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Abstract

Motivation: Alignment-free distance and similarity functions (AF functions, for short) are a well-established alterna-
tive to pairwise and multiple sequence alignments for many genomic, metagenomic and epigenomic tasks. Due to
data-intensive applications, the computation of AF functions is a Big Data problem, with the recent literature indicat-
ing that the development of fast and scalable algorithms computing AF functions is a high-priority task. Somewhat
surprisingly, despite the increasing popularity of Big Data technologies in computational biology, the development
of a Big Data platform for those tasks has not been pursued, possibly due to its complexity.

Results: We fill this important gap by introducing FADE, the first extensible, efficient and scalable Spark platform for
alignment-free genomic analysis. It supports natively eighteen of the best performing AF functions coming out of a
recent hallmark benchmarking study. FADE development and potential impact comprises novel aspects of interest.
Namely, (i) a considerable effort of distributed algorithms, the most tangible result being a much faster execution
time of reference methods like MASH and FSWM; (ii) a software design that makes FADE user-friendly and easily ex-
tendable by Spark non-specialists; (iii) its ability to support data- and compute-intensive tasks. About this, we pro-
vide a novel and much needed analysis of how informative and robust AF functions are, in terms of the statistical
significance of their output. Our findings naturally extend the ones of the highly regarded benchmarking study, since
the functions that can really be used are reduced to a handful of the eighteen included in FADE.

Availabilityand implementation: The software and the datasets are available at https://github.com/fpalini/fade.

Contact: umberto.ferraro@uniroma1.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alignment-free distance and similarity functions (AF functions, for
short) have been introduced as an alternative to traditional
alignment-based methods, e.g. (Altschulet al., 1990; Smith and
Waterman, 1981), in order to assess how similar each pair of
sequences in a collection are to each other. By now, their use has
been widely investigated for sequence analysis in genomics
(Zielezinskiet al., 2019a), metagenomics (Benoit et al., 2016) and
epigenomics (Giancarlo et al., 2015; 2018). The pros/cons of AF
functions with respect to their alignment counterparts is well pre-
sented in Zielezinskiet al. (2019a). One of the key pro features high-
lighted in that study is that their implementations offer data
scalability, opportunities that alignment methods lack. Taking into
account the throughput of HTS technologies, another compelling

case on how important is to design and implement fast and scalable
algorithms for the computation of AF functions is presented in
Ondovet al. (2016). It is of interest here to notice that the mentioned
two studies clearly indicate that the computation of AF functions is
now a Big Data problem.

As such, it needs algorithmic solutions that use Big Data technol-
ogies to grant efficiency and scalability as a function of the available
computational resources and of the amount of data to process.
Somewhat surprisingly, although those technologies are finding
more and more use in computational biology (Cattaneoet al., 2019;
Mushtaq and Al-Ars, 2015), and cloud storage and computing is the
future of genomic data (Kahn, 2011), only a few studies in that area
are available, concentrating on AF methods for informational and
linguistic analysis of genomic sequences (Cattaneoet al., 2017). Yet,
an effective Big Data platform supporting both the computation of
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AF functions and based on a pervasive Big Data framework such as
Spark, would place AF sequence comparison at a peer with other
important domains in data science (see, e.g. Gonzalez et al., 2012)
that have such platforms, as well as contribute to increase their
usage in the life sciences.

Our first contribution is to address this acute need. Indeed, we
propose FADE, the first extensible and scalable Spark platform for
the effective computation of AF functions. In its starting configur-
ation, it offers eighteen implementations of highly performing AF
functions according to results in Zielezinskiet al. (2019a). The basic
pipeline of our platform consists of five (possibly optional) stages, as
outlined in Figure 1.Its key features are as follows.

