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Abstract

Motivation: Stochastic reaction networks are a widespread model to describe biological systems where the pres-
ence of noise is relevant, such as in cell regulatory processes. Unfortunately, in all but simplest models the resulting
discrete state-space representation hinders analytical tractability and makes numerical simulations expensive.
Reduction methods can lower complexity by computing model projections that preserve dynamics of interest to the
user.

Results: We present an exact lumping method for stochastic reaction networks with mass-action kinetics. It hinges
on an equivalence relation between the species, resulting in a reduced network where the dynamics of each macro-
species is stochastically equivalent to the sum of the original species in each equivalence class, for any choice of the
initial state of the system. Furthermore, by an appropriate encoding of kinetic parameters as additional species, the
method can establish equivalences that do not depend on specific values of the parameters. The method is sup-
ported by an efficient algorithm to compute the largest species equivalence, thus the maximal lumping. The effect-
iveness and scalability of our lumping technique, as well as the physical interpretability of resulting reductions, is
demonstrated in several models of signaling pathways and epidemic processes on complex networks.

Availability and implementation: The algorithms for species equivalence have been implemented in the software
tool ERODE, freely available for download from https://www.erode.eu.

Contact: micro.tribastone@imtlucca.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Stochastic reaction networks are a foundational model to study bio-
logical systems where the presence of noise cannot be neglected, for
instance in cell regulatory processes governed by low-abundance
biochemical species (Guptasarma, 1995), which may introduce sig-
nificant variability in gene expression (Elowitz, 2002). Their ana-
lysis—either by solution of the master equation or by stochastic
simulation—is fundamentally hindered by a discrete representation
of the state space (Van Kampen, 2007), which leads to a combina-
torial growth in the number of states in the underlying Markov
chain as a function of the abundances of the species.

Here, we present a method for exact reduction that preserves the
stochastic dynamics of mass-action reaction networks, a fundamen-
tal kinetic model in computational systems biology (Voit et al.,
2015). The method rests on a relation between species, called species
equivalence (SE), which can be checked through criteria that depend

on the set of reactions of the network. SE gives rise to a reduced sto-
chastic reaction network where the population of each macro-
species tracks the sum of the population levels of all species belong-
ing to an equivalence class.

As with all reduction methods, SE implies some loss of informa-
tion; namely, the individual dynamical behavior of a species that is
aggregated into a macro-species cannot be recovered in general.
However, our algorithm for computing SE gives freedom to the
modeler as to which original variables to preserve in the reduced
network. Indeed, building upon a celebrated result in theoretical
computer science (Paige and Tarjan, 1987), we compute SE as the
coarsest partition that satisfies the equivalence criteria and that
refines a given initial partition of species. Thus, a species of interest
that is isolated in a singleton block is guaranteed to be preserved in
the reduced network. Our partition-refinement algorithm is compu-
tationally efficient, in the sense that the algorithm runs in polyno-
mial time as function of the number of species and reactions of the
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original network. Finally, we can prove the existence of a maximal
SE, i.e. the equivalence that leads to the coarsest aggregation of the
reaction network.

Formally, SE can be seen a lifting to reaction networks of the no-
tion of lumpability of Markov chains (Buchholz, 1994; Kemeny and
Snell, 1976). That is, the reduced network yields a state space where
each macro-state tracks the sum of the probabilities of the states in
the original Markov chain. Ordinary lumpability requires the avail-
ability of the state space that underlies the master equation (Van
Kampen, 2007); thus, it also requires the initial state of the Markov
chain to be fixed. Instead, SE works at the structural level of the re-
action network, by lumping species instead of states; thus, it involves
the analysis of an exponentially smaller mathematical object in gen-
eral. In addition, a practically useful consequence of reasoning at the
network level is that an SE holds for any initial state. Given that a
reaction network can be seen as a Petri net where each species is rep-
resented as a place (Brijder, 2019), our structural approach is close
in spirit to the notion of place bisimulation (Autant and
Schnoebelen, 1992). However, that induces a bisimulation over
markings in the classical, non-quantitative sense (Joyal et al., 1996).

There are several methods for the reduction of the deterministic
rate equations of biochemical reaction networks, e.g. Snowden et al.
(2017). However, these reductions do not preserve the stochastic be-
havior in general. For stochastic models in systems biology, lump-
ability has been studied for rule-based formalisms, providing
reduction methods based on rule conditions that induce a lumping
of the underlying Markov chain (Feret et al., 2012, 2013).

For mass-action networks, the earlier approach to species lump-
ing by Cardelli et al. (2017b), called syntactic Markovian bisimula-
tion, suffers from two limitations. First, syntactic Markovian
bisimulation is only a sufficient condition for lumpability. Here, we
prove that SE is the coarsest possible aggregation that yields a
Markov chain lumping according to an equivalence over species.
We show that this yields coarser aggregations than syntactic
Markovian bisimulation in benchmark models.

