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Abstract 9 

Motivation: The full spectrum of abnormalities in cancer-associated protein complexes remains largely 10 

unknown. Comparing the co-expression structure of each protein complex between tumor and healthy 11 

cells may provide insights regarding cancer-specific protein dysfunction. However, the technical 12 

limitations of mass spectrometry-based proteomics, including contamination with biological protein 13 

variants, causes noise that leads to non-negligible over- (or under-) estimating co-expression. 14 

 15 

Results: We propose a robust algorithm for identifying protein complex aberrations in cancer based on 16 

differential protein co-expression testing. Our method based on a copula is sufficient for improving 17 

identification accuracy with noisy data compared to conventional linear correlation-based approaches. As 18 

an application, we use large-scale proteomic data from renal cancer to show that important protein 19 

complexes, regulatory signaling pathways, and drug targets can be identified. The proposed approach 20 

surpasses traditional linear correlations to provide insights into higher order differential co-expression 21 

structures.  22 

Availability and Implementation: https://github.com/ymatts/RoDiCE. 23 

  24 
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1 Introduction 1 

Cancer is a complex system driven by many molecular events, including genomic mutations, as well as 2 

epigenetic and transcriptomic dysregulation (Hoadley et al., 2018). However, our knowledge regarding how 3 

their upstream events characterize downstream mechanisms with proteomic phenotypes remains scarce (Clark 4 

et al., 2019; Liu et al., 2016; Mertins et al., 2016; Zhang et al., 2016). Protein complexes are responsible for 5 

most cellular activities. In fact, recent studies (Ori et al., 2016; Romanov et al., 2019; Ryan et al., 2017) have 6 

demonstrated that protein subunits tend to exhibit co-expression patterns in proteome profiles. Furthermore, 7 

protein complex subunits are simultaneously down- or up-regulated via genomic mutations (Ryan et al., 2017). 8 

However, little is known regarding the changes that occur in the co-regulation of protein complexes between 9 

tumor and normal healthy tissues. 10 

Accordingly, in the current study, we propose a novel algorithm for differential co-expression of protein 11 

abundance to identify tumor-specific abnormalities in protein complexes. Differential co-expression (DC) 12 

analysis is a standard technique for gene expression analysis to identify differential modes of co-regulation 13 

between conditions. As such, numerous methods already exist (Bhuva et al., 2019), including correlation 14 

analysis, which is one of the most common measures of co-expression. For example, differential correlation 15 

analysis (DiffCorr) (Fukushima, 2013) and gene set co-expression analysis (GSCA) (Choi and Kendziorski, 16 

2009) are two-sample Pearson’s correlation coefficient tests. However, studies report that protein expression 17 

levels have greater variability than gene expression levels due to post-translational modification regulatory 18 

mechanisms (Gunawardana et al., 2015; Liu et al., 2016). This variability can affect the estimation of 19 

co-expression as an outlier and can significantly impact DC results. 20 

We, therefore, developed a robust DC framework, designated robust differential co-expression analysis 21 

(RoDiCE), via two-sample randomization tests with empirical copula. The notable advantage of RoDiCE is 22 

noise robustness. Our main contributions are as follows: 1) development of an efficient algorithm for robust 23 

copula-based statistical DC testing; 2) overcome computational hurdles associated with the copula-based 24 

permutation test by incorporating extreme value theory; 3) demonstrate the effective application of copula to 25 

cancer complexome analysis; and 4) develop a computationally efficient multi-thread implemented as an R 26 

package.  27 

1.1 Motivational example from the CPTAC/TCGA dataset 28 

First, to demonstrate the need for robustness in protein co-expression analysis, we analyzed a cancer proteome 29 

dataset of clear renal cell carcinoma from CPTAC/TCGA with 110 tumor tissue samples. We measured 30 

co-expression using Pearson’s correlation coefficient and compared the correlation coefficients before and after 31 

removing outliers. To identify outlier samples, we applied robust principal component analysis using the R 32 

package ROBPCA (Hubert et al., 2005) with default parameters. Among 49,635,666 pairs of 9,964 proteins, the 33 

correlation coefficients of 7,541,853 (15.2%) pairs were deviated by more than 0.2 after removing outlier 34 

samples (Figure 1). Note, the value “0.2” is provided as an example of the number of pairs with a change in 35 

correlation coefficient, and does not, therefore, have statistical or biological meaning. This result implied that a 36 

non-negligible proportion of protein co-expression would be overestimated or underestimated. To accurately 37 

compare the structures of co-expression, it is necessary to compare them while minimizing co-expression 38 

over-/under-estimation. 39 
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 1 

