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Abstract 9 

Motivation: Nutrient and contaminant behavior in the subsurface are governed by multiple 10 

coupled hydrobiogeochemical processes which occur across different temporal and spatial scales. 11 

Accurate description of macroscopic system behavior requires accounting for the effects of 12 

microscopic and especially microbial processes. Microbial processes mediate precipitation and 13 

dissolution and change aqueous geochemistry, all of which impacts macroscopic system behavior. 14 

As ‘omics data describing microbial processes is increasingly affordable and available, novel 15 

methods for using this data quickly and effectively for improved ecosystem models are needed. 16 

Results: We propose a workflow (‘Omics to Reactive Transport – ORT) for utilizing 17 

metagenomic and environmental data to describe the effect of microbiological processes in 18 

macroscopic reactive transport models. This workflow utilizes and couples two open-source 19 

software packages: KBase (a software platform for systems biology) and PFLOTRAN (a reactive 20 

transport modeling code). We describe the architecture of ORT and demonstrate an 21 

implementation using metagenomic and geochemical data from a river system.  Our demonstration 22 
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uses microbiological drivers of nitrification and denitrification to predict nitrogen cycling patterns 23 

which agree with those provided with generalized stoichiometries. While our example uses data 24 

from a single measurement, our workflow can be applied to spatiotemporal metagenomic datasets 25 

to allow for iterative coupling between KBASE and PFLOTRAN. 26 

Availability and Implementation: Interactive models available at 27 

https://pflotranmodeling.paf.subsurfaceinsights.com/pflotran-simple-model/. Microbiological data 28 

available at NCBI via BioProject ID PRJNA576070. ORT Python code available at 29 

https://github.com/subsurfaceinsights/ort-kbase-to-pflotran. KBase narrative available at 30 

https://narrative.kbase.us/narrative/71260 or static narrative (no login required) at 31 

https://kbase.us/n/71260/258 32 

Contact: rebecca.rubinstein@subsurfaceinsights.com or roelof.versteeg@subsurfaceinsights.com   33 

Supplementary information: Supplementary data are available online. 34 

 35 

1 Introduction  36 

The critical zone (CZ) – the area between the top of the forest canopy and the bottom of 37 

the groundwater table is essential in sustaining life (Guo and Lin, 2016). Being able to understand 38 

and predict critical zone function is essential for both scientific and operational purposes. This 39 

understanding and prediction requires the accurate representation of key hydrobiogeochemical 40 

ecosystem processes which occur and interact in the critical zone. These ecosystem processes 41 

operate at different scales and have different drivers, but at the same time are tightly 42 

interconnected. For instance, while hydrological processes control the movement of water at 43 

macroscopic scales and are driven by groundwater table gradients, precipitation, and 44 

evapotranspiration whereas microbiological processes (Anantharaman et al., 2016; Long et al., 45 

2016) occur at the microbe scale and are driven by microbial populations, soil properties, aqueous 46 
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geochemistry, and temperature. However, processes at these two scales influence one another in 47 

many ways. 48 

One well-established approach to obtaining an understanding of critical zone behavior is 49 

through the use of reactive transport models (RTM) which can simulate coupled chemistry, flow, 50 

and transport in hydrobiogeochemical systems. There are a variety of reactive transport codes (see 51 

(C. I. Steefel et al., 2015) for a review). These models are generally continuum scale models 52 

which represent subsurface properties on grids, with grid volumes on the order of cubic meters. As 53 

the earth is a porous media with grains and pores, such continuum scale models obviously do not 54 

capture pore scale properties and dynamics. One fundamental challenge in numerical modeling is 55 

thus how to link and couple processes and properties which happen at different scales (Battiato et 56 

al., 2011; Chu et al., 2012, 2013; Carl I. Steefel et al., 2015).  Such linking is especially required 57 

between macroscopic system behavior and microbial processes which change aqueous 58 

geochemistry and mediate precipitation and dissolution.  59 

With continued decrease in ‘omics data analysis costs, one promising approach for this 60 

linking is through the incorporation of site-specific microbiological data into RTM to represent 61 

microbe-catalyzed biogeochemical more accurately than using generalized stoichiometries. The 62 