The second limitation is that syntactic Markovian bisimulation
only supports networks where reactions involve at most two
reagents. Instead, SE can be applied to arbitrary higher-order reac-
tions. This may appear unnecessary because in models of practical
relevance reactions are typically of order two at most, following the
basic principle that the probability of more than two bodies probabilis-
tically colliding at the same time can be negligible (Gillespie, 1977).
However, this generalization enables the identification of ‘qualitative’
relations between species, i.e. equivalences that do not depend on the
specific choice of values of the kinetic parameters. This is done by sys-
tematically turning the original network into one where each kinetic
parameter appears as a further auxiliary species in a reaction, thus
increasing its order by one. A number of case studies from the systems
biology literature are used to show examples of parameter-independent
physically intelligible model reductions.

2 Results

2.1 Stochastic mass-action networks
Formally, a stochastic mass-action network is described by a set of
species S and a set of reactions R. Each reaction is in the form q a p,
where a > 0 is a kinetic parameter and q and p are multisets of spe-
cies called reagents and products, respectively. The multiplicity of
species S in q is denoted by qðSÞ, which represents its stoichometry
coefficient. The set of all reagents and products across all reactions
in the network are denoted by qðRÞ and pðRÞ, respectively.

A stochastic mass-action network gives rise to a continuous-time
Markov chain (CTMC) where each state r is a multiset of species.
From a state r such that q � r, a reaction qap induces a transition

with mass-action propensity a
Q

S2q
rðSÞ
qðSÞ

� �
to state rþ p� q,

where the plus and minus operators indicate multiset union and dif-
ference, respectively, while S 2 q denotes that S belongs to the sup-
port of q, i.e. qðSÞ > 0. Given an initial state r̂, the state space can
be derived by exhaustively applying the reactions to compute all

possible states reachable from r̂. We denote with outðrÞ the multiset
of outgoing transitions from state r:

outðrÞ ¼ r!k rþ p� qjðq!a pÞ 2 R; k ¼ a
Y
S2q

rðSÞ
qðSÞ

� ������
�����

8<
:

9=
;:

For any two distinct states r and h, we denote by qðr; hÞ the sum
of the propensities from r to h across all reactions, i.e.:

qðr; hÞ ¼
X

ðr!k hÞ2outðrÞ

k:

Moreover, we set qðr; rÞ to be the negative sum of all possible
transitions from state r, i.e. qðr;rÞ ¼ �

P
h6¼r qðr; hÞ. These values

form the CTMC generator matrix, which characterizes the dynamic-
al evolution of the Markov chain by means of the master equation
_p ¼ pTQ. Each component of its solution, prðtÞ, is the probability
of being in state r at time t starting from some initial probability dis-
tribution (Van Kampen, 2007).

Figure 1 shows a simple running example to summarize the main
results of this article using the network in Figure 1a with species S1,
. . ., S4. The state space from the initial state r̂ ¼ S1 þ 2S4 is in
shown Figure 1b.

Ordinary lumpability is a partition of the state space such that
any two states r1, r2 in each partition block H have equal aggregate
rates toward states in any block H0, i.e.

P
r2H0 qðr1; rÞ ¼P

r2H0 qðr2;rÞ (Buchholz, 1994; Kemeny and Snell, 1976). Given an
ordinarily lumpable partition, a lumped CTMC can be constructed
by associating a macro-state to each block; transitions between
macro-states are labeled with the overall rate from a state in the
source block toward all states in the target. Distinct colored boxes
in Figure 1b identify an ordinarily lumpable partition of the sample
Markov chain. Ordinary lumpability preserves stochastic equiva-
lence in the sense that the probability of each block/macro-state is
equal to the sum of the probabilities in each original state belonging
to that block.

2.2 Species equivalence
Verifying the conditions for ordinary lumpability requires the full
enumeration of the CTMC state space, which grows combinatorial-
ly with the multiplicities of initial state and the number of reactions.
Additionally, the presence of interactions such as constitutive tran-
scription, e.g. S1aS1 þ S2, may give rise to infinite state spaces, pre-
venting the use of ordinary lumpability altogether. SE detects
ordinary lumpability at the finitary level of the reaction network by
identifying an equivalence relation (i.e. a partition) of the species
which induces an ordinary lumpable partition over the multisets rep-
resenting CTMC states.

For this, we consider a natural lifting of a partition H of species
to multisets of species, which we call the multiset lifting of H and
which we denote by H". It relates multisets that have same cumula-
tive multiplicity from each partition block. That is, two multisets/
states r1 and r2 belong to the same block M 2 H" if the conditionP

S2H r1ðSÞ ¼
P

S2H r2ðSÞ is satisfied for all blocks of species
H 2 H.

