms we explored. A natural explanation for this observation
is that different learning algorithms may be affected by batch effects
to different extents. The relationship between the learning algo-
rithms used and the merging versus ensembling choice is complex
and worthy of further methodological study. Ensembling over mul-
tiple learners provides a logical strategy when the implications of
using specific learners are not well understood, and would deserve
further study.

We compared five kinds of weighting strategies to integrate the
predictions. The relative performance of different weighting strat-
egies also depends on the specific dataset and algorithm.
Additionally, there could be ways to further improve the ensemble
performance by developing other weighting methods that are not
considered in this study. All ensembles considered are very small be-
cause the number of batches B and the number or learners L are
both small. Recently, Ramchandran et al. (2019) compared an
ensembling strategy based on RF to one based on cross-study
weighting of the component trees in the RF, showing improvements
from direct reweighting of trees. This method may also prove effect-
ive in our context, as individual trees are more parsimonious than
the whole forest, and may more effectively avoid features affected
by batches. Lastly, we explored, but did not highlight, combining
both the batch-correction and ensembling strategies (Supplementary
Fig. S15). In this case, data is first merged and batch-corrected with
ComBat, then ensemble learning is performed by separating the
adjusted data by the original batches. We observed that combining
both strategies did not improve the prediction performance over ei-
ther strategy alone. We conjecture that batch adjustment may be
removing some of the biologically relevant study heterogeneity
which the CSLs take advantage of to improve generalizability.

Our study has several limitations. First, the ensemble learning
approach requires that each batch contains sufficient samples to
train a prediction function. This assumption may limit our approach
to sufficiently large datasets. However, most if not all batch effect
adjustment strategies require a reasonable number of samples in
each batch to accurately and robustly estimate batch effects. Having
limited number of samples in a batch will negatively affect not only
our proposed methods, but also traditional methods based on merg-
ing. We speculate that methods like ComBat might, however, be
able to effectively operate with smaller batches than ensembling.
Still, in the context of prediction, it is usually challenging to train
models on small datasets.

We focused on using ComBat for batch effect adjustment after
merging. ComBat is not the only option, but remains one of the
most popular batch effect adjustment methods, especially in the case
where batch effect sources are known. Our simulations of batch
effects are all based on the generative model of ComBat, which,
while plausible, is one among many possible models. Using the same
batch effect model for data generation and analysis provides a lower
bound to the effectiveness of our proposal, as any other data gener-
ating approach would be less favorable to ComBat than the one we
used. In data drawn from other generating mechanisms, the advan-
tages of ensembling should be more pronounced, and may set in at
lower levels of batch effects.

We evaluated our approach in binary prediction. While simple,
binary classification remains one of the most commonly encoun-
tered tasks in clinical applications. We provided a realistic applica-
tion example using the tuberculosis studies. However, our
observations and conclusions may not extrapolate to multi-class or
time-to-event scenarios. Patil and Parmigiani (2018) discussed an
ensemble learning strategy for predicting continuous outcomes.
Further research is needed to extend this approach to multi-class
prediction.

Our tuberculosis application illustrates a situation with relatively
small batch sizes in several batches. It would be interesting to further
explore our approach on data with larger batch sizes, or a larger
number of batches. Larger batches facilitate both the estimation of
batch effects and the training of batch-specific predictors. A larger
number of batches facilitates learning about the higher-level distri-
butions in ComBat, and would afford ensembling a better

1526 Y.Zhang et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa986#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa986#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa986#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa986#supplementary-data


opportunity to find stable signal across a larger number of batches,
a strength of the method that is not highlighted here.

Related, treating studies as batches mimics a high level of batch
differences, for the discrepancy across the ‘batches’ in this setting
includes both biological and technical differences. Thus we include
more sources of heterogeneity than normally considered as a batch
effect. Specifically, a batch effect is generally defined as variations
originated from technical differences across repeated experiments
performed on the same platform, such as differences in lab environ-
ment, protocols or reagents. In our application example, however,
each batch targets a different population, which means there likely
exists additional genetic variations across the groups. Also, the TB
studies are generated on different platforms. Differences across these
technologies are also beyond what is typically considered as batch
effects. Despite that, using batch correction software for study inte-
gration is common in practice, in which studies are often considered
as ‘batches’ for performing a uniform biological analysis. We believe
this example is representative of common practice and helpful to il-
lustrate our methodology, and our observations offer valuable prac-
tical guidelines in addressing batch effects in genomic classifier
development. We have shown that when batch differences are small,
the batch adjustment software may be sufficient for mitigating the
negative impact on prediction performance. Ensembling provides a
more robust and stable option, which is useful when batch effects
are strong or unknown.
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