feasibility of using the results of microbiological data analysis to parameterize RTM has been 63 

shown previously. For instance, Scheibe et al. demonstrated the linking of genome scale models 64 

with a reactive transport code (in their case, HYDROGEOCHEM) to improve incorporation of 65 

microbiological processes on  in situ uranium bioremediation (Scheibe et al., 2009). Specifically, 66 

they used a genome scale model of Geobacter sulfurreducens to populate a lookup table spanning 67 

reasonable expected ranges for all combinations of three key system parameters. This was then 68 

used to predict the effects of varying concentrations of three key growth factors (acetate, Fe(III), 69 

and ammonium) on reduction of uranium (VI) at a systems level. More recently, Song et al. 70 
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developed an enzyme-based approach for simulating microbial reaction kinetics which captured 71 

the overall behavior of a consortium rather than rely on individual taxa within the community and 72 

coupled it with reactive transport simulations using PFLOTRAN’s Reaction Sandbox (Song and 73 

Liu, 2015; Song et al., 2017; Hammond et al., 2017). This approach is based on a mechanistic 74 

understanding of microbial processes and thus can more accurately predict microbial response to 75 

perturbations. However, this approach substantial experimental data, such as enzyme 76 

concentrations and kinetics data, as well as advanced microbiological knowledge to implement. 77 

These previous efforts have demonstrated the value and feasibility of accurately 78 

representing microbial processes in RTM. This in turn opens up the potential to integrate 79 

microbiological, geochemical, and physical subsurface properties and processes to predict 80 

ecosystem behavior and response (Fig. 1).  81 

 82 

Fig. 1 – Accurately capturing the interplay between microbiology, geochemistry, and physical 83 

subsurface properties and processes is critical to understanding and predicting ecosystem 84 

processes.   85 
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However, each of the approaches described above requires substantial manual effort to 86 

implement for a single site, which makes them challenging to scale. The challenge of scaling these 87 

approaches limits the ability to rapidly develop models obtain the associated understanding for 88 

many sites. An alternative approach (proposed and demonstrated here) is to an approach which 89 

allows for automation. 90 

Specifically, in our workflow we use KBase (a cloud-based software platform for systems 91 

biology (Arkin et al., 2018)), to automatically generate draft metabolic models from annotated 92 

metagenome assembled genomes (MAGs) extracted from environmental samples. These 93 

metabolic models can be used (still in KBase) to perform flux balance analysis (FBA) on different 94 

media compositions. These media compositions are informed by metabolomics and other site-95 

specific chemistry data. The output of the FBA can be used in reactive transport models (such as 96 

the reactive transport model PFLOTRAN (Mills et al., 2009; Hammond and Lichtner, 2010; 97 

Gardner et al., 2015)), which we use in this work. PFLOTRAN is an open source, massively 98 

parallel reactive transport code which supports multi-phase (e.g. aqueous, gaseous), multi-99 

component (multiple chemical species), and multi-scale (e.g. pore or macroscale) simulation of 100 

contaminant transport in porous media, as well as includes a basic implementation of microbial 101 

reactions modeled by Monod kinetics. One major benefit of PFLOTRAN is that users can 102 

implement custom reactions or kinetics through the Reaction Sandbox (Hammond, 2017). Our 103 

workflow, called ‘Omics to Reactive Transport (ORT) (Fig. 2), thus captures both microbial 104 

metabolisms based on environmental samples (using KBase) and macro-scale hydrologic and 105 

geochemical processes (using PFLOTRAN). In the remainder of this paper we present the concept 106 

and implementation of this workflow. 107 
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 108 