At the basis of SE is the notion of reaction rate rrðq;pÞ from
reagents q to products p:

rrðq; pÞ ¼

X
ðq!a pÞ2R

a if q 6¼ p;

�
X

p02pðRÞ;q 6¼p0
rrðq; p0Þ if q ¼ p:

8>>><
>>>:

Intuitively, it is defined as the analogue to the entries of the
Markov chain generator matrix, but it is computable by only
inspecting the set of reactions. SE is defined as a partition of species
H such that, for any two species Si and Sj in a block of H, and for
any block of multisets M 2 H" containing at least one product in
pðRÞ, the condition:
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X
p2M

rrðSi þ q;pÞ ¼
X
p2M

rrðSj þ q; pÞ; (1)

holds for all q such that Si þ q or Sj þ q are in the set of reagents
qðRÞ.

According to this definition, species S2 and S3 in the sample net-
work of Figure 1 belong to the same block of an SE. This explains
why the ordinarily lumpable partition depicted in Figure 1b groups
Markov chain states that have the same total multiplicities of S2 and
S3.

Our first result is that SE characterizes ordinary lumpability, in
the sense that the multiset lifting of an SE yields an ordinarily lump-
able partition of the underlying Markov chain derived from any ini-
tial state r̂; and, vice versa, if a multiset lifting of a partition of
species H is an ordinarily lumpable partition of the underlying
Markov chain from any initial state r̂, then H is an SE (proved in
Supplementary Material, Section A.1). We also note that, by Rózsa
and Tóth (2003), our result also applies to Markov chains with in-
finite state spaces, because each state has finitely many incoming
and outgoing transitions due to the fact that the number of reactions
is finite, and the state space is partitioned in blocks of finite size by
multiset lifting.

2.3 Computation of a reduced reaction network up to SE
Analogously to the existence of a lumped Markov chain, one can
build a reduced network from an SE partition. The reduction algo-
rithm is similar to that in Cardelli et al. (2015), where it was defined
for deterministic mass-action networks with a reaction-rate inter-
pretation based on ordinary differential equations. Briefly, the
reduced network is obtained by applying the following four steps: (i)
choose a representative species for each block of species; (ii) discard
all reactions whose reagents have species that are not representa-
tives; (iii) replace the species in the products of the remaining reac-
tions with their representatives; (iv) reduce the set of reactions by
merging all those that have same reactants and products by sum-
ming their kinetic parameters. The correctness of this algorithm is
discussed in Supplementary Material Section A.2. Following
Cardelli et al. (2015), the reduced reaction network can be com-
puted in Oðrs log sÞ time, where s is the number of species and r is
the number of reactions.

Each representative in the reduced network can be interpreted as
a macro-species that tracks the sum of the populations of the distinct

species in the original network that belong to the same SE partition
block. Therefore, for any given initial condition r̂ of the original
network, it is possible to directly generate its lumped Markov chain

from the reduced network by fixing a matching initial condition up
to sums of populations, as related in general by multiset lifting. The

network in Figure 1c shows the reduced network up to an SE. The
Markov chain obtained by ordinarily lumpability of the Markov
chain in Figure 1b corresponds to the Markov chain generated by

the reduced network with the matching initial condition.

2.4 Computation of the maximal SE
There exist efficient algorithms that compute the coarsest ordinarily
lumpable partition, i.e. the maximal aggregation, of a Markov chain
with a finite state space (Derisavi et al., 2003; Valmari and

Franceschinis, 2010). Here, we develop an analogous algorithm for
species of a reaction network. First, we show that, indeed, there

exists the largest SE (Supplementary Material, Section A.3). Then,
we develop a partition refinement algorithm that takes an initial
partition of species as input and computes the largest SE that refines

such initial partition (Supplementary Material, Section A.4). The
maximal SE is thus a special case that can be computed by initializ-
ing the algorithm with the partition with the trivial singleton block

containing all species.
The algorithm maintains a reference to the current candidate SE

partition and a set of splitters, i.e. blocks of products against which
the candidate partition is to be checked. Both structures are initial-

ized using the input partition. A fixed-point iteration splits a block
of the current candidate SE partition whenever it falsifies the condi-
tion in Equation (1) with respect to a splitter M. If no such block is

found, then the algorithm terminates and the candidate partition is
proven to be the largest SE that refines the initial partition. Else, the

falsifying block is split into sub-blocks that have equal values for the
quantities in Equation (1). The set of splitters is recomputed as the
multiset lifting to the current partition. We prove (in Supplementary

Material) that the algorithm has Oðp rÞ space and Oðs2r3pðpþ
log rÞÞ time complexity, where p is the largest number of different

species appearing in the reagents or products of every reaction.

