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Abstract

Summary: Genomic sequences are widely used to infer the evolutionary history of a given group of
individuals. Many methods have been developed for sequence clustering and tree building. In the early
days of genome sequencing, these were often limited to hundreds of sequences, but due to the surge
of high throughput sequencing, it is now common to have millions of sampled sequences at hand. We
introduce MNHN-Tree-Tools, a high performance set of algorithms that builds multi-scale, nested clusters
of sequences found in a FASTA file. MNHN-Tree-Tools does not rely on sequence alignment and can
thus be used on large datasets to infer a sequence tree. Herein we outline two applications: A human
alpha-satellite repeats classification and a tree of life derivation from 16S/18S rDNA sequences.
Availability: Freely available with a Zlib License from our website:
http://treetools.haschka.net/

Supplementary information: An in depth discussion about the algorithm with numerical simulations:
http://treetools.haschka.net/mnhn-as.pdf

Manual: A detailed users guide and tutorial:
https://gitlab.in2p3.fr/mnhn-tools/mnhn-tree-tools-manual/-/raw/master/

manual.pdf

Contact: julien.mozziconacci@mnhn.fr and thomas.haschka@mnhn.fr

1 Introduction
Sequences are slowly diverging in the course of evolution. The similarity
between genomic loci, as for instance specific gene sequences, can in
principle be used to infer the evolutionary relationship between individuals.
Clustering methods are often used to group sequences together into species,
genus, families, orders, class, phylum’s, kingdoms and domains. Different
experimental methods, such as DNA barcoding (Hajibabaei et al. (2007);
DeSalle and Goldstein (2019)), are used to determine the set of sequences
to be clustered. Sequences are then often curated and gathered into large
databases (Munoz et al. (2011); McDonald et al. (2012)). With the recent
advances in DNA high-throughput sequencing (Goodwin et al. (2016)),
specimen collections, and storage capacities, it is now common to deal
with datasets with millions of entries. Several computational approaches

have been developed to keep up with the size of these datasets (Rognes
et al. (2016); Mahé et al. (2015)) but they all provide clusters rather than
trees. We propose here a new and fast method that performs a multiple
alignment free, multi-scale clustering of a set of sequences found in a
FASTA (Lipman and Pearson (1985)) file, leveraging the density-based
algorithm for discovering clusters in large spatial databases with noise
(DBSCAN) (Ester et al. (1996)). Nested clusters are then identified to
build a tree.

Briefly sketched, the DBSCAN algorithm is a two parameter algorithm
requiring a radius ε and a minimum number of objects minpts, in our
case sequences, to be found withing this radius. As such, this algorithm
finds density ρ =

nminpts

V (ε)
connected regions, i.e. clusters with a density

> ρ(minpts, ε) (Ester et al. (1996)). The use of DBSCAN has been
proposed by others as a guide to phylogenetic inference (Ruzgar and
Erciyes (2012); Mahapatro et al. (2012)). The novelty introduced by
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Fig. 1. Overview of MNHN-Tree-Tools(a) Closely related sequences form dense clusters (in purple and green). These are embedded into a less dense cluster (in blue). The DBSCAN
algorithm applied at various radius values (ε), can identify these nested clusters. A tree of the identified clusters can then be build (b) Detailed computational workflow (c) Tree build with human
Alpha-satellites sequences. Colors correspond to the family annotations in the original dataset (Uralsky et al. (2019)). (d) The tree of life built from 16S/18S RNA sequences. Bacteria, Archaea
and Eukaryota are highlighted, with the color intensity corresponding to a logarithmic gradient of the number of sequences in the tree branches. A zoomed representation of Holozoa, clearly
outlined as a subclass of Eukaryota, shows the Homo Sapiens branch.

our multi-scale approach is that we perform the DBSCAN algorithm at
various densities, and use these layered results to infer a “phylogenetic"
tree. Clustering for different ε values allows us to find dense sequence
clusters embedded into diffuse clusters (Fig. 1a). We can then build
a tree of density connected clusters by successive DBSCAN runs with
increased ε parameters and cluster comparison as outlined in Fig. 1b and
in the supplementary document. The DBSCAN algorithm was chosen
over newer density based methods as, contrary to OPTICS (Ankerst et al.
(1999)), DBSCAN allows us to control the density of the clusters found
and thus allows us to precisely build trees from layers of specific densities.
Further DBSCAN features a reduced algorithmic complexity and has as
such a runtime advantage over algorithms such as SUBCLU (Kailing
et al. (2004)). MNHN-Tree-Tools contains the utilities to cluster sequences
using two different distance measures:

• The L2-norm operating on a principal component analysis (PCA)
based subspace projection of the k-mer sequences representations
(Chatterji et al. (2008))

• The Smith-Waterman distance (Smith and Waterman (1981)), which
features parametric penalties for both substitutions and insertions.