Fig. 2 - Omics to Reactive Transport (ORT) workflow couples microbe-scale and macroscale 109 

processes using the outputs of KBase and PFLOTRAN as inputs for each other. 110 

 111 

In addition to the scientific value of this workflow, we want to highlight three operational 112 

attributes of interest. First, this workflow can be mostly automated, offering the potential of 113 

rapidly generating reactive transport models from microbiological data (detailed in Section 3) with 114 

a minimum of manual labor. Second, the resulting models can easily be shared and made 115 

accessible to other groups. For instance, we have provided two of the models we generated 116 

through a user-friendly web interface which allows end-users to interact with these models. Third, 117 

while in this paper we do not include results for this, our workflow lends itself well to an iterative 118 

approach. Specifically, it is well known that microbial processes will result in changes in 119 

geochemistry, which in turn will influence the microbial processes. In addition to this, 120 

macroscopically driven changes in saturation, temperature, and chemistry (e.g., resulting from 121 

stage-driven surface water/ground water interaction) will also influence microbial processes. The 122 

approach described here can be executed in an iterative manner to capture this two-way coupling 123 

between microscopic and macroscopic processes. 124 

2 System & Methods 125 

2.1 Workflow Concept 126 
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The ORT workflow was designed with automation in mind. Specifically, it is designed in a 127 

modular manner with a well-defined start and end points and inputs and outputs, with each 128 

component being fully automatable (Fig. 3). The inputs to this workflow are annotated genomes, 129 

environmental chemistry, and a PFLOTRAN model template which incorporates physical site 130 

data. This template (which would be customized to the specific site) would be something like “0D 131 

batch reactor” or “2D model of unsaturated soil” (where “nD” indicates the number of spatial 132 

dimensions accounted for in the model grid).  133 

In this workflow we import annotated genomes (Shaffer et al., 2020) and site chemistry 134 

(e.g., available carbon sources, electron acceptors, and micronutrients based on metabolome and 135 

any other chemical analysis at the site, synthesized into a KBase media recipe) into KBase, then 136 

use KBase apps to generate the overall reactions. Next, these reactions, as well as the site 137 

chemistry, physical site data, and model template are used to build the actual PFLOTRAN model. 138 

This model can then be used to simulate macroscopic system behavior. 139 

 In the iterative implementation, the PFLOTRAN model simulates changes in physical and 140 

chemical conditions in space and time. We can then use the simulated chemistry as a new media 141 

composition to be used by the KBase part of the workflow and repeat the process to generate and 142 

retrieve new resulting overall reactions and substitute them into the PFLOTRAN input file.  143 
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 144 

 145 

2.2 Workflow Implementation 146 

The ORT workflow consists of Python scripts, KBase narratives, and PFLTORAN models. 147 

In our implementation of ORT, KBase apps import genomes and chemical data into KBase and 148 

use these as inputs for KBase metabolic modeling apps (process described in detail in Sections 2.4 149 

and 2.5). After the completion of the KBase part of the workflow, the KBase API (application 150 

programming interface) programmatically exports the KBase-predicted exchange fluxes from 151 

KBase. These fluxes are translated by our Python script into an overall reaction string that 152 

describes chemical uptake and secretion from each modeled organism, written in PFLOTRAN-153 

Fig. 3 - Flowchart of the ORT workflow where orange boxes are workflow inputs based on site 

characterization which are pre-processed before use, green boxes are metabolic modeling steps carried 

out in KBase, and blue show the resulting RTM. The horizontally-aligned boxes and arrows in the 

KBase workflow represent robust curation steps (discussed in Section 4), and the dashed arrow 

indicates the iteration path wherein the PFLOTRAN-simulated chemistry is used as a new media 

condition in KBase. 
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compatible naming conventions. The flux values are used as the stoichiometric coefficients for the 154 

corresponding chemicals in the overall reaction used in PFLOTRAN, with positive fluxes 155 

indicating reactants and negative fluxes indicating products. The summation of exchange fluxes is 156 

not a chemical reaction in the traditional sense, but represents the chemical species removed from 157 

and added to the system as a result of the microbial metabolism. Thus, this “pseudo-reaction” 158 

provides the information needed by PFLOTRAN to simulate the resulting changes in chemical 159 

concentrations. 160 

The ORT Python script outputs a *.txt file with the reaction strings and yield terms for use 161 

in the MICROBIAL_REACTION card in PFLOTRAN as well as a set of *.dat files which contain 162 

compound names and details which need to be added to the PFLOTRAN geochemical database 163 

(formatted for compatibility with the database). This step can either be done programmatically or 164 

manually by substituting the content of these text files into a PFLOTRAN model input file (known 165 

as an infile). This script bridges the disconnect between KBase and PFLOTRAN illustrated in Fig. 166 