2 Methods 2 

Figure 2 provides an overview of RoDiCE. We decomposed the expression level of subunits in the protein 3 

complex into a structure representing co-expression and one representing the expression level of each subunit, 4 

using the empirical copula function (Nelsen, 2010). The empirical copula rank converts the scale of the original 5 

data. By comparing the empirical copula functions with the conditions for statistical hypothesis testing, we 6 

derived the �-value as the differences in co-expression structures. Our method is described in detail in the 7 

following sections. 8 

2.1 RoDiCE model 9 

Suppose there are � samples, and ��� �  ��, ��� represents each condition. We compare two conditions 10 

and assume that ��  and��  represent the normal group and the tumor group, respectively. Let 	�  �11 

 
���, ��� , … , ��� be abundances of � subunits in group �. Given a protein complex, we represent the 12 

entire behavior of subunits with a joint distribution 	� ~ �����, ��, … , ���. The distribution function �� 13 

describes two pieces of information: subunit expression levels and the structure of co-expression between 14 

subunits. Meanwhile, copula �� is a function that can decompose this information into a form that can be 15 

handled separately, as follows:  16 

�����, ��, … , ��� � �� ��������, �������, … , ��������  (1) 17 

The behavior of each subunit ���
�� is represented by a distribution function. The copula function itself is a 18 

multivariate distribution with uniform marginal probability distribution. The copula function includes all 19 

dependency information among the subunits (Nelsen, 2010; Rémillard and Scaillet, 2009; Seo, 2020).  20 

We then use the empirical copula to non-parametrically estimate the copula �� as it can be widely applicable 21 

to various situations and can be represented using pseudo-copula samples defined using rank-transformed 22 

subunit abundance ��� � ��	��


�
�� � 1,2, … , ��;  23 

���
��, ��, … , �� � �

�
∑ �
��� � ��, ��� � ��, … , ��� � ���     (2) 24 

where �� � is a rank-transform function, and pseudo-sample variables are transformed as �
	�� � !��
 and 25 

�
	�� � !��
. The empirical copula is robust to noise; however, it represents co-expression structures based 26 

on rank-transformed subunit expression levels, which is the so-called scale invariant property in the context of 27 

the copula theory (Nelsen, 2010). 28 

To perform DC analysis between groups �� and ��, we consider the following statistical hypothesis: 29 

"�: ��� � ���"�: ��� $ ���

   (3) 30 

We then derive the following Cramér-von Mises type test statistic to perform statistical hypothesis testing 31 

(Rémillard and Scaillet, 32 

2009):33 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2020.12.22.423973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.22.423973
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

%��, �� � & �

���
����

'
��

( �

��
�

∑ ∑ ∏ max �1 - ���
����, ���

���� ��
���

���
���

���

���
.

- �

������

∑ ∑ ∏ max �1 - ���
���� , ���

���� ��
���

���
���

���
���

./ �

���
�

∑ ∑ ∏ max �1 - ���
���� , ���

������
���

���

���
���
��� 0 #

1 

      (4) 2 

where ���
���
� � 1,2, … �� represents the pseudo-observation in group �. Note that the computational cost is 3 

��, where �� � ������;  � � min
��� , ���. To assess the test statistic (4), we also derived the �-value using 4 

an algorithm based on Monte Carlo calculations (Rémillard and Scaillet, 2009); however, the computational 5 

complexity of the algorithm impedes its application to proteome-wide co-expression differential analysis 6 

(results of the simulation experiments described below).  7 

2.2 Derivation of statistical significance 8 

Using a permutation test, we derived the p-value using the following steps:  9 

(1) Randomized concatenated variable from the two groups; 5 � 
!��
, !�� 10 

(2) Constructed a new randomized variable !��

 � 
6����, 6����, … , 6�����  and 11 

!��

 � 
6�������, 6�������, … , 6�������� with randomized index 7���. 12 

(3) Replaced copula functions ���
 and ��� in (3) with re-estimated empirical copula function ���

  and 13 

���
  from the randomized samples 	��

  and 	��
 . 14 

(4) Derived test statistics %���, ��� based on (4) with ���
  and ���

  15 

Steps 2 and 3 are indispensable for deriving the null distribution correctly as its derivation by randomization 16 