A B

C D

Fig. 1. Illustration of SE on a simple example. (a) Original network with four species S1, . . ., S4. (b) Underlying Markov chain derived from the initial state r̂ ¼ S1 þ 2S4. The

Markov chain is shown in the customary graph representation where each node is a state and transitions between two states r, r0 are directed arcs labeled with qðr; r0Þ. The

colored boxes represent five blocks of an ordinary lumpable partition of the Markov chain (here it suffices to check that the outgoing transitions are equal for states in blocks

of size two). The partition of species denoted by H can be shown to be an SE independently on the actual values of the parameters k1, k2 and k3, hence states that are equal up

to the sum of the second and third coordinate form a lumpable partition block. (c) This SE gives rise to a reduced network by choosing the representatives S1, S2 and S4 for

each block (underlined in the figure to distinguish them from original species names). The reduced network has fewer reactions due to the fact that reactions in the original net-

work are merged into a single one after renaming. (d) Underlying Markov chain of the reduced network derived from the matching initial state S1 þ 2S4. The Markov chain of

the reduced network corresponds to the lumped Markov chain of the original network (as indicated by the matching colors of the nodes)
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2.5 Parameter-independent SEs by network expansion
Similarly to ordinary lumpability, checking the conditions of SE by
Equation (1) implicitly assumes that the values of all the kinetic
parameters in the network are fixed. However, without further the-
ory it is also possible to find equivalences that are independent from
the specific values of the parameters. In order to do so, let P denote
the set of all kinetic parameters used in the reaction network and as-
sume, without loss of generality, that each kinetic parameter a 2 P
is a rational number na=da. Let us then consider an expanded reac-
tion network where we take each parameter a as an additional spe-
cies Pa, and every original reaction qap is transformed into the
reaction Pa þ q1pþ Pa. This is a reaction of higher order with kinet-
ic parameter equal to one.

For this extended reaction network to be related to the original
one, each state of its CTMC must represent a multiset of species; in
particular the initial condition of each additional species Pa must be
a non-negative integer, which will be fixed throughout the state
space because the population of Pa does not change by construction.
A suitable initialization of Pa may be for instance na

da
lcm daja 2 Pf g,

where lcm denotes the least common multiple of all denominators of
the parameters. With this in place, the original and the expanded
network will give rise to the same state space (dropping the compo-
nents of the CTMC state related to Pa because they are constant, as
discussed). The transition rates of the expanded network are instead
all scaled up by the same factor, which can essentially be interpreted
as a time rescaling of the original CTMC.

Since this rescaling is the same for all states, any ordinarily lump-
able partition on the CTMC of the expanded network will be an or-
dinary lumpable partition on the CTMC of the original one, and
vice versa. More importantly, the computation of SE on the
expanded network will be made independent of the specific values
chosen for the kinetic parameters. This is because the parameter val-
ues are encoded into the components of the initial CTMC state asso-
ciated with the auxiliary species Pa, and SE finds equivalences that
hold for all initial states of the Markov chain. Thus the computation
of the largest SE in the original network may proceed by considering
the initial partition consisting of two blocks, one for all the species
and one for all species-parameters in the expanded network, respect-
ively. For the example in Figure 1, the largest SE computed from the
initial partition ffS1; S2; S3; S4g; fPk1

;Pk2
;Pk3
gg is ffS1g; fS2; S3g;

fS4g; fPk1
;Pk2
g; fPk3

gg. In addition to the equivalence between the
two species S2 and S3, it detects that the reduced model depends
only on the sum of the parameters k1 þ k2, for any given value.

3 Examples

In this section, we present reductions on case studies from the litera-
ture, computed with an implementation of SE within the software
tool ERODE (Cardelli et al., 2017a), available at https://www.
erode.eu. The reported results refer to the analysis of the models
with the values of the kinetic parameters as reported in the associ-
ated publications. However, the reductions are preserved also in the
extended parameter-independent versions obtained as discussed
earlier.

3.1 SE in multisite phosphorylation processes
Mechanistic models of signaling pathways are prone to a rapid
growth in the number of species and reactions because of the com-
binatorial effects due to the distinct configurations in which a mo-
lecular complex can be found (Salazar and Höfer, 2009). A
prototypical situation is multisite phosphorylation, a fundamental
process in eukaryotic cells that is responsible for various mecha-
nisms such as the regulation of switch-like behavior (Gunawardena,
2005; Thomson and Gunawardena, 2009). For example, let us con-
sider a protein A with n sites that can be phosphorylated by means
of kinase K according to a random mechanism, while dephosphory-
lation occurs as a spontaneous reaction. To describe this system one
needs 2n distinct molecular species that track the phosphorylation/
dephosphorylation status of each site (Salazar and Höfer, 2009).
Each species is written in the form Aðs1; . . . ; snÞ where si ¼ 0

(respectively, si ¼ 1) indicates that the ith site is dephosphorylated
(respectively, phosphorylated), for all i ¼ 1; . . . ;n. The resulting
mass-action network is given by:

Aðs1; . . . ; si�1; 0; siþ1; . . . ; snÞ þ K!r1
Aðs1; . . . ; si�1; 1; siþ1; . . . ; snÞ;

Aðs1; . . . ; si�1;1; siþ1; . . . ; snÞ!
r2

Aðs1; . . . ; si�1;0; siþ1; . . . ; snÞ þ K;

for all i ¼ 1; . . . ;n and for any combination of site states
s1; . . . ; si�1; siþ1; . . . ; sn. To simplify the mathematical model, it is
assumed that the kinetic parameters r1, r2 are equal at all phosphor-
ylation sites (Sneddon et al., 2011).