2. 167 

2.3 Test Case 168 

2.3.1 System Description 169 

To evaluate the performance of our workflow, we used environmental samples from a 170 

hyporheic zone in the Columbia River. In these zones, biological nitrogen cycling is known to 171 

occur (Triska et al., 1993; Zheng et al., 2016). Biological nitrification and denitrification is a 172 

classic, well-understood, and extensively studied system. We can calculate and compare models 173 

which use traditional (textbook) stoichiometries for nitrification and denitrification to the model 174 

generated from our workflow. In the remainder of this paper, we refer to these two models as the 175 

“literature based model” and “genome derived model”.  176 
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Nitrification is traditionally split into two sub-processes, ammonium oxidation (NH4 → 177 

NO2) and nitrite oxidation (NO2 → NO3), while denitrification is often represented as a complete 178 

process (NO3 → N2), though in reality it is several sequential reactions. Within KBase, we could 179 

implement separate models for each step for which genomes are available, but for comparison to 180 

the traditional model we used a single model for complete denitrification in this test case. The 181 

overall reactions used for the nitrification step were based on experimentally-determined 182 

stoichiometries (Liu and Wang, 2012) determined by fitting data collected from bench-scale 183 

reactors to traditional half-cell reactions (Rittmann and McCarty, 2012), as given by the following 184 

reactions: 185 

1.0225 NH4
+ + 1.3875 O2 (aq) + 0.09 CO2 (aq) + 0.0225 HCO3

−
186 

→ 2H+ + NO2
− + 0.0225 Biomass 187 

 188 

1 NO2
− + 0.0073 NH4

+ + 0.4635 O2 (aq) + 0.0292 CO2 (aq) + 0.0073 HCO3
−

189 

→ NO3
− + 0.0073 Biomass 190 

The complete denitrification process stoichiometry was derived from half-cell reactions 191 

(Rittmann and McCarty, 2012), scaled to one unit nitrate utilization for comparability with the first 192 

two reactions: 193 

1 NO3
− + H+ + 0.869 CH3COO −194 

→ 0.458 N2 (aq) + 0.444 CO2(aq) + 0.869 HCO3
− + 0.08484 Biomass 195 

In both cases, the chemical species represented are limited to classical compositions, which 196 

in some cases may serve as analogs for a range of compounds. These stoichiometries are not 197 

associated with any specific microbes or metabolic pathways, but rather represent the exchange 198 

fluxes observed. While this approach is very effective for process design, it does not offer much 199 

insight into the microbiology of a system, and may obscure finer-scale dynamics – such as less 200 
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obvious resources that may become limiting or change how the microbes process available 201 

macronutrients, particularly in systems with complex carbon sources. 202 

 The rates determined through batch kinetics tests (Liu and Wang, 2012) were used for 203 

ammonium oxidation and nitrite oxidation and the denitrification rate was based on rates reported 204 

in the literature (Raboni et al., 2014). The same rates (shown in Table 1) were used for both the 205 

literature-based and genome-based models (described in Section 2.5 - 2.66) in order to directly 206 

compare the effects of the different stoichiometries. In future enhancements, we anticipate that 207 

reaction rates could be used as tunable parameters to fit these models to system-specific 208 

experimental data. 209 

Table 1 – Baseline reaction rates used in nitrogen-cycling models 210 

 211 

 212 

 213 

 214 

 215 

 216 

2.3.2 Leveraging Existing Multiomics Data 217 

This study made use of multiomics data from previously published work. Sediment was 218 

collected and DNA extracted as previously described (Graham et al., 2017). To identify the 219 

metabolites available to microorganisms in these river sediments, we performed 1H Nuclear 220 

Magnetic Resonance (NMR) spectroscopy on 17 paired sediment pore water samples which also 221 

had microbial DA extracted, as described previously (Tfaily et al., 2019). Briefly, sediment 222 

samples were mixed with water in a 1:1 ratio and then diluted by 10% (vol/vol) with 5 mM 2,2-223 

dimethyl-2-silapentane-5-sulfonate-d6 as an internal standard. The 1D 1H NMR spectra of all 224 

samples were processed, assigned, and analyzed using Chenomx NMR Suite 8.3 with 225 

quantification based on spectral intensities relative to the internal standard as described. To obtain 226 

a representative bulk summary of the metabolite environment in these sediments, the 227 