5 � 
!�� , !��
 alone will distort the distribution, making it impossible to accurately control for type I error 17 

(Seo, 2020). 18 

2.3 Approximation of 8-value 19 

The empirical �-value is derived as follows:  20 

��9� � 1 - ∑ ��������,��
�
���

�
  (5) 21 

where 9 is the number of randomization and :� is the test statistic from the null distribution of the �-th 22 

(� � 1,2, … , 9) randomization trials. The �-value accuracy in (5) is bounded by ��9� ; 1/9. As mentioned, 23 

calculating the test statistic requires a computational cost of =����; therefore, an efficient computational 24 

algorithm is required to derive accurate �-values in data with a large number of samples. For instance, 25 

proteomic cohort projects such as CPTAC/TCGA have more than � �100 samples. To address this problem, 26 

we introduced an approximation algorithm for �-values based on the extreme value theory (Knijnenburg et al., 27 

2009) and devised a method to calculate accurate �-values even with a small number of trials. 28 

The test statistic that exceeds the range of accuracy with randomization trials 9 is regarded as an “extreme 29 

value,” and its tail of the distribution could be estimated via a generalized Pareto distribution (GPD), as 30 

follows: 31 
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������	 � �	

�

1 - >�?���, ��� - @� (6) 1 

where A’ is the number of randomized test statistics exceeding the threshold @ that must be estimated via a 2 

goodness-of-fit (GoF) test (Knijnenburg et al., 2009) and > is the cumulative distribution function of the 3 

generalized Pareto distribution, >��� � 1 - �1 / ��	� �

�
���


  for C $ 0 and >��� � 1 - E�
����

�  for C � 0. 4 

To estimate the threshold @ in (6), the GoF test determines whether the excess comes from the distribution 5 

>��� via bootstrap based maximum likelihood estimator (Villaseñor-Alva and González-Estrada, 2009). As we 6 

do not know a priori, the number of samples sufficient to estimate the underlying GPD with threshold @, we 7 

must decide the initial number of samples to use. We begin with a large number of samples and increase until 8 

the GoF test is not rejected, according to Knijnenburg et al. (2009). As initial samples, we start with those 9 

above the 80% quantiles and decrease samples by 1% while the GoF test is rejected. The difference in 10 

sensitivity according to the difference in threshold t was also examined in the simulation, however, the choice 11 

of threshold did not affect the sensitivity (Supplementary Data Figure S3). 12 

2.4 Identification of protein complex alteration 13 

As protein complexes show co-expression among multiple subunits (Kerrigan et al., 2011), we hypothesized 14 

that the difference in the co-expression structure of the tumor group compared to the normal group is a 15 

characteristic quantity of the protein complex abnormality. In previous cancer transcriptome studies, differential 16 

co-expression analysis revealed abnormalities associated with protein complexes (Amar et al., 2013; Srihari et 17 

al., 2014).  18 

RoDiCE is a flexible model that can robustly capture changes in various co-expressed structural patterns, 19 

thus, we must consider what type of structural changes we want to capture. We consider two approaches for the 20 

identification of abnormalities in protein complexes. One is that the co-expression structure changes among at 21 

least one subunit, and the other is that the overall co-expression structure changes. The former is useful when 22 

interested in structural changes in local co-expression and can be used to search for specific targets. The latter 23 

may be effective when searching for complexes in which the co-expression structure changes globally. 24 

To capture changes in the co-expression structure among at least one subunit, RoDiCE can be applied with 25 

� � 2 to robustly capture more than co-expression. In contrast, for global co-expression structural changes 26 

(� F 2), many combinations of patterns are possible. Therefore, defining in advance what kind of contrasting 27 

structures we want to capture will facilitate the interpretation of the results. In this study, we consider the case 28 

where the complete co-expression structure (called the "core complex" in Ryan et al., 2017) changes 29 

significantly, and we capture the state where the structure is lost in many subunits from the co-expression 30 

structure where all subunits are significantly correlated.  31 

In the data analysis of this study, the Spearman’s correlation test was performed on all pairs of subunits 32 

within each complex to define the complete correlation structure, and only those complexes that were complete 33 

graphs when significantly correlated pairs were set to 1 and others to 0, were analyzed. 34 

