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Abstract

Motivation: Solubility and expression levels of proteins can be a limiting factor for large-scale studies and
industrial production. By determining the solubility and expression directly from the protein sequence, the
success rate of wet-lab experiments can be increased.
Results: In this study, we focus on predicting the solubility and usability for purification of proteins
expressed in Escherichia coli directly from the sequence. Our model NetSolP is based on deep learning
protein language models called transformers and we show that it achieves state-of-the-art performance
and improves extrapolation across datasets. As we find current methods are built on biased datasets, we
curate existing datasets by using strict sequence-identity partitioning and ensure that there is minimal
bias in the sequences.
Availability: The predictor and data are available at https://services.healthtech.dtu.dk/service.php?NetSolP
and the open-sourced code is available at https://github.com/tvinet/NetSolP-1.0
Contact: arjo@stanford.edu
Supplementary information: Supplementary data is attached in submission.

1 Introduction
Successful expression of soluble proteins is desired in research as well
as commercial environments. High-throughput purification of proteins
enables the production of various products in industries including
pharmaceutical, food, and beverage (Chapman et al., 2018). A large-
scale protein structure determination effort1 has shown that low expression
and solubility are common issues with about 49% successful expression
rate for recombinant proteins and 52% purification rate for expressed
proteins. There are several techniques that increase the solubility of
wild-type proteins using mutations (Trevino et al., 2008; Miklos et al.,

1 http://targetdb.rcsb.org/metrics

2012; Tan et al., 1998; Dudgeon et al., 2012; Costa et al., 2014).
Protein solubility depends on various external physical conditions such
as pH and temperature and its interaction with intrinsic factors e.g., the
amino-acid composition and structure of proteins. Reducing the search
space to only protein sequences that potentially have high solubility and
expression is beneficial to reduce the cost and time of wet-lab experiments.
Thus, several sequence-based protein solubility prediction tools have been
proposed using biophysical and structural features (Smialowski et al.,
2012; Sormanni et al., 2015; Hebditch et al., 2017; Bhandari et al., 2020;
Hon et al., 2021). Recently, deep learning-based methods have been
utilized to learn these features from the amino acid sequence only (Khurana
et al., 2018; Raimondi et al., 2020; Wu and Yu, 2021). Evolutionary data
in the form of sequence profiles have proven valuable for producing high-
quality predictors (Rawi et al., 2017, Khurana et al., 2018). However,
computing Multiple Sequence Alignments (MSA) is slow and does not
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scale well for large numbers of proteins. All the above methods do not
use the same objective. Camsol (Sormanni et al., 2015), Protein-Sol
(Hebditch et al., 2017), SWI (Bhandari et al., 2020) predict the solubility,
whereas, PROSO (Smialowski et al., 2012), DeepSol (Khurana et al.,
2018), SKADE (Raimondi et al., 2020), SoluProt (Hon et al., 2021) and
EPSOL (Wu and Yu, 2021) predict soluble expression of proteins.

Language models from Natural Language Processing have successfully
been transferred to the protein domain due to the abundance of unlabelled
raw sequence data. A protein language model, which is based on the
transformer architecture (Vaswani et al., 2017), is trained in a self-
supervised fashion on a large corpus, such as the UniRef50 database (Suzek
et al., 2014), using the masked language-modelling objective (Devlin et al.,
2019). The transformer is a deep learning method to produce a contextual
embedding of amino acids in the protein sequence. By using the masked
language model objective it is able to build a context around each position
and learns to "attend" or "focus" on amino acids and peptides that are
relevant in the given context. These language models have been found to
encode contact maps, taxonomy, and biophysical characteristics in their
distributed representations (Rives et al., 2021; Rao et al., 2021, 2020;
Elnaggar et al., 2020; Vig et al., 2020; Brandes et al., 2021; Martiny
et al., 2021). In this study, we use a protein language model to predict two
objectives, solubility and practical usability for purification of proteins in
E. coli, and obtain state-of-the-art performance. As we find current datasets
are biased by artifacts introduced by the expression vector, we also curate
multiple protein datasets for both objectives from publicly available data.
Our curation, using strict homology partitioning and ensuring no sequence
bias, makes them a better representative of real-world performance than
current datasets.

2 Data

2.1 TargetTrack dataset

Rawi et al. (2017) curated 69,420 proteins as the training set from a
larger collection of 129,643 proteins (Smialowski et al., 2012) and used
2001 protein sequences curated by Chang et al. (2013) as an independent
test set. All of these sequences were selected from the TargetTrack
database (Berman et al., 2017), which was a large-scale project by the
Protein Structure Initiative (PSI) from 2000-2017 to greatly increase
the number of known protein structures. No explicit solubility label is
recorded in the database, although several participating centres registered
it separately (Seiler et al., 2014) and thus the binary solubility label for
some proteins is available in sources such as the PSI: Biology dataset
described below. Proteins from the downloaded version were considered
soluble by Smialowski et al. (2012) if they reached a set of predetermined
soluble experimental states and insoluble if they did not reach those states
in the version released 8 months later and also did not already have a
structure submitted to the Protein Data Bank (PDB).