Process Rate (mol/L·s) 

  Ammonium Oxidation 1.0×10-7 

  Nitrite Oxidation 8.51×10-8 

  Nitrate Reduction 2.34×10-8 
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concentration of 31 of the NMR identified metabolites was averaged across the 17 sediment 228 

samples, and this data was used as the chemical data input in our ORT workflow (data available in 229 

Supplementary Table S1).  230 

Purified genomic DNA was sent to the Joint Genome Institute (JGI, n=33) under 231 

JGI/EMSL proposal 1781 and to the Genomics Shared Resource facility at The Ohio State 232 

University (OSU, n=10), producing 43 metagenomes from 34 sediment samples with an average 233 

sequencing depth of 3.84 (JGI) 25 Gbp (OSU) per sample. JGI and OSU sequencing was 234 

performed as previously described in Graham et al (Graham et al., 2018) and Borton et al (Borton 235 

et al., 2018) respectively. Raw reads were processed, assembled, and binned as outlined in 236 

previous publications (Shaffer et al., 2020) or via the Wrighton Lab GitHub Page 237 

(https://github.com/TheWrightonLab). The genomes are available on NCBI via BioProject ID 238 

PRJNA576070.  239 

From the sediments, we obtained metagenome assembled genomes (MAGs) from which 240 

we selected four genomes that represented key parts of the nitrogen cycle. For each stage of the 241 

cycle, the most complete genomes capable of filling those roles were selected. To represent 242 

nitrification, we chose the most complete genome representatives of the ammonium oxidizing 243 

archaea classified by GTDB-Tk (version 1.3.0, as of 1-21-21) as a member of the family 244 

Nitrososphaeraceae within the genus TA-21 (previously within the Phylum Thaumarchaeota) and 245 

nitrite oxidizing bacterial member of the Nitrospiraceae for nitrification. Given that the expression 246 

and activity of nitrite reductase encoded in Nitrososphaeraceae (previously Thaumarchaeota) is 247 

poorly understood at this time (Kuypers et al., 2018), we did not incorporate the production of 248 

nitric oxide by Nitrososphaeraceae, and focused only on nitrite outputs from ammonification. To 249 

represent denitrification, we selected two Gammaproteobacterial MAGs, both classified within the 250 

family Steroidobacteraceae. Note that neither of these genomes encoded a gene to produce N2 gas, 251 
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but the reaction to convert nitrous oxide to nitrogen gas was added to the metabolic models during 252 

gapfilling (see Section 2.5). We selected only four genomes to maintain the simplicity of this 253 

proof of concept, but the approach could incorporate as many as are needed to capture system 254 

behavior. Each nitrogen-cycling genome was annotated using DRAM (Distilled and Refined 255 

Annotation of Metabolism (Shaffer et al., 2020)) with default parameters. The raw annotations 256 

containing an inventory of all database annotations for every gene from each input genome are 257 

included in the online Supplementary Materials. These genomes and their annotations were 258 

uploaded to KBase (Section 2.5) and were the basis for the KBase-derived model (Section 2.6). 259 

 260 

2.4 Pre-Processing 261 

Prior to executing the workflow, we need to gather and preprocess data and make several 262 

decisions such as selecting a model template. In this section, we describe the data preprocessing 263 

steps in generic terms, as the same steps will be required for any system. To begin our workflow, 264 

user inputs were organized and prepared, which consisted of three broad steps: 265 

(1) Qualitative assessment – to balance model complexity and utility, the system definition 266 

phase began with a qualitative description of the system in terms of model type (batch, 267 

chemostat, continuously stirred tank reactor, etc.), important processes (such as nitrification 268 

or sulfur reduction, depending on the system), and parameters of interest (pH, specific 269 

chemical species, etc.) that can guide model development. This step includes evaluating if 270 

there is any “missing” data, which might render the model inaccurate or impossible, and 271 

would need to be estimated in order to produce a viable system (for example, concentrations 272 

of biologically necessary compounds that were not measured). These are identified through a 273 

combination of subject matter knowledge and comparison with KBase default media recipes. 274 

