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In combinatorial biotechnology, it is crucial for screening exper-
iments to sufficiently cover the design space. In the BioCCP . j1
package, we provide functions for minimum sample size de-
termination based on the mathematical framework coined the
Coupon Collector Problem. BioCCP. jl, including source
code, documentation and a Pluto notebook is available at
https://github.com/Kkirstvh/BioCCP.
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Combinatorial biotechnology and the
Coupon Collector Problem

Biological entities, such as proteins, genetic circuits and
genomes, follow the modularity principle, as they can be de-
composed into basic functional parts or modules. Synthetic
biologists exploit this organizational feature to engineer bio-
logical systems that can perform new, specific tasks (1). Of-
tentimes, a combinatorial approach is adopted, where diverse
libraries of genetic variants are generated by assembling and
recombining modules (2). To this end, recent advances in
recombinant DNA techniques have revolutionized the abil-
ity to generate combinatorial constructs in a high-throughput
manner (3). Integration of these constructs into host cells
brings about novel phenotypes with rich biological activi-
ties, of which the optimal variants are selected using screen-
ing techniques. For instance, a biotechnologist might design
a library of enzyme variants in which the protein domains
are diversified and reorganized to enable screening for the
set of domains that optimizes enzyme activity (4). Alter-
natively, in the case of combinatorial CRISPR experiments
in plants, combinatorial constructs of guideRNAs are intro-
duced in cells to create a large number of plants with dif-
ferent combinations of targeted knockouts in the genome, to
then select plants with the desired phenotype (5).

With an increasing number of available modules to compose
biological designs, a combinatorial explosion of possibilities
arises. Hence, usually only a limited subset of a combina-
torial library can be screened in the laboratory. A crucial
decision here is to determine a sample size that guarantees
a sufficient coverage of the design space. For example, in
the case of the combinatorial engineering of a protein by ran-
domizing protein domains, one aims to determine how many
proteins from the library must be sampled in order to col-
lect the complete set of protein domains. For combinatorial
CRISPR knockouts in plants, a researcher wants to gain in-
sight into the minimum required number of plants to realize

each possible gene knockout at least once. In general, be-
fore designing the experiments, the researcher is interested to
know the expected number of designs that needs to be assem-
bled to observe every module at least once. This conundrum
is addressed by the Coupon Collector Problem (CCP).

In probability and statistics, the CCP describes a situation
where there are n different types of “coupons” of which a
collector tries to obtain a complete set. For this purpose,
the collector has to repeatedly sample one coupon at a time
from a population (e.g., from cereal boxes) with replace-
ment. A mathematical question that naturally arises from
this experiment is the expected number of draws that are
required to complete the collection. Importantly, if every
coupon is equiprobable, one has to draw O(nlog(n)) sam-
ples. This standard formulation of the CCP and several vari-
ants thereof have been subjected to extensive research by sci-
entists over the past decades (6—11) and are still subject of on-
going study in practical settings, such as computational time
analysis of algorithms (12), ecological studies (13, 14) and
linguistics (15). However, the practicality of the CCP in the
field of combinatorial biotechnology has not yet been thor-
oughly highlighted. In this application note, we clarify the
importance of the CCP for experimental design in biotech-
nology, in particular its potential to define a theoretical lower
bound for the sample size in screening experiments. To fa-
cilitate practical application by biotechnologists, we provide
the BioCCP . j1 package in Julia and a corresponding inter-
active Pluto notebook (https://github.com/kirstvh/BioCCP).
Before rephrasing minimum sample size determination in
combinatorial biotechnology as a CCP, two peculiarities
regarding biotechnological designs should be emphasized.
Firstly, a design can be an assembly of several modules (e.g.,
a protein consisting of multiple protein domains). Hence,
sampling one design can correspond to drawing multiple
modules instead of just one module. Secondly, the mod-
ules might not occur with equal frequency (e.g., heteroge-
neous concentrations of DNA fragments during library gener-
ation, deliberately or accidentally due to inaccurate lab tech-
niques). Therefore, finding a minimum sample size differs
from the standard formulation of the CCP with equiprobable
coupons, and translates to a CCP with unequal coupon prob-
abilities (9, 11).

