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Abstract

Motivation: Exploring the relationship between human proteins and abnormal phenotypes is of great
importance in the prevention, diagnosis and treatment of diseases. The human phenotype ontology (HPO)
is a standardized vocabulary that describes the phenotype abnormalities encountered in human diseases.
However, the current HPO annotations of proteins are not complete. Thus, it is important to identify missing
protein-phenotype associations.
Results: We propose HPOFiller, a graph convolutional network (GCN)-based approach, for predicting
missing HPO annotations. HPOFiller has two key GCN components for capturing embeddings from
complex network structures: 1) S-GCN for both protein-protein interaction (PPI) network and HPO semantic
similarity network to utilize network weights; 2) Bi-GCN for the protein-phenotype bipartite graph to
conduct message passing between proteins and phenotypes. The core idea of HPOFiller is to repeat
run these two GCN modules consecutively over the three networks, to refine the embeddings. Empirical
results of extremely stringent evaluation avoiding potential information leakage including cross-validation
and temporal validation demonstrates that HPOFiller significantly outperforms all other state-of-the-art
methods. In particular, the ablation study shows that batch normalization contributes the most to the
performance. The further examination offers literature evidence for highly ranked predictions. Finally
using known disease-HPO term associations, HPOFiller could suggest promising, unknown disease-gene
associations, presenting possible genetic causes of human disorders.
Availability: https://github.com/liulizhi1996/HPOFiller
Contact: zhusf@fudan.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Uncovering phenotypic correlations of gene mutations has long been an
essential task in genetics research. The Human Phenotype Ontology (HPO)
(Köhler et al., 2019) provides a standardized vocabulary of phenotype
abnormalities encountered in human diseases and of their semantic
relationships. The HPO annotations of human genes can facilitate disease

gene identification and prioritization and hence assist clinical diagnostics
(Köhler et al., 2009).

Fig. 1 shows the average number of HPO annotations including
ancestors of the specific annotations over proteins. We keep track of
proteins that already exist in the database released in March 2018 and
count how many annotations each protein has on average as time goes on.
This figure indicates an around 20% increase of the average number in the
past two years, implying that a large number of missing associations still
exist between proteins and phenotypes. The incomplete HPO annotations
would degrade the performance of phenotype prediction tools (Liu et al.,
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Fig. 1. For proteins that already existed in the HPO annotations released on 2018-03-09, the
average number of annotations (including ancestors of the specific annotations) per protein
increased over time.

2020) and affect the analysis of genetic causes of disorders. Thus it would
be imperative to develop a computational method for identifying missing
protein-HPO term associations.

However, filling the missing HPO annotations is a very challenging
task: 1) The annotations are highly sparse. For HPO annotations released
by June 2020, annotations (positive examples) are only 1.58% among all
possible pairs of proteins and HPO terms. 2) The distribution of HPO
annotations is skewed. In HPO released by June 2020, more than 1,700
out of 15,054 HPO terms are used to annotate only one protein, while over
3,700 terms are associated with more than 10 proteins. 3) HPO terms are
not independent of each other but organized hierarchically as a directed
acyclic graph (DAG). The directed edge between two terms represents an
“is-a” relationship, keeping the “true-path-rule”. That is, a protein, which
is annotated with a given term, can be annotated with all ancestor terms in
the DAG.

The importance of protein-protein interaction (PPI) network for
prediction of HPO annotations is broadly recognized, due to an assumption
that strongly interacted proteins are more likely to be associated with
similar phenotypes (Oti et al., 2006; Goh et al., 2007). Thus, taking
the PPI network as input data, can be of great help to identify missing
HPO annotations. Besides, the similarity between HPO terms providing
quantitative measures of phenotype relationships would be useful likewise.
Accordingly, we have three input graphs: two types of similarity networks
separately for proteins and HPO terms, and a bipartite network by
annotations between proteins and HPO terms.

Recently graph convolutional networks (GCNs) (Defferrard et al.,
2016; Kipf and Welling, 2017), the extension of convolutional neural
networks (CNNs) for specifically graph-based data, has achieved great
success in many applications. GCN with non-linear activations is suitable
for capturing the complex structures behind the input networks. In
addition, stacking multiple GCN layers leads to the expressive modeling
of high-order connectivity which makes the model not limited to focus
on local-structure. We thus, for predicting missing HPO annotations,
present a GCN-based approach, termed HPOFiller, to utilize three types
of input networks. In particular, we design two kinds of GCN blocks: 1)
S-GCN on PPI network and HPO similarity network, respectively, that
aggregates feature information from neighbors, considering edge weights,
to obtain better representations; 2) Bi-GCN on the protein-phenotype
bipartite network that allows feature information interchanging between
proteins and HPO terms. It is noteworthy that we adopt HPO semantic
similarity rather simply HPO binary hierarchy to enable the information

Fig. 2. An illustration of the prediction of missing HPO annotations problem. An entry of
1 indicates the association between the corresponding protein and HPO term is known, and
an entry filled with question mark means an unobserved relationship. Our goal is to figure
out which unidentified annotations may be true.

to flow between the siblings or ancestor-descendant more than strict parent-
child, in order that the model can find similar HPO terms more broadly
and deeply. During the training stage, we propose an enhanced annotation
matrix as the objective goal to relax the label sparsity.