• FADE is user-friendly and easily extensible FADE comes as a

ready-to-use Spark application that can be easily executed without

writing any line of code. If needed, its standard processing can be

customized by just editing a provided reference configuration file,

so as to choose from an included library which statistics to extract

and which AF functions to evaluate. Some examples of configur-

ation files are reported in Supplementary Section S3.1 of

Supplementary Material. The user can add support for a target

statistic or a target AF function not originally included in the li-

brary, by writing the corresponding code using one of the pro-

vided class templates. This part is outlined in Section 2.3.
• FADE is scalable and efficient. In order to assess FADE ability to

profitably support the implementation of AF functions, we have

compared two of the most prominent ones in the shared memory

category, i.e. Mash (Ondovet al., 2016) and FSWM (Leimeisteret

al., 2017), versus their respective implementations supported by

FADE (denoted with the prefix FADE). Being those latter based

on a distributed framework, they are able to take advantage of

the much higher number of processing cores available, achieving

performances that are much better than those of shared memory

tools and that scale as a function of the processing units avail-

able. It is to be noted that, given the wide range of application

scenarios for AF sequence comparison, varying from the examin-

ation of a large collection of very small reads, up to the compari-

son of a few huge genomic sequences, a flexible workload

assignment is fundamental to grant scalability and speed. To this

end, FADE provides, and we have experimented with, three

workload choices. Transparently from the user, each of the three

is associated to a transformation of the logical basic pipeline into

a suitable ‘run time’ software pipeline, which is then executed.

The Partial Aggregation strategy results to be the most appropri-

ate, with varying workloads. All the results, and the correspond-

ing experiments, regarding this part are presented in Section 3.1.

Our second contribution, introduced in Section 2.5 and detailed
in Section 3.2, shows the ability of FADE to tackle data and com-
pute intensive tasks and it is of interest in its own right. Indeed, we
use novel ideas, that boil down to very costly Monte Carlo
Simulations, to gain insights into the properties of AF functions,
going a step further in the direction indicated by the mentioned
benchmarking study. The end result is new guidelines on the use of
AF functions in day-to-day genomic analysis tasks.

To this end, we consider reliability and robustness of AF func-
tions in terms of the statistical significance of the distance/similarity
matrices they produce on benchmark datasets. In details, we con-
sider a P-value obtained via a Monte Carlo simulation with the Null
Hypothesis being that the values obtained by a given AF function on
two biological sequences is no better than the value obtained on two
random sequences. A value is significant when the Null Hypothesis
is rejected. We account for repeated tests by applying Bonferroni
Correction. Our key findings are the following.

• A novel class of AF functions: consistently significant. Across

benchmark datasets from Zielezinskiet al. (2019a), only a handful

of the eighteen AF functions we have considered provide distance/

similarity matrices for which the Null Hypothesis is rejected for

the vast majority of their entries. We refer to those functions as

consistently significant, since they behave consistently well, statis-

tically, irrespective of the dataset, and it is well known that statis-

tical relevance is a good indication of biological relevance (Dudoit

and Fridlyand, 2002; Giancarlo et al., 2008b; Leung et al., 1996).

They are members of the D2 family (Song et al., 2014) (D2 and

D2*), and FSWM (Leimeisteret al., 2017). Since the D2 family

has been studied extensively from the statistical point of view, our

results confirm that it is an excellent choice. For FSWM, this ana-

lysis is completely new. This part is in Section 3.2.1.
• Sensitivity to noise of consistently significant AF functions. In

order for the consistently significant AF functions to be reliably

useful for ‘everyday analysis’, it is also important to assess how

sensitive they are to the presence of ‘noise’. That is, how the per-

formance of an AF matrix varies as a function of the number of

its entries that are not statistically significant. To the best of our

knowledge, this sensitivity analysis is completely new and the

findings are very informative. It is described in Section 3.2.2.

Based on those results, a small amount of‘noise’ is enough to

have a significant reduction in performance. Therefore, the oper-

ational range of those functions is limited to AF matrices that

pass at least 95% of the statistical significance test. Interestingly,

since we used phylogenetic tree construction for this sensitivity

analysis, we find that UPGMA (Sneath and Sokal, 1973) is better

than the Neighbor Joining method (Saitou and Nei, 1987) (NJ,

for short), in dealing with small amounts of ‘noisy’ entries in the

AF matrices. This aspect of those two methods is new.

In the reminder of this paper, we assume that the reader is famil-
iar with Apache Spark (Apache Spark, 2016). For the convenience
of the reader, and due to space limitations, a short primer is reported
in Supplementary Section S1 of Supplementary Material.

2 Materials and methods

2.1 A selection of alignment-free distances and similar-

ity functions
The two most popular classes of AF functions are those based on k-
mer statistics and on micro-alignments. For this research, we con-
sider those two classes, providing also motivation for our choices.