For a fixed n, the maximal SE aggregates molecular species that
are equal up to the number of phosphorylated sites that they exhibit,
independently of their identity. More formally, if we consider the
block of species Hi that groups all configurations that have exactly i
phosphorylated sites, Hi ¼ fAðs1; . . . ; snÞjs1 þ � � � þ sn ¼ ig, for
i ¼ 0; . . . ; n, then the maximal SE is given by the partition
ffKg;H0; . . . ;Hng.

3.2 Identification of equivalent molecular complexes in

a model of synaptic plasticity
The assumption of equal kinetic parameters is not necessary to
achieve aggregation with SE. We show this on a model from Pepke
et al. (2010) on the interactions between calcium (Ca2þ), calmodulin
(CaM), and the Ca2þ-CaM-dependent protein kinase II (CaMKII),
which play a fundamental role in the mechanism of synaptic plasti-
city [Lisman et al., 2002 (It is available in the BioModels database;
Li et al., 2010; identified as MODEL1001150000)]. The model

A

B

C

Fig. 2. (A) Kinetic scheme of the interactions between Ca2þ-bound-CaM and

CaMKII, adapted from Pepke et al. (2010). CaM binds with the CaMKII monomer

to form a KCaM complex (Reaction I). KCaM may undergo reversible dimerazation

(Reactions II and III), KCaM dimerization which can lead to autophosphorylation

(Reaction IV). A unit of phosphorylated KCaM is labeled KCaM* and are repre-

sented in the diagram as a green-circled KCaM. KCaM* can interact with any

unphosphorylated KCaM unit (indicated by the ‘?’ sign) to form a KCaM* complex

reversibly (Reactions V and VI), leading to autophosphorlyation (Reaction VII). (B)

Molecular species that can participate in the reaction scheme. CaM units are repre-

sented with different colors to indicate the possible states of Ca2þ-binding, with the

label xNyC, with x; y ¼ 0; 1; 2 denoting the number Ca2þ-bound domains at the

amino and carboxyl termini, respectively. KCaM and KCaM* are represented simi-

larly. The block of KCaM* complexes contains 81 distinct molecular species

obtained from all possible interactions between KCaM* and KCaM. (C) The max-

imal SE yields a coarse-grained network which can be interpreted as having the

same reaction scheme (A), but with fewer species. In particular CaM and KCaM

complexes are not aggregated, but all the distinct KCaM* are collapsed into the

same equivalence class (indicated by the multiple-color representative). Such equiva-

lence carries over to all KCaM* complexes, in the sense that all dimers with the

same phosphorylated form are in the same SE block. This allows the collapse of the

distinct 81 KCaM* complexes above to 9 macro-species
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describes the following processes: cooperative binding of Ca2þ to
two pairs of domains located at the amino (N) and carboxyl (C) ter-
mini of CaM; binding of CaM to a monomeric CaMKII subunit;
and autophosphorylation of a CaMKII monomer through the for-
mation of a dimer which requires CaM to be bound to both subunits
(Fig. 2A). The maximal SE finds that all phosphorylated monomers
are equivalent (Fig. 2B), although their dynamics are characterized
by distinct kinetic parameters to account for phosphorylation rates
that depend on the number of bound Ca2þ (Shifman et al., 2006).
Further, such equivalences carry over to all complexes where they
are present as sub-units. This leads to equivalence classes consisting
of nine molecular species each, with an overall reduction from 155
species and 480 reactions to 75 species and 254 reactions. Notably,
important quantities to observe in this model are the amounts of
free and bound CaM (Lisman et al., 2012), both recoverable from
the reduced network.

3.3 Internalization of the GTPase cycle in a model of the

spindle position checkpoint
In both previous examples, SE can be physically interpreted as a re-
duction that preserves both the structure of equivalent molecular
species as well as their function. SE can also aggregate species that
exhibit contrasting functionality, such as in signal transduction
switches realized by GTP- and GDP-bound forms of GTPases. To
show this, we consider the model in Caydasi et al. (2012) of the
spindle position checkpoint (SPOC), a mechanism in the budding
yeast responsible for detecting the correct alignment of the nucleus
between mother and daughter cells (Lew and Burke, 2003; the
BioModels identifier for this model is BIOMD0000000699). The
most upstream event of the pathway involves GTPase Tem1, which
is regulated by the GTPase-activating protein (GAP) complex com-
posed of Bfa1 and Bub2. Under correct alignment the GAP complex
is inhibited by a kinase Cdc5 phosphorylating Bfa1 (Gruneberg,
2000); under misalignment, the kinase Kin4 phosphorylates Bfa1,
preventing the inhibitory phosphorylation by Cdc5 (Pereira and
Schiebel, 2005).