Note that this does not entail delineation of every process and parameter involved in the 275 
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system, but rather selection of those important to the specific research or application. The 276 

goal of this step is to develop a conceptual model of the system of interest, which may be 277 

augmented and refined as needed to accommodate new data. Because many of these models 278 

will be similar (e.g. 0D batch models), we can build a library of model templates which can 279 

be readily reused. 280 

(2) Data Gathering - data describing the site may be drawn from a variety of sources, including 281 

direct sampling at the site and public resources such as weather stations or national 282 

databases. Biological data could come in the form of annotated genomes or metagenomes 283 

collected from the site, or genomes for key microbes as determined using 16S rRNA gene 284 

data or literature review could be drawn from public databases. Chemical data could include 285 

traditional geochemical analysis as well as metabolomics and metaproteomics to provide a 286 

more detailed picture of the chemical profile at the site. Physical data could include 287 

temperature, soil porosity, or other parameters of that nature that would be included in the 288 

PFLOTRAN input file to produce a more site-specific model. 289 

(3) Translation to KBase and PFLOTRAN - the data produced by the various analyses above are 290 

not necessarily in formats that may be directly imported to KBase and/or PFLOTRAN. 291 

Therefore, the final step in this phase was to translate these data to forms that can be used by 292 

the relevant tools (KBase or PFLOTRAN). Aside from managing file formats (see the 293 

KBase documentation for details), one major consideration was accounting for any un-294 

measured chemical species identified in the first step of the preparation phase that needed to 295 

be added to the KBase media composition to make it biologically viable or usable by the 296 

metabolic models generated in KBase. Additions were limited to chemical species or 297 

compounds known (or reasonably expected) to be present and were added in sufficient 298 

concentration that they would not be growth-limiting. The primary check for the presence 299 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.03.02.433463doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.02.433463
http://creativecommons.org/licenses/by/4.0/


assumption was that the experimental data indicated that the microbes used were both 300 

present and involved in nitrogen cycling at that site. We did not investigate the assumption 301 

that these compounds were non-limiting, as this is outside the scope of this work.  302 

2.5 KBase Metabolic Modeling 303 

Once pre-processing was complete, we can start the ORT workflow. Genomes were uploaded to 304 

KBase as paired FASTA and GFF3 text files using the “Import GFF3/FASTA file as Genome 305 

from Staging Area” app and then annotated with RASTtk using the “Annotate Microbial Genome” 306 

app in KBase. Additional custom annotations from DRAM were uploaded as flat text files using 307 

the beta version of “Import Annotations from Staging” app. If using DRAM annotations, 308 

preprocessing may be carried out using the provided script at 309 

https://github.com/subsurfaceinsights/ort-kbase-to-pflotran. Notably, both RASTtk and DRAM are 310 

available as apps in KBase, allowing users to functionally annotate genomes without high memory 311 

computational resources. However, note that the DRAM app in KBase differs from the version 312 

used in this example narrative  (Shaffer et al., 2020) as the KBase DRAM app annotates using 313 

KOfam instead of KEGG genes and does not currently include EC reaction identifiers, so end 314 

results may differ from the included narrative. Chemical data was uploaded as flat text files using 315 

the “Import Media file (TSV/Excel) from Staging Area”. The use of pre-processed flat text files as 316 

inputs to the workflow significantly simplifies the process compared to using raw data, especially 317 

for genomes, and these can be generated automatically using scripts such as the one developed for 318 

the DRAM outputs. This first step brought all of our data in the KBase workspace in an integrated 319 

manner. 320 

After this step, we used all this data as inputs to the “Build Metabolic Model” app, and the 321 

generated models were used in conjunction with the media objects as inputs to the “Run Flux 322 

Balance Analysis” (FBA) app. Going forward, we refer to this pairing as “growing a model,” 323 
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meaning we ran the analysis to determine if biomass growth was possible under the given 324 

chemical conditions. The output from the FBA app included the reaction and exchange fluxes for 325 

each model grown on the corresponding media. 326 

 327 

2.6 PFLOTRAN Reactive Transport Modeling 328 

We used our workflow to download the FBA exchange flux values using the KBase API and 329 

translate them from KBase objects with ModelSEED (Henry et al., 2010) compound IDs to flat text 330 

files with reaction strings written using PFLOTRAN naming conventions. We then used either the 331 