We extensively evaluated the performance of HPOFiller through cross-
validation and temporal validation. Specially, we designed an extremely
strict cross-validation procedure avoiding any potential information
leakage between training and test sets. Experimental results demonstrated
that HPOFiller outperformed state-of-the-art methods by large margins
under both cross-validation and temporal validation. Particularly, the
ablation study revealed that batch normalization contributed the most to the
performance. In addition, we confirmed literature evidence for predictions
highly ranked by HPOFiller but not yet been added to the latest HPO
annotations database, implying potentially performance under-estimation.
Finally, using disease-HPO term associations, HPOFiller found promising,
unknown disease-gene associations, presenting the predictability of our
method for possible genetic causes of human diseases.

2 Related work
Completing protein-HPO term associations has been tackled mainly by
label propagation-based and matrix completion-based approaches.

A well-known assumption is that similar proteins tend to be related
to similar abnormal phenotypes, which is consistent with smoothness
assumption in label propagation (LP) (Zhu et al., 2003). Petegrosso et al.
(2017) extended vanilla LP (Zhou et al., 2003) to dual label propagation
(DLP) by coupling smoothness term imposing smoothness in PPI network
and another term imposing smoothness in the HPO hierarchy, which
encouraged directly connected phenotypes to be associated with the same
protein. DLP was further extended to tlDLP (Petegrosso et al., 2017) by
adopting transfer learning. It incorporated GO annotations and let proteins
with similar functions be likely to be associated with similar phenotypes.

Matrix completion captured intrinsic relationships between proteins
and phenotypes in a latent space. Typically, AiProAnnotator (Gao et al.,
2018) imposed graph Laplacians on both PPI network and HPO similarity
to standard matrix completion (SMC) over the protein-phenotype matrix
to find better low-rank approximation solution.

In general, the above methods were not competent enough to capture
non-linear relations underlying protein-phenotype associations. Recently,
graph convolutional network (GCN) (Defferrard et al., 2016; Kipf and
Welling, 2017) has opened a new paradigm for graph learning and achieved
great success in numerous fields, such as disease gene prioritization (Han
et al., 2019), polypharmacy side effects prediction (Zitnik et al., 2018),
and drug repurposing (Wang et al., 2020), etc. We here apply GCN to
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Fig. 3. The overall framework of HPOFiller. The input features generated by random walk with restart are transformed into low-dimensional representations at first. After that, we stack two
modules to be comprised of Bi-GCN and S-GCN to refine the feature vectors. Finally, three fully-connected layers are used to reduce the dimensions and output the final representations.
The prediction is made by multiplying protein’s and HPO term’s representations. Batch normalization is added between two consecutive layers.

identifying missing protein-phenotype associations, and to the best of our
knowledge, this is the first work based on GCN for this problem.

3 Methods

3.1 Problem statement

Given m proteins P = {p1, p2, · · · , pm} and n HPO terms T =

{t1, t2, · · · , tn}, the known associations between them are represented
by a binary matrix Ỹ, where Ỹij = 1 if protein pi is annotated by HPO
term tj , otherwise Ỹij = 0. However, Ỹij = 0 does not mean that there
must be no relation between pi and tj , but only that this link has not been
observed yet. Our objective is to identify those missing HPO annotations
(Fig. 2). Specifically, for protein pi, we want to find the HPO term tj that
Ỹij = 0 but tj may potentially be related to pi. It is noteworthy that we
are not to predict annotations of novel proteins (i.e. proteins without any
known annotations) but rather to identify the missing annotations of those
proteins with known (but incomplete) annotations.

3.2 Key idea

We have two types of building blocks: proteins and HPO terms. Our
main procedure has two steps: 1) The two types of building blocks are
first combined together as a bipartite graph through HPO annotations to
preliminarily estimate the embeddings in the latent space, 2) which are
then further refined by using similarity networks separately for each type of
building blocks. To be more specific, HPOFiller has two GCN modules: Bi-
GCN and S-GCN. Bi-GCN first merges the information from both proteins
and phenotypes through HPO annotation bipartite network to estimate
latent representations, which are further refined by S-GCN separately for
proteins and HPO terms, particularly by using edge weights over protein
(and HPO terms) similarity network. We repeat this main procedure and
the resultant embeddings are transformed into low-dimensional vectors
through multi-layer perceptron, separately for proteins and HPO terms, to
be taken for prediction. Fig. 3 illustrates the pipeline of this process.