In the model, Tem1 binds to the yeast centrosomes (called spin-
dle pole bodies, SPBs) via GAP-dependent and GAP-independent
sites. The intrinsic GTPase switching cycle of Tem1 is modeled as a
reversible first-order reaction that converts TemGTP

1 into TemGDP
1

and vice versa (Caydasi et al., 2012, Supplementary Material,
Section S1). The maximal SE collapses complexes that are equal up
to the GTP- or GDP-bound state, yielding eight equivalence classes
with pairs of two molecular species (Fig. 3). The original network
with 24 species and 71 reactions is reduced to 16 species and 36
reactions, from which one may recover observables of interest such
as the total amount of active Bfa1 (Caydasi et al., 2012;
Supplementary Material, Section S3).

3.4 SE for epidemic processes in networks
Models of epidemic processes are well established since the cele-
brated work by Kermack and McKendrick (1927). The availability
of large datasets in a range of socio-technical systems has prompted
the study of epidemic processes on complex networks that consider
the heterogeneity of real-world processes, which is neglected in sim-
pler variants that assume a well-mixed, uniform environment
(Pastor-Satorras et al., 2015).

Aggregation of epidemic processes on networks has been studied
in Simon et al. (2011), relating symmetries in the graph with lump-
ing on the Markov chain. Graph symmetry is formalized in terms of
nodes belonging to the same orbit, thereby satisfying the property
that there exists a graph automorphism relating them. Then, the
orbit partition, i.e. the partition of nodes where each block is a dis-
tinct orbit, induces a Markov chain lumping that tracks the number
of nodes in each block of the orbit partition that are in any given
state (Simon et al., 2011).

Here, we show that SE can be seen as a complementary, exact
aggregation method for epidemic processes on complex networks.
As an example, we study the well-known susceptible-infected-sus-
ceptible (SIS) model, where each node in the network in the suscep-
tible state can be infected with a rate proportional to the number of
infected neighbors, and recover from the infection according to an
independent Poissonian process. Let A ¼ ðaijÞ, with A 2 R

N�N, de-
fine the adjacency matrix of a graph with N nodes representing the
network topology, with aij > 0 denoting the presence of a possibly
weighted edge between node i and j.

The SIS epidemic process can be described by the network:

Si þ Ij�!
aijk

Ii þ Ij; Ii�!
c

Si; 1 � i; j � N; j 6¼ i; (2)

where the first reaction models infections by neighbors and the se-
cond reaction is the spontaneous recovery, with parameters k and c.
In a similar fashion, different variants of the process, such as SIR,
SIRS and SEIR (Pastor-Satorras et al., 2015), can be described. Any
physically meaningful initial state r̂ for this network must be such
that each node i is initially in infected (r̂Si

¼ 0, r̂Ii
¼ 1) or suscep-

tible (r̂Si
¼ 1; r̂Ii

¼ 0). This setting makes stochastic models of epi-
demics spreading on complex networks difficult to study exactly
because the state of each individual node is tracked explicitly (Wang

A

B C

Fig. 3. SE for the SPOC dynamical model from Caydasi et al. (2012). (A) Model

subunits. (B) Illustration of the pathway. Beige boxes indicate the SPB compart-

ment. Reactions crossing the compartment boundary represent the reversible SPB

association of the respective species or complexes. Blue reactions mark the intrinsic

Tem1 GTPase-cycle and reversible SPB association. Tem1 which is bound directly

to the SPB does not interact with Bfa1, whilst Tem1 in the cytosol interacts with

cytosol-Bfa1 and SPB-bound Bfa1. These interactions occur for all instances of Bfa1

regardless the Bfa1 phosphorylation state (indicated by the ‘?’ symbol). GTP hy-

drolysis by the respective Bfa1-Tem1-GTP complexes (dashed reaction arrow) is

accelerated according to the GAP activity of the respective state of Bfa1. The dashed

boxes represent the SE equivalence classes indicating that the two forms of the

GTPase Tem1 are equal up to SE. This equivalence extends to all complexes with

the same configuration of subunits, up to GTP/GDP binding state of Tem1. (C)

Graphical interpretation of the network reduced by SE

Fig. 4. Example of SE reduction of SIS dynamics on a coarse-grained network. (A)

Star network over which an SIS process evolves according to Equation (2), starting

from an initial condition where the infection starts at node 0. (B) Reduced network

(species representatives are underlined in the figure for clarity) according to the larg-

est SE refinement of the initial partition with blocks S ¼ fS0; S1; S2; S3; S4g and

I ¼ fI0; I1; I2; I3; I4g. This SE has blocks fS0g; fI0g; fS1; S2; S3; S4g and

fI1; I2; I3; I4g. (C) The SE partition induces a partition on the graph with blocks f0g
and f1; 2; 3; 4g. The reduced network corresponds to the description of the SIS dy-

namics on the quotient graph. The lumpability relation holds for an initial condition

of the reduced network that is consistent with the initial condition of the original

network up to SE

Exact maximal reduction of stochastic reaction networks 5
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et al., 2017), leading to a state space size with 2N distinct configura-
tions (Simon et al., 2011). SE provides an ordinary lumpability of
the underlying Markov chain, without ever generating it, on the net-
work of Equation (2), which has exponentially smaller size because
it has 2N species and EþN reactions, where E is the number of
nonzero entries in the adjacency matrix of the graph.