KBase-derived reaction strings and biomass yield values or the literature-based stoichiometries 332 

introduced in Section 2.3 to fill in the MICROBIAL_REACTION card in our 0D model template. 333 

All parameters except the reactions and yield terms were held the same for both the literature-based 334 

model and the genome-derived model.  335 

3 Model behavior and General behaviors and trends 336 

Both models exhibited sequential ammonium and nitrite oxidation followed by nitrate 337 

reduction, ultimately producing dissolved nitrogen gas (Fig. 4). Despite using the same reaction 338 

rates, inhibition constants, and initial nutrient concentrations, the overall progress of the system is 339 

noticeably different. The genome-derived model exhausts the available ammonium within 1.5 hours 340 

of the simulation start, while the literature based model does not exhaust ammonium until a little 341 

more than 3.5 hours into the simulation. Nitrite concentration peaks earlier and at a lower level for 342 

the genome-derived model (~18 µM at approximately 1 hr) than the literature based model (~51 µM 343 

slightly before 3 hrs). Similarly, nitrate peaks at approximately 4 µM after 1.5 hrs for the genome-344 

derived model but peaks at 40 µM at the 6 hr mark for the literature based model. In the 6 hour 345 

period shown in Fig. 4, the genome derived model has exhausted ammonium, nitrite, and nitrate, 346 

while the literature based model is still processing nitrite and nitrate. This variance is expected since 347 
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we are comparing generic reactions (with generic substrate utilization and biomass production 348 

reactions) to site-specific reactions based on the most dominant taxa found at our study site. 349 

One important difference was that the microbiologically-explicit, genome-based 350 

stoichiometry provided much greater detail on the chemistry, particularly with respect to carbon 351 

catabolism (Fig. 4 and Fig S1). Specifically, the literature-based models relied entirely on either 352 

carbon dioxide (nitrification) or acetate (denitrification), however, because we provided additional 353 

carbon compounds detected from our bulk sediment metabolome, the site models used 15 to 23 354 

unique additional carbon sources, such as betaine, leucine, and choline (see Supplementary Table 355 

1). This greater detail allows us to evaluate more precisely the potential chemical drivers or 356 

limiters of a system which would be entirely overlooked with traditional representations, which 357 

presents the opportunity to probe and improve our conceptual and mechanistic understanding of 358 

these systems and individual metabolisms. 359 
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  360 

Instead of generic bacterial enzymatic reactions, we can determine which site specific bacterial – 361 

or archaeal – reactions are drivers in the system. Instead of pre-set stoichiometries, our ‘Omics to 362 

Reactive Transport workflow uses chemistry determined based on metabolomics – using these 363 

data to describe the initial chemistry rather than generic or simplified chemistry. For example, 364 

even with the same rate constants, we can see that the genome-informed model utilizes a higher 365 

Fig. 4 - Using our Omics to Reactive Transport (ORT) workflow allows us to not only tailor a model 

to a specific environmental site and system, but also provides much finer insight into the changes in 

chemistry driven by microbial processes. The top frame shows the steps captured by the literature-

based and genome-informed models respectively. The middle frame shows graphical representations 

of the two sets of reaction stoichiometries. Abbreviations used in the site-specific model frame are 

Met for Methionine, Thr for Threonine, and SAO for S-Adenosyl-4-methylthio-2-oxobutanoate, 

which are compounds predicted by KBase as an output which is not part of standard literature 

representations. The bottom frame shows the results of using each set of reactions in a 0D 

PFLOTRAN simulation of nitrogen cycling.  
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proportion of ammonium in the first step of nitrification, resulting in more rapid depletion of 366 

ammonium in the system and earlier generation of nitrite. As a result, subsequent steps begin 367 

earlier, resulting in an overall accelerated process. At the same time, both versions exhibit the 368 

expected cycling of ammonium to nitrite to nitrate and finally to nitrogen gas. Since PFLOTRAN 369 

relies on user-defined chemistry (as opposed to automatically generating reactions), this allowed 370 

us to incorporate more realistic, mechanism-driven reactions. 371 

The genome-based model also allows for greater chemical breadth. The nitrogen cycling 372 

reactions are modulated by a wider range of carbon sources. Additionally, the by-products of this 373 

carbon and nitrogen metabolism also resulted in more complex chemical outputs in some cases, 374 

such as L-Threonine or L-Methionine. These inferred reactions could be further refined by using 375 

gene expression data (e.g., metatranscriptomics or metaproteomics data) to calibrate the models 376 