Expected minimum number of designs

In the following, we exploit the CCP with unequal coupon
probabilities to compute the expected minimum sample size
to collect designs from a combinatorial library. Consider the
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Fig. 1. (a) Designs in combinatorial biotechnology; (b) Calculation of the expected
minimum number of designs by integrating 1 — F'(t); (c) The expected minimum
number of designs in function of the number of available modules for different
ranges of module probabilities.

designs in this library to be created by randomly combining
r modules (with replacement) from a collection of n mod-
ules (Fig. 1A). Hence, a design is assumed to be a multi-
set of 7 modules. The modules exhibit (unequal) probabili-
ties (p1,--.,pn) with Z;l:lpj =1 during library generation.
The goal is to randomly collect a number of designs so that all
n modules are observed at least once in the entire collection.
A general formula for the expected minimum number of de-
signs can be derived by considering the random incorpora-
tion of modules into combinatorial constructs as independent
Poisson processes. We refer to the work of (11) for a descrip-
tion on Poissonization of the CCP. Based on their findings,
we can write the formula for the expected minimum number
of designs as:

n

E[T]:/Oool—F(t)dt:/Ooo 1= T (1 —exp(=p;rt)

=1

with n the number of modules, p; the probability of module
7, r the number of modules per design and ¢ the number of
designs. 7' is a variable representing the minimum number
of designs to encounter all possible modules at least once for
a specific experiment. F'(t) denotes the cumulative distribu-
tion of T, i.e., the probability that the required number of
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designs is smaller than or equal to ¢, and will be further ad-
dressed as the “success probability" (16). Fig.1B illustrates
that E[T] can be obtained by integrating 1 — F'(t) over the
entire domain. The latter also allows for the calculation of
the variance of 7" by computing the second moment (11).
The probabilities of the biological modules (pi,...,pn)
are often not known exactly. In such case, we propose
to define the range of probabilities through the ratio p =
max; p;/min; p;, and fix the probability vector through a
power law series (according to Zipf’s law):

pjoci®,
with j the rank of the module when the probabilities
(p1,...,pn) are sorted from high to low and « a constant
determined by p and n. This power law renders the proba-
bility of a module p; to be inversely proportional to its index
7. In Fig. 1C, the expected minimum number of designs in
function of the total number of modules in the design space
is visualized for different values of p. It is clear that the curve
of the expected minimum number of designs moves upward
as this ratio increases.

The BioCCP.jl package

With the B1oCCP . j1 package and its accompanying Pluto
notebook, we intend to increase understanding about mini-
mum sample sizes for combinatorial screening experiments
by providing the following functionality. After defining the
specifics of a combinatorial design setting of interest (the
number of modules in the design space, the number of mod-
ules per design and the module probabilities), BioCCP . j1
enables: (i) calculating the minimum expected number of
designs to observe all modules at least m times and the
corresponding standard deviation (see the generalization of
the CCP for collecting multiple complete sets described
by Doumas and Papanicolaou (11) and Boneh and Hofri
(16)); (ii) computing the success probability to encounter all
modules at least m times for a fixed sample size; (iii) ex-
amining the expected observed fraction of the total number
of available modules in function of sample size; (iv) study-
ing the influence of different module probability distribu-
tions on the aforementioned statistics, and; (v) calculating
the probability that a specific module occurs a given number
of times in a fixed sample size (16). Both working with user-
specific probabilities of biological modules as well as proto-
typical probability distributions (e.g., Zipf’s law) is enabled.
We anticipate that unlocking this mathematical framework to
biotechnologists will assist in obtaining a deeper understand-
ing of statistical properties of biological datasets, facilitating

dt, sound experimental design and proper decision making from

screening experiments.
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