2.5 Protein membership with protein complex 35 

As we do not know which proteins belong to which protein complexes, we must predict the membership, which 36 

can be achieved via two main approaches. One is membership prediction focusing on the modular structure in 37 
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PPI networks (Adamcsek et al., 2006; Nepusz et al., 2012) and the other is a knowledge-based method using a 1 

curated database. We adopted the latter approach, which is based on already validated protein complex 2 

membership information, using CORUM (ver. 3.0) (Giurgiu et al., 2019) as a database (see the Supplementary 3 

Data for details). 4 

2.6 R implementation with multi-thread parallelization 5 

To further accelerate the computation of the test statistic (4) in the randomization steps, we used RcppParallel 6 

(Allaire J, 2019). Specifically, we utilized the portable and high-level parallel function “parallelFor,” which 7 

uses Intel TBB of the C++ library as a backend on systems that support it and TinyThread on other platforms. 8 

2.7 Copula-based simulation model for protein co-expression 9 

Here we provide the outline of a method for simulating co-expressed structures. First, we simulated protein 10 

expression levels that showed differential co-expression patterns with outliers in the tumor group and the 11 

normal group. We represented the co-expression structure by the covariance parameter in the following 12 

multivariate Gaussian copula: 13 

��
��, ��, … , �� � Φ� �H������, H������, … , H��
�!; Σ�
���� (7) 14 

where Φ�  is the �  dimensional Gaussian distribution parameterized by � J �  covariance matrix (or 15 

correlation matrix) in group �, denoted as Σ�
��� � (7��

���K, and H���� is a univariate distribution. Using the 16 

model, we generated the dependency structure with two groups: one with high and the other with low 17 

correlations; for the bivariate case (� � 2), 7��
����~>LMML�10, 1� and 7��

����~>LMML�1, 10�, and for the 18 

multivariate case �� F 2�,  7��
����~>LMML�10, 1�  and 7��

����~>LMML�1, 10� . We then generated the 19 

co-expression structure using a Gaussian copula with H��� � A�0, 1� and obtained protein expressions via  20 

��
��, ��, … , �� � �� ��������, �������, … , ���
��� (8) 21 

where we set ���~A�N, O�  for � � 1,2, … , �  and � � ��, ��  with N~A�2,1�  and O~�LMML�2,1� . 22 

Furthermore, we added outliers that could affect the co-expression structure. Using the model in (6) and (7), we 23 

set the outlier population in both groups as 7
��
����~��0, 0.05� and ���

 ~A�2,4� for � � 1,2 and � � ��, �� 24 

(Supplementary Data Figure S1). 25 

2.8 Generative model for missing values and imputation 26 

In proteomics, two possible mechanisms exist for missing protein expression levels. One is missing completely 27 

at random (MCAR), which involves the accumulation of multiple minor stochastic errors. The other is a 28 

non-random missing mechanism due to measurement limitations of LC-MS/MS (missing not at random; 29 

MNAR). In actual proteomics data, MCAR and MNAR are thought to be combined to cause missingness. In 30 

this study, we reproduced these missing mechanisms using a model based on that proposed by Lazar et al. 31 

(2016) and applied the three widely used missing value methods: k-nearest neighbor (kNN), singular value 32 

decomposition (SVD), and nonlinear iterative partial least squares (Nipals) to reproduce the noise introduced by 33 

missing value imputation. We tested the performance of RoDiCE for several cases of missing data using the 34 
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overall missing rate α�%) and percentage of MNARs β(%) as parameters. The detailed simulation model is 1 

described in Supplementary Data. 2 

3 Results 3 

3.1 Benchmarking RoDiCE with simulation dataset 4 

3.1.1 Type I error control 5 

First, to confirm whether RoDiCE could correctly derive the �-value, we performed a test on two groups, with 6 

no differences in co-expression structure without outliers, and confirmed the null rejection rate. We performed 7 