3.3 Graph construction

3.3.1 Protein-HPO term bipartite graph
We construct a bipartite graph with m protein nodes and n HPO term
nodes for describing protein-HPO term associations. If a protein has been
annotated with an HPO term, an edge is added to link them. Formally, we

denote its adjacency matrix A ∈ {0, 1}(m+n)×(m+n) as

A =

[
0 Ỹ

ỸT 0

]
. (1)

where Ỹ ∈ {0, 1}m×n is the known annotation matrix, and 0 is all-zero
matrix.

3.3.2 Similarity of proteins
The PPI network has been demonstrated as one of the most informative
data sources in the HPO prediction problem (Kahanda et al., 2015; Liu
et al., 2020). We utilize STRING (Szklarczyk et al., 2019) to quantify
the similarity of two proteins. The protein similarity graph is denoted by
Sp ∈ Rm×m with entries being interacting scores.

3.3.3 Similarity of HPO terms
The HPO terms are organized as a Directed Acyclic Graph (DAG), where
each term can have multiple parents and multiple children. Petegrosso
et al. (2017) assumed that the connected phenotypes (parent-child pairs)
were likely to be associated with the same protein. However, the flow of
information was strictly restricted to these parent-child edges, and hence it
hinders from finding similar phenotypes in different branches. To address
this issue, we compute the semantic similarity between HPO terms by
using the information coefficient (SimIC) measure (Li et al., 2010), which
is based on the Information Content (IC) (Resnik, 1995) for HPO term t:

IC(t) = − log
Nt

N
, (2)

where N is the total number of proteins and Nt is the number of proteins
annotated by term t and all its descendants. Then the SimIC is defined as:

simIC(t1, t2) =
2× IC(tMICA)

IC(t1) + IC(t2)
×
(
1−

1

1 + IC(tMICA)

)
, (3)

where tMICA is the Most Informative Common Ancestor (MICA) (Resnik,
1999) of t1 and t2, i.e. the common ancestor with the highest IC. Here,
we denote the HPO semantic similarity graph as St ∈ Rn×n with entries
being their information coefficients.

3.4 Feature generation

Each row of protein similarity matrix Sp and HPO term similarity St is
able to act as the feature vector in fact, however, they may not sufficiently
capture the network structure, especially non-neighbouring, higher-order
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Fig. 4. Schematic information propagation in two types of GCN blocks. (a) Bi-GCN block
is run on protein-HPO term association graph with bipartite structure. The embedding for
protein pi (yellow node highlighted by gray box) is generated by aggregation of incoming
messages from the connected HPO terms. (b) S-GCN block is run over similarity graph. In
the illustration of message propagation on protein similarity graph, the output embedding of
protein pi (central node with gray box) is obtained by the weighted sum over the messages
from its connected proteins.

connectivity. On this account, we run Random Walk with Restart (RWR)
(Tong et al., 2006) separately onSp andSt to introduce topological context
of each node into their initial vector representations. The procedure can
be formulated as the following recurrence equation:

pt+1
i = (1− α)pt

iŜ + αei, (4)

where pt
i is a row vector of node i, whose k-th entry indicates the

probability of reaching node k after t steps. The initial probabilities p0
i

is one-hot vector ei where ei,i = 1 and 0 otherwise. α is the restart
probability. Ŝ is the one-step probability transition matrix obtained from
S (i.e. Sp or St) by row-wise normalization. Here, S refers to Sp (or
St). After obtaining the steady state, we set feature vector xpi = p∞i
on Sp (or xtj = p∞j on St) for protein pi (or HPO term tj ), capturing
high-order interactions of network nodes.

3.5 GCN blocks

3.5.1 Bi-GCN layer
Bi-GCN refines the embeddings of proteins and HPO terms by
communicating information between proteins and HPO terms. That is, Bi-
GCN propagates the embedding over protein-HPO term bipartite graph
A. Let us take protein pi as an example, in the l-th layer, the process can
be formulated as:

e
(l)
pi = σ

e
(l−1)
pi Θ

(l)
1 +

∑
tj∈N (pi)

e
(l−1)
tj

Θ
(l)
2

 . (5)

The above equation can be viewed as two steps. First, we construct
messages for pi’s neighboring nodes (i.e. its annotated HPO terms) and
itself, namely e

(l−1)
tj

Θ
(l)
2 and e

(l−1)
pi Θ

(l)
1 , respectively. Here, e(l−1)

pi ∈

Rd
(l−1)
GCN , e

(l−1)
tj

∈ Rd
(l−1)
GCN denote the node embeddings of pi and tj

in the (l − 1)-th layer, respectively. Θ
(l)
1 ∈ Rd

(l−1)
GCN ×d

(l)
GCN ,Θ

(l)
2 ∈

Rd
(l−1)
GCN ×d

(l)
GCN are the trainable weight matrices. Then we aggregate the

incoming messages by summing over all neighbors N (pi) and pi itself,
and pass the accumulated message to an activation function σ(·). Note
that we take the self-connection of pi into consideration in order to retain
the information of original features. The representation e

(l)
tj

for term tj
can be obtained analogously. To summarize, Bi-GCN allows to combine
the information of proteins and HPO terms explicitly.