For the SIS model, the maximal SE is the trivial partition where
all the species are in a single block. This is an invariant property stat-
ing that the total population of individuals in the system is constant
(Simon et al., 2011). Thus, we consider non-degenerate reductions
using initial partitions with two blocks, fS1; . . . ; Sng and
fI1; . . . ; Ing, that separate species associated with nodes in the sus-
ceptible state from those in the infected state, respectively. As an il-
lustrative example, let us consider the simple star graph (Fig. 4). An
inspection of the obtained SE equivalence classes reveals that each
refinement of the initial block fS1; S2; S3; S4g matches a refinement
of fI1; I2; I3; I4g for the same subset of nodes of the graph. Such an
SE naturally induces a partitioning of the graph, and the reduction
can be understood as an SIS dynamics on the quotient graph where
each macro-node subsumes a partition block of nodes induced by
SE.

We performed a systematic analysis of SIS processes evolving on
several real-world benchmark networks (Table 1), which confirms
the observation made on the simple star graph. Since in all cases the
reduced model is interpretable as an epidemic process, it is still
amenable to a wide range of analysis techniques developed for such
models (Pastor-Satorras et al., 2015; Wang et al., 2017). These in-
clude mean-field and pair approximation (Cator and Van Mieghem,
2012; Mata and Ferreira, 2013; Van Mieghem, 2011), whose com-
putational cost for the generation and solution of the resulting non-
linear differential equations may benefit from the availability of a
stochastically equivalent reduced model.

Coarser aggregations of the Markov chain state space could be
obtained in principle. For example, the line graph in Figure 4C
admits the orbit partition that collapses nodes 0 and 1, thereby
inducing a lumping following (Simon et al., 2011). However, this is
not detected by SE. Importantly, this does not contradict our charac-
terization result. The reason is that the lumpability relation induced
by SE must hold for all population vectors that are equal up to SE.
However, the lumpable partition derived with the approach in
Simon et al. (2011) violates this property because it does not aggre-
gate states S0 þ I0 þ S1 þ I1 and S0 þ S0 þ I1 þ I1, which preserve
the sums of infected and susceptible individuals. Indeed, in the real-
world networks in Table 1 we found that SE always induces a parti-
tion on the nodes of the graph which is finer than the orbit partition
[whose size is listed in the last column, as reported in Ball and
Geyer-Schulz (2018)], albeit not considerably so in some cases. On
the other hand, SE can be applied to models that do not satisfy the
conditions in Simon et al. (2011). Indeed, the star network of
Figure 4 can be lumped also in the case of node-specific parameters
(Supplementary Material, Section SA.5), while the results in Simon

et al. (2011) require equal transmission and recovery rates at every
node.

3.5 Relationship with syntactic Markovian bisimulation
Applied to the models presented in this section, the earlier variant of
SE, syntactic Markovian bisimulation (Cardelli et al., 2017b), yields
the same reductions when applied to networks where the kinetic
parameters are fixed. In Supplementary Material, Section A.6, we
present further models from the literature where SE yields maximal
aggregations that are coarser than syntactic Markovian bisimula-
tion, with up to about one order of magnitude fewer species.

3.6 Speeding up stochastic simulations
In Supplementary Material, Section A.7, we use the same set of
models to also provide evidence of the computational savings when
analyzing by stochastic simulation the reduced network in place of
the original one. We report runtime speed-ups of up to three orders
of magnitude using state-of-the-art algorithms as implemented in
the StochKit simulation framework (Sanft et al., 2011).

4 Conclusion

Stochasticity is a key tool to understand a variety of phenomena
regarding the dynamics of reaction networks, but the capability of
exactly analyzing complex models escapes us due to the lack of ana-
lytical solutions and the high computational cost of numerical simu-
lations in general. SE enables aggregation in the sense of Markov
chain lumping by identifying structural properties on the set of reac-
tions, without the need of costly state-space enumeration. Owing to
the polynomial space and time complexity of the reduction algo-
rithm, it can be seen as a universal pre-processing step that exactly
preserves the stochastic dynamics of species of interest to the model-
er. Since it gives rise to a network where the reactions preserve the
structure (up to a renaming of the species into equivalence classes),
the reduction maintains a physical interpretation in terms of coarse-
grained interactions between populations of macro-species. The pos-
sibility of computing reductions that are not dependent from specific
values of the kinetic parameters may reveal structural aggregations
in the network, in addition to making the reduced model reusable
across different parameter settings, e.g. when performing sensitivity
analyses.

