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Abstract 
Summary: We developed Quickomics, a feature-rich R Shiny-powered tool to enable biologists 
to fully explore complex omics statistical analysis results and perform advanced analysis in an 

easy-to-use interactive interface. It covers a broad range of secondary and tertiary analytical tasks 
after primary analysis of omics data is completed. Each functional module is equipped with cus-

tomizable options and generates both interactive and publication-ready plots to uncover biological 
insights from data. The modular design makes the tool extensible with ease. 

Availability: Researchers can experience the functionalities with their own data or demo RNA-

Seq and proteomics datasets by using the app hosted at http://quickomics.bxgenomics.com  
and following the tutorial, https://bit.ly/3rXIyhL. The source code under GPLv3 license is pro-

vided at https://github.com/interactivereport/Quickomics for local installation. 
Contact:  benbo.gao@biogen.com, baohong.zhang@biogen.com 

Supplementary information: Supplementary materials are available at https://bit.ly/37HP17g.  

 

1 Introduction  

Over the last decade, proteomics and RNA-Seq have become the standard experimental 
approaches for confidently identifying and accurately quantifying thousands of proteins and 

genes in complex biological systems. Typically, data generated from those high-throughput ex-
periments are analyzed by data analysts and primary results are provided to end-users as gene-

by-sample matrices, tables of summary statistics derived from differential expression analysis, 
and often a small set of static figures showing high-level results. The large scale of such 
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datasets demands a more effective delivery method beyond the tabulated results, to enable full 

utilization of a given dataset. Several tools allowing interactive exploration and visualization of 
complex omics data for end-users without programming skills, such as START (Nelson et al., 

2017),  PIVOT (Zhu et al., 2018), PaintOmics 3 (Hernández-De-Diego et al., 2018), iSEE (Lun 
et al., 2018), iDEP (Ge et al., 2018), WllsON (Schultheis et al., 2019), IRIS-EDA (Monier et al., 

2019), DEBrowser (Kucukural et al., 2019), Ideal (Marini et al., 2020), and BEAVR 
(Perampalam and Dick, 2020), have recently been developed. However, these tools come with 

limitations regarding input formats, the ability to easily adjust plotting parameters, narrow focus 
on RNA-Seq data analysis, or lack of comprehensive functionalities covering major secondary 

and tertiary analytical tasks such as gene set enrichment, co-expression network analysis and 
comparative pathway analysis (detailed feature comparison is outlined in supp. table 1). 

To address these gaps, we developed Quickomics, an easy-to-use tool for the visualization 

of omics (mainly RNA-Seq and proteomics) data and statistical analysis results by leveraging 
newly developed R packages and modern JavaScript plotting libraries to enhance the usability 

from data quality control to generation of publication-ready figures.  

2 Methods 

Architecture. Quickomics is built on R Shiny, a web application framework provided as an 

R package (http://shiny.rstudio.com/).  R Shiny allows applications to be deployed on a personal 
computer using RStudio or hosted on a local or cloud-based Shiny server. As a Shiny app, 

Quickomics natively integrates with many R packages, such as ComplexHeatmap (Gu et al., 
2016) to perform all analytical tasks on the server while presenting results in interactive web 

pages by utilizing web techniques. In addition, Quickomics adopts a modular design to ensure 
extensibility. 

Highly configurable visualization is one of the major strengths of Quickomics. Often, users 

have diverse requirements on how to display analyzed data to facilitate interpretation and/or to 
identify data subsets for further analysis. Here, we take advantage of the dynamic nature of R 

Shiny where users can easily query data on-the-fly to only display selected groups, samples or 
proteins/genes of interest.  

Integrated Gene Set Query. We developed xGenesets API (Application Programming Inter-
face) to provide functionality of selecting a pre-defined subset of genes/proteins when it is 

needed in Quickomics as shown in supp. tutorial section 4.1. Detailed implementation and us-
age of the API is described in section 1.1 of the tutorial. 
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Interactive and High-Resolution Plots. R Shiny controlled input widgets are used to ena-

ble users to configure many plotting parameters like font size, color palette, width and height. 
Moreover, the svglite package was deployed to allow exporting of interactively generated high-

resolution plots in PDF or SVG format.  
 

 
 
Fig. 1. Selected Quickomics functions applied to a dataset of microglial RNA-seq gene expression from three mouse 
genotypes over time. A) PCA based on full dataset highlights primary sample separation by mouse age at which the 
cells were isolated. (B) Volcano plot visualizes differentially expressed genes, most of which show reduced expres-
sion in 2mo_KO compared to 2mo_WT microglia. For spacing purpose, absolute log2FC (Fold Change) and negative 
log10 adjusted p-value are capped at 1.5 and 15, respectively. (C) Correlation analysis between two comparisons 
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shows that aging and Cx3cr1-KO have a similar effect on gene expression. (D) Pattern clustering identifies subsets of 
genes with similar expression over the samples. The clustering is mostly driven by age, with the KO genotype having 
a similar, but smaller effect. (E) Heatmap of all samples allows the identification of gene clusters with expression reg-
ulated by age and/or genotype. Key genes and the pathways they belong to are highlighted on the right. (F) After 
pathway enrichment analysis, KEGG pathways (Kanehisa and Goto, 2000) of interest can be displayed in a cellular 
context. The color bars with each stripe representing one comparison show log2 fold changes in various compari-
sons, allowing project-wide insights for patterns of expression. (G) Correlation network shows potential links between 
genes of interest.  An interactive version of the figure for enlarged view of individual panels is available at 
https://bit.ly/3psK9tp. 