3.5.2 S-GCN layer
Unlike Bi-GCN running on unweighted graph, S-GCN is designed to make
better use of the information lying in the weights on the similarity network.
Specifically, taking PPI network Sp as an example, we define the l-th
S-GCN layer for protein pi as:

e
(l)
pi = σ

 m∑
j=1

(S̃p)i,je
(l−1)
pj Θ

(l)
p

 , (6)

where S̃p = D
′− 1

2
p S′pD

′− 1
2

p is the symmetric normalized adjacency
matrix of S′p = Sp+I with inserted self-loops, and (D′p)ii =

∑
j(S
′
p)ij

is diagonal degree matrix. Eq. (6) can also be viewed as two-steps
operation: the message of pi’s neighboring node pj is generated by

e
(l−1)
pj Θ

(l)
p at first, and then those messages are summed up with the

edge weights of S′p and fed into an activation function σ(·). Θ
(l)
p ∈

Rd
(l−1)
GCN ×d

(l)
GCN is the parameter matrix to learn. If we stack proteins’

embeddings vertically, we can rewrite Eq. (6) in matrix form:

E
(l)
p = σ

(
D
′− 1

2
p S′pD

′− 1
2

p E(l−1)Θ
(l)
p

)
. (7)

This equation is consistent with that in (Kipf and Welling, 2017). We can
produce embedding e

(l)
tj

for term tj in an analogous way. The S-GCN
layer combines the information of neighbors based on their contributions,
which allows the weights (the most important part of similarity graph) to
incorporate into our model.

3.6 Model architecture

Fig. 3 shows the entire architecture of HPOFiller. Taking the input of
proteins’ feature vectors Xp ∈ Rm×m derived from RWR on protein
similarity graph Sp and HPO terms’s feature vectors Xt ∈ Rn×n

derived from RWR on phenotype similarity graph St, we first feed them
to a dense layer, respectively, to reduce the dimension to the same. The
resultant vectors are fed into Bi-GCN and then S-GCN. In Bi-GCN, the
two separate information of proteins and HPO terms can be combined by
passing messages across them along the edges (i.e. known annotations) in
the bipartite graph. This process of the l-th layer can be written as follows:[

E
(l)
p

∗
;E

(l)
t

∗]
= BN(l)

(
Bi-GCN(l)

([
E

(l−1)
p ;E

(l−1)
t

]))
. (8)

Those vectors are then fed to corresponding S-GCN blocks, respectively,
to refine the embeddings by leveraging the weights of similarity network.
Formally speaking, the output is computed as follows:

E
(l)
p = BN(l)

p

(
S-GCN(l)

p

(
E

(l)
p

∗))
,

E
(l)
t = BN(l)

t

(
S-GCN(l)

t

(
E

(l)
t

∗))
.

(9)

By repeatedly performing above operations, we finally obtain the
embeddings of proteins and HPO terms that can sufficiently capture the
information on two similarity networks and known protein-HPO term
annotations. Subsequently, those GCN-generated embeddings are fed
to a three-layers perceptron to distill low-dimensional representations,
separately for proteins and HPO terms. Specifically, we have final
representations as follows:

U(3) = Dense(3)p

(
BN(2)

p

(
· · ·Dense(1)p

(
E

(2)
p

)
· · ·
))

,

V(3) = Dense(3)t

(
BN(2)

t

(
· · ·Dense(1)t

(
E

(2)
t

)
· · ·
))

.

(10)

Lastly, the probability of protein pi being annotated with HPO term tj can
be predicted by

yi,j = u
(3)
i v

(3)
j

T
. (11)
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It is noteworthy that we add Batch Normalization (BN) module (Ioffe
and Szegedy, 2015) between two consecutive layers in order to mitigate
internal covariate shift and thus increase the stability. Given a batch of
input vectors B = {x1, · · · ,xm}, the empirical mean and variance are
computed as:

µB =
1

m

m∑
i=1

xi and σ2
B =

1

m

m∑
i=1

(xi − µB)2. (12)

After normalization by re-centering and re-scaling:

x̂i =
xi − µB√
σ2
B + ε

, (13)

where ε is an arbitrarily small constant for numerical stability, the BN
transformed output is obtained by

x′i = γx̂i + β ≡ BN(xi), (14)

where γ and β are subsequently learned in the optimization process. From
our experiments, we could see that BN contributes greatly to our model
(see Section 4.4.2).