100 tests with the proposed method and calculated the null rejection rate at the 1%, 5%, and 10% levels of 8 

significance. The same simulation was repeated ten times to calculate the standard deviations. The results show 9 

that the proposed method can control type I errors (Table 1).  10 

Table 1. Type I error controls of the proposed method 11 

  
p = 3 p = 5 p = 10 p = 20 p = 30 

mean SD mean SD mean SD mean SD mean SD 

1% 0.8 0.79 1.0 0.82 0.7 0.95 1.3 1.34 1.3 0.95 

5% 5.0 2.62 4.0 1.83 4.5 2.37 4.9 2.18 5.9 1.60 

10% 10.5 4.55 8.9 2.92 9.2 2.53 8.9 3.00 10.8 2.30 

 12 

3.1.2 Robustness to outliers in bivariate case 13 

We then simulated a case in which the co-expressed structure between the two groups differed and outliers 14 

were included. We examined the sensitivity of the method to identify a broken co-expressed structure in tumor 15 

tissue relative to normal tissue. The results for the bivariate case are presented in Figure 3. 16 

To demonstrate the advantages of the proposed method, we examined the sensitivity of increasing the 17 

percentage of outliers in 2% increments from 0% to 20% and compared it further with DiffCorr and GSCA, a 18 

two-group co-expression test method based on Pearson's linear correlation (Figure 3). For outliers, the 19 

proposed method showed robust co-expression test results, with an accuracy of more than 85% up to a 20 

percentage of outliers of approximately 15%. Conversely, the sensitivity of the method based on linear 21 

correlation begins declining from the level of 2% outliers, and for data containing 15% outliers, the sensitivity 22 

drops to ~ 30%. In contrast, there was no significant difference in specificity (Supplementary Data Figure 23 

S2). We also examined the relationship between sample size and sensitivity. RoDiCE showed the highest 24 

sensitivity (Supplementary Data Figure S4). 25 

3.1.3 Robustness to outliers in multivariate case 26 

Next, we examined the multivariate case (p ≥ 3) by determining the sensitivity of RoDiCE to co-expression 27 

changes when the co-expression structure was altered by one for different dimensions and percentages of 28 

outliers. The number of dimensions was set to p = 3, 6, 10, 20, and 30, and the percentage of outliers was set to 29 
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0%, 5%, and 10%. The number of samples was set to � � 100. GSCA (Choi and Kendziorski, 2009) and 1 

GSNCA (Rahmatallah, et al., 2014) were chosen for comparison. 2 

To understand the characteristics of each method, we first examined the sensitivity of simultaneous DC 3 

without outliers, i.e., noise-free case (Top panels in Figure 4). GSCA tends to capture the local structure as it 4 

considers the sum of the DC in each pair of variables. In contrast, RoDiCE tends to capture the broader 5 

structure of DCs as it captures the differences in joint distribution, which is also true for GSNCA, which 6 

captures the differences by eigenvectors of covariances. 7 

Next, we investigated the robustness to outliers (From second to bottom panels in Figure 4). Considering that 8 

the copula converts protein expression into rank space, it is negligibly affected by outliers. Therefore, there was 9 

no significant difference between the case of 0% outliers and the cases of 5% and 10% outliers in any number 10 

of dimensions. In contrast, the other methods showed an overall lower sensitivity. In particular, GSCA, which 11 

was sensitive to changes in the local co-expression structure, was rarely captured by the outliers compared to 12 

the noise-free case. 13 

3.1.4 Robustness to noise generated by missing value imputation 14 

In addition, we show the performance of the proposed method to the noise generated during the imputation of 15 

missing values. The sensitivity and specificity are shown in Figure 5 (panels in the top two rows) for different 16 

combinations of (T, U). For sensitivity, GSCA was superior in all dimensions, followed by RoDiCE. In contrast, 17 

for specificity, RoDiCE and GSNCA were superior and GSCA had the lowest specificity results. Based on 18 

these observations, we evaluated the balanced performance in terms of both sensitivity and specificity, with a 19 

likelihood-like index, L, as follows: 20 

V W�  1 - ?�EX�Y�X�@Z
?E�?�@�[�@Z #�9�  

and compared the DC methods (Figure 5). First, it can be seen that RoDiCE has generally smaller variation in 21 