(by way of reaction rates, saturation constants, etc.) to a particular set of environmental conditions. 377 

Again, this presents an opportunity to test and enhance our understanding of the metabolic 378 

processes involved. 379 

Readers can explore and interact with both of these models (without sign-in) through 380 

Subsurface Insights' web-based PFLOTRAN interface at 381 

https://pflotranmodeling.paf.subsurfaceinsights.com/pflotran-simple-model/.  For the literature-382 

based model, we have made the input concentrations of ammonium, bicarbonate, and acetate 383 

accessible to web users using sliders. For the Hanford 300 Area-specific version of the model, we 384 

have made accessible the reaction rate for each of the steps modeled. There is no limit to the 385 

number of parameters that may be exposed this way, but for the sake of a user-friendly and un-386 

cluttered demonstration, we limited our selections to three per model. We selected the parameters 387 

we did both because the effects of varying them are significant and to highlight the power and 388 

flexibility provided by this approach. 389 
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4 Discussion 390 

We demonstrated an Omics to Reactive Transport (ORT) workflow for creating site 391 

specific reactive transport models that include local chemical and biological content. The ORT 392 

workflow was applied to a well-understood system, and the results agree generally with expected 393 

behavior in a nitrogen cycling system. We interpret the differences in magnitude and timing to be 394 

due to the difference between generic, simplified reactions and metabolism-informed reactions, as 395 

KBase-derived stoichiometries made it possible to capture microbial metabolism in much greater 396 

detail than conventional approaches allow. 397 

While the model predictions are borne out by comparison to traditional models, we would 398 

need extensive new data which currently is not available to comprehensively validate our 399 

modeling results. Specifically, we would need high resolution time series data. Such data was not 400 

available in this effort, but is a component of ongoing work, and is in general becoming 401 

increasingly available as technology improves and cost per sample decreases. Given similar data 402 

types, the same workflow could be applied to build and tune a model for other sites.  403 

Much of the future work on this workflow will be focused on enhancing and expanding 404 

automation and on making it more robust in several ways. One capability which would be highly 405 

beneficial to our workflow is automated metabolic model curation. In our effort, curation was 406 

carried out manually using two different approaches: metabolism-based and media-based.  The 407 

former is labor intensive and requires substantial subject-matter expertise to carry out. The latter is 408 

more straightforward and relies on a more general system understanding, but still requires manual 409 

iteration to obtain reasonable results. Partially or fully automated model curation will eventually 410 

be needed for full automation. This is a topic of active effort by both the KBase core team and 411 

other groups, and we will leverage their efforts. Additional work will be in expanding 412 

PFLOTRAN models to include processes such as temperature mediated biological processes and 413 
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material recycling. While these are currently not part of the core PFLOTRAN capabilities, these 414 

can be implemented using the PFLOTRAN sandbox. 415 

While previous researchers have demonstrated the feasibility of coupling genome-scale 416 

metabolic models with reactive transport simulations, our work is different in some fundamental 417 

ways. First, our workflow, lends itself to automation and rapid model generation from ‘omics data. 418 

As ‘omics data becomes increasingly affordable, the ability to rapidly translate this data into 419 

information on its the implications for macroscopic system behavior will be needed, and our 420 

workflow provides a path towards that. Second, our workflow lends itself to easy incorporation of 421 

more realistic microbial reaction kinetics (e.g., based on temperature or soil conditions). Third, our 422 

workflow lends itself to iteration, which allows us to couple microscopic and macroscopic 423 

processes in either direction. Finally, our workflow provides an easy way to couple two powerful 424 

and complex software packages which typically are used by scientist in different domains, and 425 

allows these scientists a path to generate ‘omics informed reactive transport models. 426 

 427 
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