3.7 Model training

We adopt classical loss function that minimizes the Frobenius norm of
the difference between known annotation matrix and predicted matrix,
while the high sparsity of HPO annotations hinders the straight-forward
application of Ỹ. To alleviate the problem, inspired by (Han et al.,
2019), we propose the ε-enhanced loss function which controls the margin
between the predicted score and the label with hyper-parameter ε. That is,
we use the enhanced annotation matrix Ỹ′ as the target:

Ỹ′i,j =

{
ε if Ỹi,j = 1,

0 otherwise.
(15)

Accordingly, the loss function can be written as:

L = ‖Ω ◦ (Y − Ỹ′)‖2F + λ‖Θ‖22, (16)

where Ω is the mask of observed entries: Ωij = 1 when Ỹi,j is
in the training set and 0 otherwise, ◦ denotes the Hadamard product
(a.k.a element-wise product), and λ is the decay factor to balance the
regularization term of all trainable model parameters Θ in order to prevent
overfitting. Through properly tuning ε by grid search, we enlarge the
margin between the predicted score and the label to improve the influence
of relatively few positive samples.

4 Experiments

4.1 Data

We examined the performance of HPOFiller by two evaluation manners:
a) cross-validation and b) temporal validation.

4.1.1 Data preparation for cross-validation
We downloaded human gene-HPO term associations released by 2019-
02-12 from HPO project website (http://compbio.charite.de/
jenkins/job/hpo.annotations/). Then the genes in raw HPO
annotations were mapped into proteins using the UniProt ID mapping tool
(https://www.uniprot.org/mapping/). To keep a high data
quality, we filtered out proteins that were not stored in Swiss-Prot. The true-
path-rule was applied to propagate annotations. In this work, we focused

Table 1. Statistics of dataset used for temporal validation

Proteins HPO terms Training set Test set

3,884 8,797
Before 2019-02-12 2019-02-12 to 2020-06-08

474,487 pos. (1.39%)
71,835 pos. (0.21%)

33,621,226 neg. (98.40%)

Note: “pos.” refers to positive sample, while “neg.” refers to negative sample.

on the biggest sub-ontology in HPO, Phenotypic Abnormality (PA).
Therefore, only HPO terms belonging to PA remained. After processing,
the dataset consisted of 3,884 proteins and 8,289 HPO terms. Note that we
only remained the terms currently used to annotate at least one protein.

We conducted 10-fold cross-validation in this work. Specifically, we
randomly split all protein-HPO term pairs into ten equal-sized parts, where
one was held out for test set, and the remaining nine parts constituted
the training set. However, it would lead to potential information leakage:
if a known HPO annotation (p, t) appears in the test set, while the
descendant of t named t′ is put into the training set, then we can imply
the relation between p and t by simply propagating the known annotation
(p, t′) according to the true-path-rule. To plug the loophole, for each
pair of annotations between protein p and HPO term t in the test set, the
associations between p and all the descendants of twere all removed from
the training set. Despite such processing in (Petegrosso et al., 2017; Gao
et al., 2018), the information leakage still existed. Considering a negative
sample (p, t) in the test set that protein p has no known relation with
HPO term t, if there exists a negative annotation (p, t′) in the training set
where t′ is the ancestor of t, then we can derive the negative associations
(p, t) by propagating negative annotation downward. Therefore, for each
negative association (p, t) in the test set, we further removed the negative
annotations between p and the ancestors of t in the training set. It is
noteworthy that in the cross-validation, we set Ωij = 1 for the training
set and Ωij = 0 for the test set.

For the PPI network, we downloaded STRING v11 (https://
string-db.org/) released by 2019-01-19. For the HPO semantic
similarity, to avoid information leakage, we calculated based on the HPO
annotations in the training set rather than the whole set.

4.1.2 Data preparation for temporal validation
In the temporal validation, we adopted a similar strategy as proposed in the
CAFA challenge (Radivojac et al., 2013; Jiang et al., 2016). The training
set comprised HPO annotations released by 2019-02-12, and the test set
comprised the new annotations added from 2019-02-12 to 2020-06-08.
HPO annotations in the test set were aligned to 2019-02-12 version and
thus the newly created HPO terms were discarded. The statistics of the
dataset are shown in Table 1. In order to avoid information leakage, we
adopted STRING v11 which released before 2019-02-12 and computed
HPO similarity using the training dataset. Note that we set Ωij = 1 for
all i = 1, · · · ,m and j = 1, · · · , n.

4.2 Evaluation metrics

We used three metrics for evaluating pairs of protein-HPO term
associations in the test set: 1) AUC: area under the receiver-operating
characteristic curve, 2) AUPR: area under the precision-recall curve and
3) AP@K: average precision at the top K measuring the precision at all
ranks before position K that hold a relevant item, which was adopted by
(Zitnik et al., 2018; Li et al., 2019; Krichene and Rendle, 2020), that is,

AP@K =
1

min(|R|,K)

K∑
i=1

δ(i ∈ R)P@K, (17)

whereR refers to the set of rankings of all relevant items, |R| is the size of
R, δ(i ∈ R) = 1 if the i-th prediction is correct and 0 otherwise, P@K is
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the precision at positionK measuring the fraction of relevant items among
the top K predicted items:

P@K =
|{r ∈ R : r ≤ K}|

K
. (18)

Additionally, we evaluated the performance separately on the leaf HPO
terms (i.e. the specific annotations) and the internal HPO terms (i.e. the
ancestors of specific terms), named AUC-leaf, AUPR-leaf, AUC-internal
and AUPR-internal.