Fig. 1. Alayout of the logical architecture of the basic pipeline for the fast computation of AF functions

2 U. Ferraro Petrillo et al. D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab014/6104815 by Sapienza U

niversità di R
om

a, U
m

berto FER
R

AR
O

 PETR
ILLO

 on 21 April 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab014#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab014#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab014#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab014#supplementary-data


An AF function in the first class is based on k-mer statistics (or
histogram statistics; Luczaket al., 2019). and it can be used to ana-
lyze a set of sequences as follows. For each sequence in the set, the
contiguous subwords of length k therein contained (i.e.k-mers) with
their associated frequencies are counted. The result is a set of vec-
tors. Then, sequences are compared pairwise by computing suitable
distance/similarity functions between each pair of vectors. The inter-
ested reader can find in Zielezinskiet al. (2019a) a list of the ones
that have been the object of a recent benchmarking study. One of
the most surprising findings of that study is that those simple AF
functions are among the best performing and most versatile in terms
of application domain. We have chosen the best performing ones
according to that benchmarking, representatives of all types of AF
functions described in Luczaket al. (2019) and that can be broadly
used in biological studies, e.g.metagenomics (Benoit et al., 2016).
The complete list of the selected AF functions is in Supplementary
Section S2.1 of Supplementary Material, together with their
definitions.

An AF function in the second class is based on the notion of
spaced word match between two sequences. This latter is usually
encoded via a binary vector, where the one entries indicate the posi-
tions where two subsequences of the two sequences must be identi-
cal. Zero entries may not matter. The distance between two
sequences is estimated with the use of those matches. The interested
reader can find an example of those methods in Denckeret al.
(2020), together with relevant references. For our study, we have
chosen the FSWM distance (Leimeisteret al., 2017), since it has
emerged as the most competitive in this class of AF functions
(Leimeisteret al., 2017; Zielezinskiet al., 2019a). Details regarding
its definition are in Supplementary Section S2.2 of Supplementary
Material.

2.2 A Spark platform for fast computation of AF

functions: the basic pipeline
In this section, we first provide a ‘user level’ functional description
of the proposed platform. Then we outline, again at a functional
level, how the architectural issues influencing scalability have been
dealt with.

2.3 A user-view of the basic pipeline as a general and

extensible spark programming paradigm for implemen-

tation of AF functions
To a user, the basic pipeline appears as a succession of stages,
described next. Assuming that the dataset to be processed is com-
posed of n sequences, the output is an n�n matrix, in which entry
(i, j) corresponds to the value of the chosen AF function on sequen-
ces i and j. It is also worth pointing out that since the input sequen-
ces are partitioned over different computing nodes, two steps are
required to collect a global statistic. First, the desired statistic is par-
tially evaluated on each node holding a part of a given sequence.
Second, all partial statistics are aggregated to derive the global
statistic.

• Stage 1: collection of partial statistics. In this stage, the statistic

that needs to be collected, e.g. k-mers, is extracted from each of

the input sequences and provided as output.
This is transparently done in a distributed way, so that each comput-
ing node extracts the partial statistic from the parts of the input
sequences it stores. We anticipate that Stage 3 takes care of aggre-
gating the different partial statistics extracted from a same sequence.
User code can be provided to support more statistics, in addition to
those already included in the platform.
• Stage 2: feature-based statistics filtering. The user implementing

the AF algorithm may require the exclusion of a selected subset

of features from the statistics it is computing, e.g. specific k-mers

such as those containing the ‘N’ character. To this end, this stage

acts as a filter to exclude from the output of the previous stage

the selected features, according to conditions specified by the

user. The filtering occurs at this point, so as to (possibly) alleviate

the workload of the following stages.
• Stage 3: statistics aggregation. All partial statistics extracted by

different computing nodes during Stage 1 (and possibly Stage 2),

but originating from the same input sequence are automatically

and transparently gathered on a same node and aggregated. For

instance, statistics about a particular k-mer and extracted from

different parts of the same sequence are summed to obtain the

overall k-mers statistics for that sequence. User code can be pro-

vided to support aggregation for statistics, in addition to those

already included in the platform.
• Stage 4: value-based aggregated statistics filtering and normaliza-

tion. Stage 2 filters the features existing in a statistic, while this

stage filters according to a user-defined condition targeting the

aggregated value assumed by a feature in a statistic. For instance,

one would want to exclude low frequency k-mers when collecting

k-mers statistics. This stage also performs, if required, data nor-

malization. Indeed, as well argued in Luczaket al., (2019), it is ad-

visable to take the statistic of each sequence, e.g.k-mers counts,

and transform it so that all the statistics refer to the same scale.