V than the other methods for different missing patterns in terms of different combinations of (T, U) over the 22 

missing imputation methods and dimensions. This implies that the proposed method does not relies heavily on 23 

the DCs specifically produced by the missing rate and missing value mechanisms, suggesting that it may be 24 

able to maintain stable performance for different and various data sets. GSNCA also seems to have a similar 25 

performance after RoDiCE, however, the variation is relatively large and the actual values of sensitivity and 26 

specificity are lower than those of RoDiCE, in most cases (The panels in the top two rows of Figure 5). 27 

GSCA showed a tendency for V to be greater than 1 compared to the others, resulting in a high false negative 28 

rate.  29 

In the comparison among the missing value imputation methods, Nipals and SVD, based on principal 30 

component analysis, which is a missing value imputation method considering the covariance structure, showed 31 

better overall performance than kNN in terms of sensitivity, specificity, and Vs.  32 

3.2 Computational performance 33 

Finally, we also examined the computational speed, comparing it with the R package TwoCop, which 34 

implements the Monte Carlo-based method (Rémillard and Scaillet, 2009) used for the two-group comparison 35 

of copulas (Table 2). The proposed method is ~70 times faster than TwoCop for two variables and more than 36 
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5000 times faster for 30 variables, while having the same accuracy as TwoCop (Supplementary Data Figure 1 

S5), and is sufficiently efficient as a copula-based two-group comparison test method (Table 2). In contrast, the 2 

estimation of the copula function required more computational time than the linear correlation coefficient-based 3 

method due to the computational complexity of estimating the copula function.  4 

Table 2. Computation time for ten replicates 5 

  p = 2 p = 3 p = 5 p = 10 p = 20 p = 30 

DiffCorr 0.001 * * * * * 

GSCA 0.152 0.096 0.096 0.096 0.096 0.096 

GSNCA * 0.841 1.049 1.496 2.405 5.584 

RoDiCE 0.373 0.457 0.499 0.605 0.771 0.986 

TwoCop 25.301 51.482 125.753 437.747 1674.990 5101.482 

 6 

3.2 Application to cancer complexome analysis 7 

To provide a real-world example of the applications for RoDICE, here, we assess clear renal cell carcinoma 8 

(ccRCC) data published by CPTAC/TCGA (Clark et al., 2019) with RoDiCE. The data are available from the 9 

CPTAC data portal (https://cptac-data-portal.georgetown.edu) in the CPTAC Clear Cell Renal Cell Carcinoma 10 

discovery study. The data labeled "CPTAC_CompRef_CCRCC_Proteome_CDAP_Protein_Report.r1" were 11 

used. In the following analysis, only protein expression data that overlaps with protein groups in human protein 12 

complexes in CORUM and in CPTAC were used. Missing values were completed based on principal 13 

component analysis, and the missing values were completed by ten principal components using the pca function 14 

in pcaMethods. 15 

For the complete data, RoDiCE was applied to the normal and cancer groups for each protein complex. FDR 16 

was calculated by correcting the p-value for each complex using the Benjamini–Hochberg method.  17 

3.2.1 Anomalous complexes detected by pairwise comparisons 18 

We identified anomalous protein complexes in protein expression data from 110 tumor and 84 normal 19 

samples; out of 3,364 protein complexes in CORUM, 1,244 (7,937 out of 57,980 protein pairs) contained at 20 

least one co-expression difference between subunits with FDR ≤ 5% (Supplementary Data, Table S1). 21 

DiffCorr, which showed the second-best performance in numerical experiments, identified differential 22 

co-expression in 11,699 pairs, 3278 of which were common to RoDiCE (Supplementary Data Fig. S6). 23 

Although the number of differential co-expression identified by RoDiCE was conservative, it is a reasonable 24 

result considering RoDiCE is robust in terms of sensitivity and specificity to noise due to outliers and missing 25 

value imputations. 26 

The proposed method identified several protein complexes containing driver genes on regulatory signaling 27 

pathways in ccRCC (Figure 6a) (Li et al., 2019). The identified pathways included known regulatory pathways 28 

important for cancer establishment and progression, starting with chromosome 3p loss, regulation of the cellular 29 

oxygen environment (VHL), chromatin remodeling, and disruption of DNA methylation mechanisms (PBRM1, 30 

BAP1). They also included abnormalities in regulatory signals involved in cancer progression (AKT1). 31 