4.3 Competing methods and implementation details

We evaluated the performance of HPOFiller against six state-of-the-art
methods which were introduced in Section 2: LP, DLP (Petegrosso et al.,
2017), tlDLP-BP and tlDLP-MF (Petegrosso et al., 2017), SMC, and
AiProAnnotator (Gao et al., 2018). Note that tlDLP used GO annotations
of either biological process (tlDLP-BP) or molecular function (tlDLP-
MF). Hyperparameters of each method were determined by internal
10-fold cross-validation with grid search. We were extremely careful of
information leakage, so the versions of data sources utilized in temporal
validation were all early than 2019-02-12.

For our method, we set α = 0.9 in the RWR step empirically (Long
et al., 2020). The dimensions of embeddings generated by GCNs were
fixed to 800, i.e. d(l)GCN = 800 (l = 0, 1, 2), while the sizes of embeddings

produced by MLP were set as follows: d(1)MLP = 400, d(2)MLP = 200, and

d
(3)
MLP = 100. We optimized our model with RmsProp optimizer for 3,000

epochs with initial learning rate as 0.0001 and weight decay factor as
1.0, and the learning rate would decrease by half every 1,000 epochs. We
adopted LeakyReLU activations with negative slope being 0.01 for GCN
blocks and ReLU for MLP. We set ε = 5 in MSE loss function. The model
was implemented by PyTorch and PyTorch Geometric.

4.4 Results of cross-validation

4.4.1 Performance comparison
Table 2 shows the results of 10-fold cross-validation. HPOFiller achieves
the best prediction performance with AUPR of 0.4345, which is 11.3%
higher than that of the second-best method tlDLP-MF which utilizes more
information (i.e. GO annotations of MF). The inferior performance of
tlDLP implies that multiple data sources might not be properly integrated
into their models. Moreover, the AUPR of HPOFiller is 13.7% and
17.1% higher than DLP and AiProAnnotator, respectively, which both
use the PPI network and HPO term similarity (despite calculated in
different ways). This result demonstrates the effectiveness of GCN to
exploit network information. In addition, HPOFiller outperforms others
for predicting not only internal annotations but also specific annotations
that are more informative. Furthermore, Fig. S1 shows that HPOFiller
keeps the highest precision, except for extremely low recall, indicating
that HPOFiller can accurately return the relevant results. Regarding
AUC, HPOFiller is moderate, which might be caused by drastic label
imbalance (Saito and Rehmsmeier, 2015). As for AP@K where we
choose K = 5k, 10k, 20k, 50k, HPOFiller consistently outperforms the
competing methods at all K with significant margins.

4.4.2 Ablation study
To investigate the effectiveness and necessity of components of HPOFiller,
we conduct ablation study by removing one component from the model and
evaluate the performance using 10-fold cross-validation. The results are
shown in Fig. 5. We notice that AUPR drastically drops by 88.0% without
batch normalization, implying its importance on stability. What’s more,
removing the output MLP layers also results in performance degradation,
indicating the role of distillation. Finally, we observe that models without

Fig. 5. Ablation study between HPOFiller and its variants derived by removing one of
component from the model. The percentage refers to the rate of change in AUPR or AUC
by leaving out the particular component relative to that obtained by the full model.

GCN blocks are all defeated, which again demonstrates the ability to refine
high-quality representations from the network which in turn benefits the
overall performance.

4.4.3 Parameter analysis
There are many hyper-parameters in our model, each of which will have
an influence on the performance. Thus, we conduct parameter sensitivity
analysis by varying one hyper-parameter with others fixing. Fig. S2 shows
the test AUPR and AUC w.r.t epoch of HPOFiller. We can see that, as
the number of iterations increase, AUPR has converged but AUC begins
to slowly decrease, implying the over-fitting. Therefore, we terminate
the learning process at 3,000 iterations to avoid performance degradation.
Fig. S3 presents the performance changes w.r.t multiple hyper-parameters.
In particular, continuously increasing the depth of GCN layers leads to
over-fitting. This might be caused by applying a too deep architecture
might introduce more noises on graph to the representation learning
and causes over-smoothing. Moreover, stacking multiple output MLP
layers can consistently enhance the predictive performance, but further
appending layers also leads to over-fitting. Similar trend also appears in
the dimension of the embeddings. All these indicate that too complex
models do not necessarily lead to the best performance. As for the restart
probabilityα in RWR, a largerα yields better performance, suggesting that
capturing local context may be needed at the preliminary stage. Finally,
we investigate the effect of ε in Eq. (15). From Fig. S3(c), we find that
appropriate enhancement on positive samples can mitigate the impact of
label imbalance and hence boost the performance.