Details are in Giancarlo et al. (2018) and Luczaket al. (2019).
• Stage 5: AF matrix computation. For each pair of different input

sequences, their final aggregated statistics are sent by the platform

to the same node. The AF function that has been chosen, from the

ones available, is evaluated on each pair of sequences and the AF

matrix is filled accordingly. In addition to the ones available, add-

itional functions can be supported by providing user code.

The output AF matrix is encoded as a distributed data structure,
whose content can be saved on file or used as input for further
analysis.

Each of the aforementioned stages is modeled as one or more
Spark distributed transformations. A general and extensible library
of built-in basic functions implementing them is described in details
in Supplementary Section S3.1 of Supplementary Material. The user
interested in supporting a new statistic and/or implementing a vari-
ant of these functions can provide her code, as described in
Supplementary Section S3.2 of Supplementary Material.

2.4 Architectural engineering: tuning the pipeline as a

function of the workload
We briefly highlight the different data partitioning strategies sup-
ported by FADE, designed with the aim of tuning the basic pipeline
as a function of the input workload so as to allow for an efficient
and scalable execution. Additional details regarding them are avail-
able in Supplementary Section S4 of Supplementary Material, while
their comparative experimental evaluation is reported in Section
3.1.

• Strategy 1: total aggregation. This strategy allows for very good

execution times when extracting and processing statistics having

an overall small size. This is possible because all statistics (either

partial or aggregated) extracted during the pipeline are main-

tained and processed on a single node of the distributed system.

The same occurs to the partial AF function evaluated on each

statistic. On a one side, this implies that no distributed computa-

tion occurs, apart from that of Stage 1. On the other side, this

strategy allows to avoid the data transmission overhead required

to transfer data to the nodes of the distributed system prior to

their processing.
• Strategy 2: no aggregation. This strategy allows for a very good

scalability when extracting and processing statistics from very

large input data. This is possible because every single statistic (ei-

ther partial or aggregated) extracted during the pipeline is
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managed as a stand-alone data object. The same occurs to the

partial AF function evaluated on each statistic. The only aggrega-

tion occurs at the end of the pipeline when, for each pair of dis-

tinct sequences, partial AF function values are combined to

return the overall value of the function. This ensures for a very

fine scalability and load balancing as Spark tends to scatter these

data objects uniformly at random on the different nodes of the

distributed system. This holds because the amount of memory

required to process single data objects is, typically, much smaller

than the one required for processing collections of data objects.
• Strategy 3: partial aggregation. This strategy allows for a good

trade-off between efficiency and scalability when extracting and

processing statistics from large input data. This is possible be-

cause all statistics (either partial or aggregated) extracted during

the pipeline are partitioned into bins. The same occurs to the par-

tial AF function evaluated on each statistic. Consequently, each

node processes a smaller number of data records batches (i.e. the

content of each bin) rather than a (potentially) much larger num-

ber of single data records. This has a positive effect both on the

processing and the communication times.

2.5 Reliability and robustness of AF functions
2.5.1 Reliability of an AF function via a hypothesis test Monte

Carlo simulation

Intuition suggests that the larger the number of entries in the AF ma-
trix not due to ‘chance’, the more indicative of biological relevance
the outcome, e.g. phylogenetic tree, of that function use is expected
to be. However, experience suggests that AF functions may have a
‘behavior’ that depends on the dataset being processed. Therefore, it
is uncontroversially desirable to use functions that are consistently
significant.

We formalize such an intuition by requiring that a consistent AF
function must provide a high percentage of statistically significant
entries in its corresponding AF matrix, with very little dependence
on the input dataset. In regard to those tests, we resort to a Monte
Carlo Simulation method, in which we assume as the Null
Hypothesis H0 that two biological sequences are as similar as two
random ones. An entry (i, j) of an AF matrix is statistically signifi-
cant when the Null Hypothesis involving the two sequences associ-
ated to that entry is rejected with a given significance level. The
entire simulation consists of three steps, described next. The Spark
algorithms implementing it are briefly described in Supplementary
Section S5 of Supplementary Material. In what follows, we consider
only the case of similarities, since the case of distances is analogous.