In comparing the k-mer/PCA based approach to the use of the Smith-
Waterman distance we show that a k-mer/PCA based distance can yield
better clusters and trees due to the inherent feature selection of the PCA
while the Smith-Waterman distance can provide more accessible results.
In depth details of this comparison are discussed in the supplement to
this article. The Smith-Waterman distance computation was implemented
in OpenCL (Stone et al. (2010)) allowing for execution on Graphics
Processing Units (GPUs). We also used the Message Passing Interface
(MPI) library (Forum (1994)) to distribute the workloads across different
high performance computing cluster nodes.

2 Description of MNHN-Tree-Tools
MNHN-Tree-Tools is modular suite of command line tools written in the
C language. In this section we outline the core utilities, which lead to
a multilayered clustering with clusters organised into a tree. We further
refer the reader to our manual and supplemental document for a complete
documentation.

Input data: MNHN-Tree-Tools uses as input a FASTA file format
that gathers sequences which do not need to be aligned. Typical lengths
can vary from 100 to 10000 bp, with length variations up to 10%
within samples, but are ultimately only limited by k-mer length or PCA
information retention.

fasta2kmer A utility to transform FASTA files into a k-mer
representation, with a choosable variable subsequence length k.

kmer2pca Computes projections of a k-mer representation onto its first
principal components. The number of principal components to be used is
here defined using an input parameter. The right number has to be chosen
in a tradeoff between information capture and curse of dimensionality.

adaptive_clustering_PCA Performs clustering at different densities,
with the following variable input parameters: initial ε, ∆ε and minpts. c.f.
(fig 1b)

split_sets_to_newick Generates a Newick tree from the clusters
obtained.

3 Performance and accuracy
We evaluated the accuracy of the algorithm presented herein in three
different ways: At first we measured the difference of obtained results to
trees that were annotated by experts and as such provided us with valuable
ground truth as highlighted in the case studies section below. Further we
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compared the algorithm to partitions found by the SWARM2 tool (Mahé
et al. (2015)). Complementing these experiences we used MNHN-Tree-
Tools to evaluate simulated datasets. The comparison to ground truth
trees shows that we are capable to find known partitions and highlight
accuracy values in the tables provided by the supplemental document. The
knowledge about this accuracy was further refined by the application of
MNHN-Tree-Tools on simulated datasets that contain sequence clusters
of monitored sequence density and inter cluster genetic distance. A
comparison to SWARM2 (Mahé et al. (2015)) clearly shows that our tree
based approach yields, as we search for clusters at different densities, a
sweet spot where the found partitions are in close correspondence to those
annotated by experts. Classical partitioning tools such as SWARM2 (Mahé
et al. (2015)) on the other hand yield a single set of partitions that does
not correspond, for the application presented herein, to expected results.
We refer the reader to our supplement for further details on the accuracy
and performance of MNHN-Tree-Tools where the outlined experiences
are discussed in detail.

4 Case studies
Human alpha-satellites classification: Sequences were retrieved from
(Uralsky et al. (2019)). Our algorithm reconstructed a tree ((Fig. 1c) from
these 426 106 sequences which was coloured according to their family
annotation.
The tree of life - The SILVA dataset: Ribosomal RNA sequences from
diverse species (2 225 272 ) were downloaded from (Munoz et al. (2011)).
Our algorithm was used to reconstruct a tree of life based on these
sequences ((Fig. 1d).

For these two applications, the run time for one clustering step ranges
from 5 minutes (426 106 seq.) to 173 minutes (2 225 272 seq.) on a single
Intel(R)i7-4771 3.50GHz core. The clustering for different epsilon values
can easily be run in parallel on several cores.
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