Moreover, several identified complexes included key proteins, for example, MET, HGF, and FGFR, which 32 
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could be directly inhibited by targeted drugs, such as Cabozantinib and Lenvatinib. Considering that a previous 1 

study reported that sensitivity to knockdown several genes was well associated with expression levels of protein 2 

complexes (Nusinow et al., 2020), co-expression information on protein complexes containing druggable genes 3 

might be useful for optimizing drug selection.  4 

A close examination of the above-identified protein complexes allows us to partially understand how the 5 

dysregulation of protein was a co-expression abnormality between VHL and TBP1. The upregulation of TBP1 6 

is known to induce dysregulation of downstream HIF1A molecules in a VHL-dependent manner (Corn et al., 7 

2003). In fact, the protein expression of TBP1 increased in the tumor group. We also examined the PBAF 8 

complex containing the driver gene PBRM1, which is thought to occur following VHL abnormalities. Along 9 

with a decrease in PBRM1 protein expression, there was a loss of tumor group-specific co-expression structure 10 

among many subunits involved with PBRM1 levels. 11 

 12 

3.2.2 Anomalous complexes detected by groupwise 13 

To identify abnormal cases in the complete co-expression structure, we applied RoDiCE to the joint 14 

distribution of inter-subunit co-expression with � F 2. First, 394 of the CORUM-registered complexes showed 15 

complete co-expression structures in the normal group (p-value � 5% for each pair of subunits by pairwise 16 

Spearman correlation test). The largest complex was the respiratory chain complex I (holoenzyme) with 41 17 

subunits (� � 41), followed by the 28S ribosomal subunit (� =30), which was identified as a complex with a 18 

complete co-expression structure (Supplementary Data Table S2). Most complexes consisted of three to four 19 

subunits. 20 

Of these, 136 complexes with FDR� 5% were identified by RoDiCE as having abnormal co-expression 21 

structures (Supplementary Data, Table S2, Figure. S7-S9). The large complexes (� ; 10) with differential 22 

co-expression included respiratory chain complex I, 28S ribosomal subunit, and CCC-Wash. Among the 23 

medium-sized protein complexes (5 � � ] 10) were cytochrome c oxidase, mitochondrial proteins, the 24 

conserved oligomeric Golgi complex (COG), and TNF-α/NF-κB signaling complex. The smaller protein 25 

complexes (3 � � ] 5) were the DNA repair complex NEIL1-PNK-Pol(β)-LigIII(α)-XRCC1, SNX complex, 26 

SNARE complex, and PDGFRA-PLC-γ-1-PI3K SHP-2 complex. 27 

Some complexes have been reported as cancer-specific abnormalities, including those associated with renal 28 

cancer. For example, ribosome complexes have a low correlation with mRNA and protein by proteogenomic 29 

analysis, suggesting a protein level specific regulatory mechanism that may be an important therapeutic target 30 

in renal cancer, although the detailed mechanism remains unclear (Cleark et al., 2019, Devlin et al., 2016). 31 

Respiratory chain complex I is a tumor suppressor (Lemarie et al., 2011), and numerous cancer-specific 32 

mutations in its subunits have been reported. In this study, we found that the co-expression structure between 33 

many subunits was highly abnormal. At the same time, the protein expression of mitochondrial subunits was 34 

also down-regulated (Supplementary Data Figure S9). Mitochondrial subunits are known to undergo copy 35 

number alterations and reduced mRNA expression in many cancer types, and our analysis is consistent with 36 

these findings at the protein level (Reznik, et al., 2017). 37 

4 Discussion 38 
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In this study, we developed an algorithm of robust identification for protein complex aberrations based on 1 

differential co-expression structure using protein abundance. Protein expression data measured through 2 

LC-MS/MS contains a non-negligible percentage of outliers due to technical limitations and variation due to 3 

biological reasons such as post-translational modifications and missing values. This causes over- (or under-) 4 

estimation of co-expression. However, the copula-based DC approach is a powerful statistical framework that 5 

serves as a solution to this problem.  6 

To the best of our knowledge, statistical models that consider noise introduced by post-translational 7 

modifications and missing values have not been sufficiently studied in proteome analysis. In particular, in the 8 

presence of missing values, it is largely unknown how much distortion of the original co-expression structure is 9 

caused by missing value imputation, and how it may affect functional protein network analysis and differential 10 

co-expression. Further comprehensive systematic investigations will be indispensable for the establishment of 11 

large-scale proteome analysis methods in the future. 12 

In addition to noise robustness of the proposed method, another key property of the copula that is important 13 

for capturing the co-expression structure, is self-equitability (Chang et al., 2016; Ding et al., 2017). Copulas can 14 

capture nonlinear structures between variables, and self-equitability allows for evaluation of the degree of 15 

dependency equally between variables in linear and nonlinear relations. Therefore, copula allows us to compare 16 

a much broader range of co-expressed structures, compared to conventional linear and nonlinear correlations. 17 