Step 1: synthetic datasets generation via bootstrapping. The first
step is to devise a procedure that generates synthetic datasets, that
are meant to represent ‘random data’. Such a task can be accom-
plished by choosing a Null Model, e.g. an information source emit-
ting symbols uniformly and at random. However, in our case, it
seems more appropriate to resort to bootstrapping (Efron, 1979),
i.e. to generate the synthetic datasets from real ones, since it is desir-
able to preserve the biological origin of the input dataset also in the
synthetic ones. To this end, we proceed as follows.

Let S be the input dataset and let q be a parameter. All q-mers of
sequences in S are extracted and placed in a bin B. Then, in order to
obtain a synthetic dataset Ŝ, we extract uniformly and at random q-
mers from B in order to form new sequences to be included in Ŝ.
This latter has the same number of sequences as in S and each se-
quence in Ŝ corresponds to only one in S in terms of length.

It is to be noted that the parameter q allows us to generate syn-
thetic datasets along a wide spectrum of subsequence statistics pre-
sent in S, e.g.q¼1 corresponds to the case in which the synthetic
dataset is generated according to the empirical probability distribu-
tion of symbols in S.

Step 2: significance test via a Monte Carlo simulation for two
sequences. The next step consists of the following simulation,
adapted from Giancarlo et al. (2008a). It applies to sets of two

sequences. C denotes the AF function to which the procedure is
applied. The Null Hypothesis H0 is that two input sequences are as
similar as two random ones, when similarity is assessed via S. We
want to reject the Null Hypothesis with confidence level a, with the
performance of ‘ Monte Carlo Simulations.

Procedure MECCAð‘;C; S; aÞ

1. For 1 � i � ‘, compute a new set of two sequences Ŝi according

to the procedure outlined in Step 1. Compute the similarity be-

tween the two sequences in Ŝi via C. Let Ti be its value.

2. For 1 � i � ‘, sort the Ti values in non-decreasing order and let

SL be the corresponding list.

3. Let T denote the value of C computed on S. Let j be the maximal

index such that SL½j� < T. Let d ¼ ðj=‘Þ. The P-value is then 1�
d and, and letting a be the desired significance level, the hypoth-

esis that the two sequences in S are as similar as two randomly

chosen ones is rejected with that significance level if 1� d � a.

Step 3: AF matrix significance via Bonferroni correction.
Consider now a set S consisting of n sequences, labeled from 1 to n.
Let F be the n�n AF matrix for S computed via C. In order to assess
how statistically significant is F, with family-wise significance level
a, we can resort to the pairwise application of the simulation pro-
cedure outlined in Step 2. Since we are performing m ¼ nðn�1Þ

2 hy-
pothesis tests, we have to correct for rejecting H0 simply by chance.
Since those tests may not be assumed to be independent, we use the
well-known Bonferroni correction. That is, for each test performed
for each entry of F, H0 is rejected with significance level a=m. Then,
we reject the Null Hypothesis that the matrix is no better than one
obtained on a set of random sequences, if all m entries pass the test.
However, even if the full matrix does not pass the test, such a pro-
cedure outlines entries that are statistically significant in terms of
similarity values of the corresponding sequences.

2.5.2 Robustness of an AF function via a matrix perturbation

method

In addition to the reliability of an AF function, it is also important
to assess how robust is the function with respect to ‘noise’, i.e. the
number of entries in the AF matrix that are not statistically signifi-
cant. Informally, we refer to this as the operational range of an AF
function. In order to empirically estimate this latter, we informally
proceed as follows: the larger is the amount of noise injected in a AF
matrix returned by a given function, the worse should be the bio-
logical relevance of its outcome (e.g. the phylogenetic tree). Then, to
measure the operational range of a function, we start from the AF
matrix returned by that function on a given dataset and assume as a
reference its performance score. Finally, we study its performance
variation, assuming it will decrease while increasing the amount of
noisy entries. More precisely, we assume that the dataset under con-
sideration has a gold standard solution. For this study, it is a phylo-
genetic tree associated to the species in the dataset. We also use a
computational method G to build a phylogenetic tree from an AF
matrix and a distance/similarity measure D to assess how different is
a tree produced by G via an AF matrix with respect to the gold
standard. Formal details of the basic perturbation step follow.