3 Results 

Quickomics provides a comprehensive visualization workflow for major secondary and ter-
tiary analytical tasks of high dimensional data, which is composed of nine main modules, 

namely QC Plots, Volcano Plot, Heatmap, Expression Plot, Gene Set Enrichment, Pattern Clus-
tering, Correlation Network, Venn Diagram and Venn Across Projects, for result visualization 

and/or analysis, and one Output module (details of 37 functions in modules are described in 

supp. table 2). These modules work essentially the same way for both RNA-seq and proteomics 
datasets. The detailed guidance about how to prepare, upload and explore a dataset is provided 

in the supp. tutorial. The main functionalities of Quickomics are exemplified in Fig. 1 by applying 
the tool to an RNA-seq study (Gyoneva et al., 2019), which is available in the demo app along 

with two proteomics datasets (Connor-Robson et al., 2019; Ping et al., 2018). 
By means of the data uploading tool, Quickomics can ingest datasets consisting of RNA 

and/or protein expression values (normalized and logarithmic transformed counts or intensity or 
ratios), statistical measures of comparisons between groups (fold changes, p-values and ad-

justed p-values), sample tables including sample group and comparison information, and a table 
containing protein/gene identifiers in text format (supp. tutorial section 2.1). Anticipating differ-

ences in naming genes and proteins, a separated section for preparing proteomic dataset is 

provided in the supp. tutorial section 2.2.2. 
Upon loading a dataset, users can perform a comprehensive Quality Control (QC) analysis 

by checking the expression similarity of samples within and across experimental groups us-
ing principal component analysis (PCA), a box-and-whisker plot, a coefficient of varia-

tion (CV) distribution plot and a sample-sample distance matrix. PCA allows users to detect out-
liers or batch effects across groups and/or samples, which can be viewed in 2D, 3D, and 3D In-

teractive plots, and to compare the similarity of experimental groups to one another. The 
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heatmap and dendrograms visualize the similarity of all the samples. The box plot and CV distri-

bution facilitate assessment of quantitative precision across samples quantification and mean 
variation distribution, respectively. These plots can be dynamically re-plotted upon user selec-

tion of a subset of groups and/or samples.  
Then, users can visualize genes/proteins showing different expression patterns across 

groups via Volcano Plot and Expression Plot and identify correlated genes/proteins from Pattern 
Clustering and Correlation Network modules.  

The Volcano plot is commonly used to visualize immediate outliers, i.e. significantly differen-
tiated proteins/genes with large fold change (FC), in two-group comparisons by both static and 

interactive volcano plots (log2 FC versus negative log10 P value). It could also be used for a 
quick assessment of the fraction of the altered proteome or genome. This module also provides 

an innovative function for users to visualize the expression changes for differentially expressed 

genes between two comparisons as shown in Fig.1C.  
The Heatmap provides both static and interactive gene/protein expression heatmap visuali-

zation options to facilitate discovery of similarity patterns across samples based on user-defined 
parameters. Users can define sample group(s) and gene sets to be visualized and also custom-

ize the clustering options.   
The Expression Plot allows users to visualize the expression of proteins/genes that passed 

the fold change and P value cutoffs in group comparisons with multiple plot options. The us-
ers can also search for genes and visualize expression data in a graphical or tabular for-

mat. The Pattern Clustering provides clustering analysis based on user defined interesting 
gene/protein subsets to visualize the gene/protein expression patterns across different groups 

(e.g., time points/different conditions). Several clustering methods including soft clustering, k-

means and partitioning around medoids are available. The Correlation Network generates a co-
expression network constructed based on protein-protein/gene-gene correlation matrix. In order 

to speed up the response time, only correlation pairs with r2 > 0.7 were used.   
After expression analysis, users can perform a functional enrichment analysis on differen-

tially expressed proteins/genes from a selected comparison against pathways and gene sets to 
get biological insights using the Gene Set Enrichment module. After enrichment analysis, the 

expression value of query proteins/genes is listed in a table and can be visualized in heatmap 
from all the studied groups in the whole dataset. If the functional pathways used in the gene set 

enrichment analysis are from KEGG, a KEGG pathway graph will be available with query genes 

overlaid by log2 fold change values from one or more comparisons.   
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Furthermore, Venn Diagram modules were incorporated to enable data comparison within 

and across projects. The Venn Diagram allows users to generate Venn diagram among differ-
ent comparisons in the same experiment. The Venn Diagram Across Projects allows users to 

generate Venn diagram among different experiments uploaded by users. Overlapping 
genes/proteins are available in Intersection Output section.  

Quickomics generates highly customized plots and further provides interactive forms of PCA 
3D plot, volcano plot, heatmap, and correlation network, which allows users to hover mouse 

over individual data points to view annotation information. In the end, Quickomics contains an 
Output module to export selected figures in high resolution suitable for publication as well as 

download data tables in excel format.  

4 Conclusions 

In summary, Quickomics is a powerful tool to help biologists explore complex omics data 

and interpret results through a user-friendly interface. Firstly, it provides comprehensive quality 

control analysis with adjustable options for visualization. Secondly, it supports most of the major 
secondary and tertiary analytical tasks including volcano plot, heatmap, expression plot, gene 

set enrichment, pattern clustering, correlation network and Venn diagram. Finally, it is released 
as open source to promote suggestions for new features and contributions from the bioinformat-

ics community to further enhance this versatile tool. 
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