The copula-based co-expression analysis approach is a powerful modeling method for data sets with expected 18 

noise, although there remain challenges in high-dimensional estimation. In particular, it could be useful for 19 

modeling proteome-wide protein expression patterns. The proposed approach is useful for understanding 20 

abnormalities in the protein complexes of cancer. However, studies focusing on protein complexes in 21 

large-scale cancer proteomics are in their infancy. We believe that this approach will, therefore, provide 22 

valuable insights into the molecular mechanisms of cancer and the search for new drug targets. 23 

  24 
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Fig 1. Example of outlier effects on co-expression. Difference in Pearson’s correlation before and after 1 

removing outlier samples; the left panel shows a histogram of the difference in correlation differences. The 2 

right panel shows a scatter plot of the original correlation against one without outlier samples.  3 

Fig 2. Overview of RoDiCE. a) Objective of analysis via RoDiCE. The proposed method aims to identify 4 

abnormal protein complexes by comparing two abnormal groups. An abnormal complex is one where the 5 

co-expressed structure is different in at least two subunits. b) Protein co-expression and outliers. The protein 6 

expression levels measured through LC/MS/MS contain some outliers due to the addition of noise from several 7 

sources. These can cause over- (or under-) estimation in the co-expression structure. c) Copula decomposition. 8 

The RoDiCE model decomposes the observed joint distribution of protein expression into a marginal 9 

distribution representing the behavior of each protein and an empirical copula function representing the latent 10 

co-expression structures between proteins. This allows for the extraction of potential co-expressed structures 11 

and for their robust comparison against outliers. The figure shows an example where the co-expressed structure 12 

estimated by the copula is the same for two apparently different joint distributions of protein expression. d) 13 

Copula robustness. A copula is a function that expresses a dependency on a rank-transformed space of data 14 

scales. One advantage of transforming the original scale into a space of rank scale is that it is robust to outliers. 15 

The example in the figure compares Pearson's linear correlations with Pearson's linear correlations in the space 16 

converted to a rank scale by a copula function (Spearman's linear correlations). Pearson's linear correlation 17 

underestimates from 0.74 to 0.44 due to outliers, whereas the linear correlation on the rank scale has a relatively 18 

small effect (0.72 to 0.62). e) RoDiCE is a copula-based two-sample test. RoDiCE is an efficient method for 19 

testing differences in copula functions between two groups. Rather than a summary measure, such as 20 

correlation coefficients, we compare copula functions expressing overall dependence between groups. This 21 

allows us to robustly identify differences in complex co-expression structures between two groups of protein 22 

complexes to outliers 23 

Fig 3. Sensitivities and ratio of outliers (bivariate case). The percentage of outliers is taken on the horizontal 24 

axis, and the sensitivity of the co-expression differences by each method (5% level of significance) is shown on 25 

the vertical axis. 26 

 27 

Fig 4. Sensitivities and ratio of outliers (multivariate case). The percentage of outliers is taken on the 28 

horizontal axis, and the sensitivity of the co-expression differences by each method (5% level of significance) is 29 

shown on the vertical axis. 30 

Fig 5. Comparing performance of DC methods for missing pattern and imputation methods. The boxplots show 31 

the distribution of sensitivity (%) (upper panel), specificity (%) (middle panel), and L (lower panel) derived by 32 

each DC method after imputing missing data generated by a combination of control parameters (α,β), for each 33 

missing value imputation method (knn for kNN, nipals for Nipals, and SVD for svdImpute). In the lower panel, 34 

L=0 (dashed line) indicates that the false positives and false negatives are controlled to the same extent, while L 35 

> 0 indicates that the false positives tend to be high. L > 0 indicates that the false positive rate tends to be high. 36 

Conversely, L < 0 indicates that the false negative rate tends to be high.37 
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