• Given the AF matrix computed by C on dataset S, we select uni-

formly and at random a given percentage of entries and substi-

tute each value with a ‘noisy’ one. For histogram-based

functions, such a value is taken randomly among the ones

appearing in the AF matrices generated via Monte Carlo simula-

tion. As for FSWM, since the AF matrices it returns when eval-

uated on the synthetic datasets are likely to contain null values

(see discussion about filtering in Section 3.2.1), the ‘noisy’ value

is obtained by increasing the original one by a value chosen uni-

formly and at random. For both types of AF functions, the new

matrix so obtained is used to build a tree via G, and its distance

from the gold standard is computed via D. The loss in
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performance at the given noise level is given by the difference in

the D score obtained with the noisy versus the original matrix.

3 Results and discussion

As a first preliminary step, we selected for our study datasets coming
from Zielezinskiet al. (2019a), with the criterion that the AF func-
tions chosen here would work on them [see again (Zielezinskiet al.,
2019a)]. They are reported in Supplementary Section S6 of
Supplementary Material. As a second preliminary step, we assessed
that our AF functions implementations are in line with those used
for the benchmarking of the AFproject (Zielezinskiet al., 2019b)
(details are omitted for brevity and available upon request). All our
experiments have been executed on the hardware platform described
in Supplementary Section S6 of Supplementary Material. The
parameters of the algorithms have been set according to the proce-
dures described in Supplementary Section S7 of Supplementary
Material. Execution times have been measured by collecting the job
execution elapsed time returned within the Spark framework.

3.1 Assessing the scalability of methods supported by

FADE and the effectiveness of the aggregation

strategies
3.1.1 Experiments

When considering a single computing platform where multiple com-
puting units coexist on the same motherboard and communicate, at
no cost, by using shared memory, nothing can beat the performance
of a native application purposely developed to take advantage of
that setting. On the other hand, the number of processing units and
memory size on a single motherboard is a natural performance
bottleneck.

Given the above scenario, the use of a distributed framework is
to overcome such a bottleneck, by scaling performance as a function
of the number of computing units far over the ones on a stand-alone
computing platform. Therefore, it is important to assess the effi-
ciency of methods supported by our software pipeline, when com-
pared to analogous state-of-art shared memory alignment-free tools,
while assessing the scalability of our framework. For such an ana-
lysis, we have chosen two reference software systems that provide
shared memory parallel software for their evaluation: FSWM
(Leimeisteret al., 2014) and Mash (Ondovet al., 2016).

We measure the execution time of FSWM and Mash, as well as
that of their implementations supported by our framework, i.e.
FADE-FSWM and FADE-Mash, on the Plants (assembled) dataset
and while increasing the level of parallelism, as explained shortly.
Mash and FSWM have been executed on a single machine equipped
with 8 computing cores. The FADE versions have been executed on
a distributed framework equipped with 24 worker nodes, for a total
of 128 computing cores. Each of those machines is identical to the
one on which the shared memory algorithms have been executed.
The result of this experiment is visible in Figure 2, where we report
the execution time of these applications as a function of the number
of concurrent threads, for shared memory applications, or of Spark
workers, for FADE. Each thread/worker executes on a single core.

In order to assess the effectiveness of the aggregation strategies
supported by FADE, we executed a significance test for all of the
histogram-based functions, with different data sizes. The results are
reported in Table 1.

3.1.2 Results

The results of the first experiment show that the shared memory ver-
sions of Mash and FSWM are faster than the implementations sup-
ported by FADE, when using a very small number of threads
compared to workers. This is expected. With the increase of the
number of those units, the performance gap narrows. As soon as the
use of 16 threads/workers is reached, FADE-Mash and FADE-
FSWM require about the same execution time as that of their shared
memory counterparts. However, those latter stop scaling, due to the
bottleneck mentioned earlier, while the FADE methods continue to
scale as more threads/workers are added.

The results of the second experiment clearly show that the
Partial Aggregation strategy is the most flexible of the three, since it
guarantees equal or better performance with respect to the other
two, independently of the workload.