4.5 Results of temporal validation

4.5.1 Performance comparison
Table 3 summarizes the results of temporal validation. HPOFiller
outperforms all other methods in terms of AUC and AUPR, demonstrating
the advantage of our model in predicting missing HPO annotations.
Compared with matrix completion-base methods, label propagation-based
methods achieve better performance. The matrix completion integrates
information underlying networks into low-rank matrices with loss, while
GCN would make better use of the network information and hence
help improve the performance. It is noteworthy that AUPRs in temporal
validation are relatively lower than those in cross-validation. It might be
attributed to a lot of annotations in the test set that are still missing, and as
a result, the performance is potentially under-estimated (Liu et al., 2020).
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Table 2. Performance comparison under 10-fold cross-validation

Method AUC AUPR AUC-leaf AUPR-leaf AUC-internal AUPR-internal AP@5k AP@10k AP@20k AP@50k

LP 0.9318 0.3776 0.7903 0.2837 0.9353 0.4643 0.6426 0.5198 0.3976 0.2446
DLP 0.9319 0.3823 0.7904 0.2872 0.9355 0.4694 0.6570 0.5304 0.4051 0.2492
tlDLP-BP 0.8855 0.3557 0.7881 0.2753 0.8797 0.4158 0.6137 0.5051 0.3906 0.2406
tlDLP-MF 0.9260 0.3903 0.8169 0.2941 0.9317 0.4765 0.6640 0.5426 0.4181 0.2588
SMC 0.8636 0.3857 0.7542 0.3093 0.8445 0.4179 0.7638 0.6641 0.4858 0.2617
AiProAnnotator 0.9461 0.3711 0.8014 0.2960 0.9433 0.4119 0.6600 0.5678 0.4146 0.2212
HPOFiller 0.9288 0.4345∗ 0.7693 0.3311∗ 0.9356 0.5244∗ 0.8347∗ 0.7138∗ 0.5423∗ 0.3109∗

Notes: *Statistical significance (P < 0.001) by pairwise t-test. The boldface items in the table represent the best performance.

Table 3. Performance comparison under temporal validation

Method AUC AUPR AUC-leaf AUPR-leaf AUC-internal AUPR-internal

LP 0.8916 0.0461 0.7800 0.0387 0.8694 0.0534
DLP 0.8913 0.0472 0.7797 0.0392 0.8694 0.0540
tlDLP-BP 0.8900 0.0472 0.7997 0.0397 0.8747 0.0549
tlDLP-MF 0.8885 0.0471 0.8016 0.0391 0.8729 0.0540
SMC 0.8326 0.0224 0.7262 0.0194 0.8241 0.0246
AiProAnnotator 0.8404 0.0211 0.7329 0.0181 0.8306 0.0238
HPOFiller 0.9013 0.0483 0.8046 0.0401 0.8804 0.0550

Note: The boldface items in the table represent the best performance.

4.5.2 Case study 1: top predictions with literature evidence
The annotations in the test set for temporal validation are still incomplete,
and so a lot of predictions by HPOFiller might be true annotations even
if they are not annotated yet. Table 4 presents several top predictions that
are not in the HPO annotations released by June 2020 but supported by
literature.

The TP53 gene provides instructions for making a protein called
cellular tumor antigen p53, which acts as a tumor suppressor to regulate
cell division. Pandya et al. (2018) found that p53 protein over-expression
and p53 mutations were responsible for dysplastic oral lesions. Recently,
Caponio et al. (2020) reports that mutations of TP53 are the most frequent
somatic genomic alterations in head and neck squamous cell carcinoma

(HNSCC), and more than 90% of HNSCCs involve the mucosal surfaces
of the oral cavity, oropharynx and larynx.

The epidermal growth factor receptor (EGFR) is a transmembrane
protein that regulates cell proliferation, apoptosis, angiogenesis, adhesion
and metastasis. Ahluwalia et al. (2018) suggested that patients with EGFR-
mutated non-small cell lung cancer (NSCLC) were more likely to suffer
central nervous system (CNS) metastases.

In addition to the cancers, there are some predictions related to rare
phenotypic abnormalities. β-catenin is a dual function protein, involved in
regulation and coordination of cell-cell adhesion and gene transcription.
Lin et al. (2008) implied that the deregulation ofβ-catenin could contribute
to the etiology of congenital external genital defects in humans based on
the experiments on the mice.

Table 4. Top predictions of protein-phenotype associations with literature evidence

Rank UniProt ID Gene Protein name HPO term ID HPO term name Reference Evidence

P04637 TP53
Cellular tumor

antigen p53
Pandya et al. (2018)

“Progressive accumulation of genetic errors
(including mutations in TP53 and CDKN1A)
is associated with the initiation and progression
of potentially malignant oral lesions toward
frank malignancy.”