Being exact, our method can be combined with other techniques
for the analysis of stochastic reaction networks. For instance, when
feasible, one can generate the underlying Markov chain to be further
analyzed or reduced (Henzinger et al., 2009; Munsky and
Khammash, 2006; Valmari and Franceschinis, 2010); the reduced
network can be subjected to complementary coarse-graining techni-
ques concerned with time-scale separation (e.g. Bo and Celani,
2017; Cappelletti and Wiuf, 2016; Gómez-Uribe et al., 2008; Kang

Table 1. Aggregation of SIS dynamics on benchmark networks

Original size Reduced size

Network Reference N E N E Orbits

tntp-ChicagoRegional Eash et al. (1983) 1467 2596 635 932 166

ego-facebook McAuley and Leskovec (2012) 2888 5962 35 104 35

as20000102 Leskovec et al. (2007) 6474 27 790 3885 19 437 3690

arenas-pgp Bogu~ná et al. (2004) 10 680 48 632 8673 44 074 7944

web-webbase-2001 Boldi et al. (2004) 16 062 51 186 5253 24 232 3574

as-caida20071105 Leskovec et al. (2007) 26 475 106 762 13 393 69 184 13 252

ia-email-EU Leskovec et al. (2007) 32 430 108 794 6262 53 228 6259

topology Zhang et al. (2005) 34 761 215 440 19 246 168 782 19 128

douban Zafarani and Liu (2009) 154 908 654 324 59 524 462 128 59 493

Note: Models tntp-ChicagoRegional, ego-facebook, as20000102, arenas-pgp, as-caida20071105, topology and douban, are taken from the Koblenz Network

Collection (Kunegis, 2013); web-webbase-2001 and ia-email-EU are taken from the Network Data Repository (Rossi and Ahmed, 2015).

N ¼ number of vertices; E ¼ number of edges in the network.
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and Kurtz, 2013; Smith et al. 2015; Sinitsyn et al., 2009). More gen-
erally, since the reduced network preserves the stochastic dynamics
in the sense specified above, it can be used as the basis for other
methods such as linear noise-or moment-closure approximation
(Schnoerr et al., 2017), where the complexity of the resulting system
of equations depends on the network size.
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Salazar,C. and Höfer,T. (2009) Multisite protein phosphorylation – from mo-

lecular mechanisms to kinetic models. FEBS J., 276, 3177–3198.

Sanft,K.R. et al. (2011) Stochkit2: software for discrete stochastic simulation

of biochemical systems with events. Bioinformatics, 27, 2457–2458.

Schnoerr,D. et al. (2017) Approximation and inference methods for stochastic

biochemical kinetics—a tutorial review. J. Phys. A Math. Theor., 50,

093001.

Shifman,J.M. et al. (2006) Ca2þ/calmodulin-dependent protein kinase II

(CaMKII) is activated by calmodulin with two bound calciums. Proc. Natl.

Acad. Sci. USA, 103, 13968–13973.

Simon,P.L. et al. (2011) Exact epidemic models on graphs using

graph-automorphism driven lumping. J. Math. Biol., 62, 479–508.

Sinitsyn,N.A. et al. (2009) Adiabatic coarse-graining and simulations of sto-

chastic biochemical networks. Proc. Natl. Acad. Sci. USA, 106,

10546–10551.

Smith,S. et al. (2015) Model reduction for stochastic chemical systems with

abundant species. J. Chem. Phys., 143, 214105.

Sneddon,M.W. et al. (2011) Efficient modeling, simulation and

coarse-graining of biological complexity with NFsim. Nat. Methods, 8,

177–183.

Snowden,T.J. et al. (2017) Methods of model reduction for large-scale bio-

logical systems: a survey of current methods and trends. Bull. Math. Biol.,

79, 1449–1486.

Thomson,M. and Gunawardena,J. (2009) Unlimited multistability in multisite

phosphorylation systems. Nature, 460, 274–277.

Valmari,A. and Franceschinis,G. (2010). Simple Oðm log nÞ time Markov

Chain lumping. In: International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS), pp. 38–52.

Exact maximal reduction of stochastic reaction networks 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab081/6126804 by D

TU
 Library user on 06 July 2021



Van Kampen,N.G. (2007). Stochastic Processes in Physics and Chemistry, 3rd

edn. Elsevier: North Holland.

Van Mieghem,P. (2011) The n-intertwined SIS epidemic network model.

Computing, 93, 147–169.

Voit,E.O. et al. (2015) 150 years of the mass action law. PLoS Comput. Biol.,

11, e1004012–7.

Wang,W. et al. (2017) Unification of theoretical approaches for epidemic

spreading on complex networks. Rep. Prog. Phys., 80, 036603.

Zafarani,R. and Liu,H. (2009). Social computing data repository at

ASU, http://socialcomputing.asu.edu/pages/home.

Zhang,B. et al. (2005) Collecting the Internet AS-level topology. SIGCOMM

Comput. Commun. Rev., 35, 53–61.

8 L.Cardelli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab081/6126804 by D

TU
 Library user on 06 July 2021

http://socialcomputing.asu.edu/pages/home

	tblfn1