3.2 Reliability and robustness of AF functions: an

application of FADE to data/compute intensive analysis
3.2.1 Reliability of AF functions

The experiment. For each of the benchmark datasets included in this
study, we execute the AF statistical significance test described in
Section 2.5.1. Specifically, for each matrix obtained via a dataset,
we generate additional ones via bootstrapping. Then, we reject the
null hypothesis family-wise with P-value � 1%, applying
Bonferroni correction to all of its m entries. The number l of simula-
tions for each test has been chosen according to the size of the data-
set being processed, so as to guarantee the execution of the
experiments in a reasonable amount of time. An outline of these
parameters, including the choice of k and the values of q, is available
in Supplementary Section S7 of Supplementary Material.

A summary of the results is shown in Supplementary Figure S10
of Supplementary Material. For each dataset, each AF function and
each considered null model, the percentage of entries passing the test
is reported. This value is drawn in green, if at least 75% of the
entries passes the test, in red, if no entry passes the test, and in yel-
low, in the remaining case. Figure 3 reports a representative synopsis
of those results: a dataset where most AF functions perform well,
one in which many perform poorly and one in which most perform
poorly.

Results and insights

• A novel class of AF functions: consistently significant. With refer-

ence to Figure 3 and Supplementary Figure S10 of

Supplementary Material, it is evident that there are AF functions

returning matrices passing the family-wise significance test either

fully or with a high percentage of entries, for all of the bench-

mark datasets. We denote them as consistently significant, since

they behave consistently well, independently of the dataset and,

Fig. 2. Execution time, on the ordinate axis, required by both versions of (a) Mash

and (b) FSWM on the Plants (assembled) dataset, using an increasing number of

workers/threads. The Partial Aggregation strategy has been used, since naturally

suited to the algorithmic methods supporting Mash and FSWM, respectively

Table 1. Execution time, in minutes, required by our framework to

execute one instance of the AF significance test, for all of the histo-

gram-based functions, on three reference datasets with different

aggregation strategies

Dataset No aggregation Partial aggregation Total aggregation

Small 0.9 0.9 1.1

Large 2.73 2.82 NA

Very large 48.3 42.0 NA

Note:The NA value indicate that the test took too long to complete and

was stopped. Small ¼ Mithocondria (assembled). Large ¼ Shigella

(assembled). Very large ¼ Plants (assembled).
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as already stated in the Introduction, it is well known that statis-

tical relevance is a good indication of biological relevance

(Dudoit and Fridlyand, 2002; Giancarlo et al., 2008b; Leung et

al., 1996). They are: D2, D2*, FSWM. The remaining ones either

perform inconsistently or poorly (Chebyshev).
• Filtering can be useful. While the statistical guarantees of AF

functions in the D2 family are well known and have been identi-

fied via deep investigations (Song et al., 2014), we find a novel

fact regarding FSWM: it is quite good in delivering matrices that

pass the statistical significance test. This can be attributed to the

filtering mechanism present in the algorithm and that was

designed to ‘flush out’ the parts of the statistics it is collecting

and that are considered ‘weak’. Such a filtering is able to detect

the ‘low relatedness’ of the synthetic genomes ensuring that the

original genomes ‘win’ the test.

3.2.2 Robustness of AF functions: the case of consistently

significant functions

The experiment. We concentrate only on AF functions that have
been classified as consistently significant in the previous section,
since they are the most likely to be useful on a day-to-day basis. For
each of them, this experiment is conducted by injecting an increasing
percentage of noisy entries into an AF matrix, following the method
outlined in Section 2.5.2. As a computational method G to build a
phylogenetic tree from an AF matrix, we use both UPGMA and NJ.
This choice is motivated by the fact that, with pros and cons, those
two methods are reference points in the literature. Moreover, as a
distance/similarity measure D to assess how different is a tree pro-
duced by G via an AF matrix with respect to the gold standard, we

use both the Matching Cluster (Bogdanowicz and Giaro, 2013)
(MCM for short) and the Robinson Fould (Robinson and Foulds,
1981) (RF, for short) metrics. Such a choice is motivated by the fact
that they were among the top performing ones in a classic bench-
marking study (Kuhner and Yamato, 2015), in particular the se-
cond. As for RF, it is quite sensitive to small changes in tree
topology, i.e. it ‘saturates’ rapidly, a fact that has been criticized in
the past (Penny et al., 1982). Yet, it is a standard in the literature.