32 HP:0000153 Abnormality of the mouth
45 HP:0031816 Abnormal oral morphology
47 HP:0000163 Abnormal oral cavity morphology

4

P00533 EGFR
Epidermal growth

factor receptor

HP:0000707 Abnormality of the nervous system

Ahluwalia et al. (2018)

“Central nervous system (CNS) metastases are a
common complication in patients with epidermal
growth factor receptor (EGFR)-mutated
non-small cell lung cancer (NSCLC), resulting in
a poor prognosis and limited treatment options.”

6 HP:0012638
Abnormality of nervous

system physiology

41 HP:0012639
Abnormality of nervous

system morphology

94 HP:0002011
Morphological abnormality of

the central nervous system

4263

P35222 CTNNB1 Catenin beta-1

HP:0010461 Abnormality of the male genitalia

Lin et al. (2008)

“The fact that both endodermal and ectodermal
β-Catenin knockout animals develop severe
hypospadias in both sexes raises the possibility
that deregulation of any of these functions can
contribute to the etiology of congenital external
genital defects in humans.”

4665 HP:0000811 Abnormal external genitalia

5280 HP:0000032 Abnormality of male external genitalia

4759 Q6PI48 DARS2
Aspartate-tRNA

ligase, mitochondrial
HP:0001252 Muscular hypotonia Köhler et al. (2015)

“At the age of 10 months, he showed ... no active
moving with muscular hypotonia. ... A
homozygous mutation in the DARS2 gene is most
probably the cause of the disease (LBSL).”
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Table 5. Runtime comparison of different methods under temporal
validation

Method Runtime

LP 1.90s
DLP 588.11s
tlDLP-BP 2764.68s
tlDLP-MF 2914.81s
SMC 1932.56s
AiProAnnotator 3199.52s
HPOFiller 1041.41s

The mitochondrial aspartyl-tRNA synthetase is an important enzyme
in the synthesis of mitochondria, the energy-producing centers in
cells. Köhler et al. (2015) reported a 2.5-year-old baby suffering from
leukoencephalopathy with brainstem and spinal cord involvement and
lactate elevation (LBSL). He showed muscular hypotonia at the age of 10
months. The authors believed that a homozygous mutation in the DARS2
gene is most probably the cause of LBSL.

4.5.3 Case study 2: typical example
To demonstrate the practical advantage of HPOFiller, we use menin
(UniProt ID: O00255) as a typical example. Menin is the protein product
encoded by MEN1 gene, which serves as a putative tumor suppressor
associated with multiple endocrine neoplasia type 1. Although menin is
believed to be likely implicated in several important cell functions, the
exact role of menin is yet to be elucidated (Kamilaris and Stratakis, 2019).
Fig. S4 presents the HPO annotations predicted by different methods.
There are 47 newly added HPO annotations of menin, and HPOFiller
successfully predicts 17 of them (36.2%), comparing to only 8 for the
next-best method. Furthermore, from Fig. S4, we observe that HPOFiller
can find more specific HPO terms, implying the highly positive effect of
GCN to capture the semantic relationships between HPO terms from HPO
semantic similarity network.

4.5.4 Runtime analysis
The runtime of comparing methods is given in Table 5. The experiments
are conducted on CentOS 7.5.1804 with Intel(R) Xeon(R) Silver CPU and
256GB RAM, and our model is run on NVIDIA(R) GeForce(R) GTX 1080
Ti GPU. HPOFiller needs half an hour to finish the computation, which is
two to three times faster than four out of all six competing methods.

4.5.5 Application to find disease-gene associations
We present a further usage of HPOFiller: using known disease-HPO
term associations as well as predicted HPO annotations can identify new
disease-gene/proteins relationships. We obtain predicted disease-related
genes/proteins by building a bridge between HPO annotations of diseases
released in February 2019 and predicted protein-HPO term associations
generated by HPOFiller. Table 6 lists three top predictions that are added to
the latest OMIM gene-disease relationships database. It demonstrates that
by using the standardized description of the abnormal phenotypes of the
disease by clinicians and other biocurators, HPOFiller can reveal possible
genetic causes of diseases.

5 Conclusion
We presented HPOFiller, a graph convolutional network (GCN)-based
approach for identifying missing HPO annotations. The key idea of
HPOFiller is to repetitively integrate the information between proteins
and HPO terms through protein-HPO term bipartite network by Bi-GCN
to provide preliminary embeddings in the latent space, which are then

refined by S-GCN on PPI network and HPO semantic similarity network
separately. Empirical experiments under stringent conditions showed that
HPOFiller significantly outperformed state-of-the-art methods. Besides,
we could show evidence from literature for some predicted (unknown)
associations, implying the under-estimation of performance. Furthermore,
HPOFiller could discover potential disease-gene associations by using
known disease-HPO term associations. Due to the utilization of PPI
network, HPOFiller was currently limited to gene-coded proteins. Since
HPO included a number of disease related non-coding RNAs, we could
extend our work to identify missing annotations of non-coding RNAs.
Additionally, exploring a more efficient architecture using GCN for
predicting HPO annotations would be interesting future work.
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