The results of this experiment are available in Supplementary
Figures S11–S16 of Supplementary Material, where we plot the ‘dis-
tance’ from the gold standard as the number of noisy entries grows.
Moreover, to gain more insights, we also report in Tables 2–4, the
variation in distance only when 10% noisy entries are injected.
Moreover, we do not consider changes in the distance from the gold
standard that are in the interval 63, i.e. reasonably close to the case
of ‘no noise’.

Results and insights

• AF matrices are sensitive to the injection of noisy

entries.Supplementary Figures S11–S16 of Supplementary

Material show a trend of deterioration in classification ability as

the percentage of noisy entries increases. Such a trend is more

pronounced when we use the RF metric to assess how close to

the gold standard is a phylogenetic tree computed from a noisy

matrix with respect to the one that uses an uncorrupted AF ma-

trix. This is possibly due to the ‘saturation’ effect, but MCM

largely confirms those experiments.
• The results in Tables 2–4 give more compelling evidence of the

sensitivity to noise of the AF functions under analysis. In particu-

lar, FSWM is quite sensitive, with both NJ and UPGMA. As for

the other two AF functions, they display such a sensitivity mostly

Fig. 3. Summary of the Hypothesis Test results for the different AF functions considered in this research when executed on three different datasets with q ¼ 1; 7; 10 and with

significance level set to 1%. Datasets have been chosen as described in the Main Text

Table 2. Corruption tables relative to D2, D2* and FSWM functions and q¼ 1, varying dataset, method for building the phylogenetic tree,

metric to evaluate the distance between the reference and obtained tree

D2 D2* FSWM

Mitochondria Shigella Yersinia Mitochondria Shigella Yersinia Mitochondria Shigella Yersinia

RF
NJ 6 (200%) 10 (90.9%) 4 (Inf%)

RF
NJ 5 (125%) 7 (63.6%) –

RF
NJ 17 (425%) 20 (500%) –

UPGMA – – – UPGMA – – – UPGMA 10 (333.3%) 6 (120%) –

MCM
NJ 28 (23.3%) 23 (26.4%) 14 (Inf%)

MCM
NJ 15 (14.6%) 7 (8.0%) –

MCM
NJ 40 (40.8%) 69 (97.2%) 4 (33.3%)

UPGMA �31 (-31.0%) �39 (-24.2%) – UPGMA – 5 (6.3%) – UPGMA 49 (245%) 41 (146.4%) –

Note: In each entry, it is reported the difference between the phylogenetic distance evaluated on the distance matrix with 10% of corrupted entries and the ori-

ginal distance matrix (between the brackets is reported the percentage difference, indicating with ’Inf’ when the tree obtained from the original distance matrix is

equal to the reference tree, i.e. the distance between the trees is 0). Dashed entries represent cases where the introduction of noise caused only a small change in

distance, as specified in the Main Text.
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when used with NJ. Or, better, UPGMA seems to be able to tol-

erate a small amount of noise in the input data. We believe that

such an aspect of UPGMA is novel. It is to be noted that the

entries with negative values, i.e. an improvement in classification

with the addition of random entries, is justified by the fact that

the original classification was so poor that even noise could do

no harm.
• In conclusion, the indication we receive from the above is to use

D2, D2* and FSWM in conjunction with UPGMA and with a

high number of statistically significant entries in the AF matrix.

4 Conclusion

We have provided the first Spark platform, supporting AF functions

evaluation, that is extensible and that guarantees good scalability
with respect to the workload and computational resources available.
This is witnessed by the very good performance, both in terms of

computing time and scalability, of FADE-Mash and FADE-FSWM
when compared to their state-of-the-art shared memory counter-

parts. This is particularly relevant, since the shared memory version
of Mash has a leadership position due to its speed.

In order to demonstrate the ability of FADE to support large
data and compute intesive tasks, we have conducted a novel analysis
of AF functions. Thanks to it, we gain insights into which functions

are best suited for day-to-day AF genomic analysis: D2, D2* and
FSWM. We also account for the ‘operational range’ of those latter

measures, i.e. circumstances in which a result due to those methods
can be trusted. Such an ‘operational range’ translates into the re-
quirement to use the AF matrices corresponding to those methods

when the vast majority of their entries is statistically significant.
Moreover, the use of UPGMA is recommended, since it is less sensi-

tive to ‘noise’ in the input data, compared to NJ.
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