2.2 Biases in the TargetTrack dataset

The PaRSnIP (Rawi et al., 2017), DeepSol (Khurana et al., 2018), and
SKADE (Raimondi et al., 2020) soluble expression predictors were built
using the curated train set and were shown to achieve high scores on
the test set. However, it was noticed that these tools generalize poorly
(Bhandari et al., 2020, Hon et al., 2021). Raimondi et al. (2020) showed
that the SKADE model focused mostly on the N- and C- termini and
validated that DeepSol did the same using an experiment that involved
cropping the starting and ending segments of the sequences. Unfortunately,
this behaviour is likely not due to underlying biophysics but a result of
unintended bias in both the training and test sets. An example of this is
that 11,602 out of 69,420 sequences of the training set and 344 out of 2001

sequences of the test set have the N-terminal His-tag ’MGSDKIHHHHHH’
with ∼ 99% and ∼ 97% of them being insoluble respectively. His-
tags are polyhistidine peptides incorporated in the recombinant protein
to enable affinity purification (Spriestersbach et al., 2015). Other N-
terminal His-tags like ’MGSSHHHH’, ’MHHHHHHS’, ’MRGSHHHH’
with over 100 instances each have 88%, 100%, and 100% mean solubility,
respectively. An example of a C-terminal His-tag from the dataset is
’HHHHH’; when sequences have an amino acid other than E preceding
this His-tag, they are almost always soluble. Such statistics are not
expected naturally and indicate a bias in the selection or the experiments
themselves. While it is perfectly possible that His-tags could change
solubility properties of a protein, our observations suggest that something
else is going on. Such extreme statistics are more likely due to a selection
or biased definition of solubility depending on the group that performed
the experiments using a particular His-tag.. Moreover, Hon et al. (2021)
compared the labels of sequences from this dataset with another dataset
whose solubility was provided separately (Price et al., 2011) and found
that around 18.6% of labels were different, even with 100% identical
sequences. The consequence of this is that the trained models focus more
on the His-tag instead of the wild-type sequence. Since the SoluProt and
EPSOL (Wu and Yu, 2021) training datasets also come from the same
source, they face the same issues discussed above. Therefore, the biased
selection of proteins in combination with the label noise makes it difficult
to train generalizable models using this dataset.

2.3 PSI: Biology dataset

As part of PSI, several centres recorded explicit expression and solubility
labels for the target proteins. A subset of this data was extracted by
Bhandari et al. (2020), which had 12,216 proteins expressed in E. coli
using two specific expression vectors ’pET21’ and ’pET15’. Although
newer techniques can change the status of some proteins, explicit labels
make this dataset far more reliable. The percentage of soluble proteins in
the dataset is ∼66%. We use this dataset for 5-fold cross-validation.

2.4 Price dataset

The North East Structural Consortium (NESG) expressed 9644 proteins in
E. coli using a unified production pipeline (Price et al., 2011) and provide
integer scores (0-5) for both expression (E) and solubility (S). The proteins
are part of the TargetTrack database, but the scores were obtained by Hon
et al. (2021) from the original authors. We remove sequences that have
multiple scores and use the remaining 9272 sequences in two ways. First,
as an independent test set for solubility consisting of 1323 highly expressed
proteins (E = 4 or 5) with high solubility score (S = 4 or 5) as soluble and
low score (S = 0) as insoluble. Using this definition, soluble proteins are
∼64% of the test set. An alternative objective ’usability’, which requires
the protein to be successfully purified on a large scale, is used to generate a
new dataset. Usability is estimated using the product U=E·S by the authors.
Proteins are considered usable if U is greater than 11 and unusable if U
is less than 4. The total number of proteins for 5-fold cross-validation is
7,259. We exclude proteins with intermediate scores in both solubility and
usability datasets to reduce potential noise.

2.5 Camsol mutation dataset

Sormanni et al., 2015 compiled a set of 19 proteins with 56 total variants
from four sources whose change in solubility was experimentally verified.
Compared to the wild-type, 53 mutations increased solubility and 3
decreased it. This dataset is used as an independent test set and no
partitioning is performed.
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3 Methods

3.1 Data Partitioning

To generate high-quality data partitions, we use the four-phase procedure
described in Gíslason et al., 2021 to make label-balanced splits for 5-fold
cross-validation. This procedure ensures that each pair of train and test
fold does not share sequences that have global sequence identity greater
than 25% as determined using ggsearch36, which is a part of the FASTA
package (Pearson and Lipman, 1988). The datasets after partitioning
are as follows, PSI: Biology solubility cross-validation set with 11,226
sequences, the Price usability cross-validation set with 7,259 sequences,
and the Price solubility independent test set with 1,323 sequences. The
latter dataset is ensured not to share sequences with global identity greater
than 25% with the full PSI: Biology dataset using USEARCH v11.0.667,
32-bit (Edgar, 2010).

3.2 NetSolP

Multiple publicly available transformer models are evaluated. We refer
to the 12-layer ESM (Evolutionary Scale Modelling, Rives et al., 2021)
model with 84M parameters as ESM12, the 12-layer ESM model using
multiple sequence alignments (Rao et al., 2021) with 100M parameters as
ESM-MSA, the 33-layer ESM model with 650M parameters as ESM1b
(Rao et al., 2020) and the 24-layer ProtT5-XL-UniRef50 encoder model
(Elnaggar et al., 2020) with 1208M parameters as ProtT5. We follow the
guidelines of Rao et al. (2021) for generating MSAs. For each protein
sequence, we construct an MSA using HHblits, version 3.1.0 (Steinegger
et al., 2019) against the UniClust302020-6 database (Mirdita et al., 2016)
with default settings except setting number of iterations to 3 (−n3). To
reduce the size of MSA and memory requirements, hhfilter is applied
(Steinegger et al., 2019) with the -diff 64 parameter. The original MSA
transformer uses 256.

The output representations of each amino acid in the sequence are
averaged to represent the protein and a linear classification layer is used
to predict binary solubility. The trained models have a suffix ’-F’ and ’-
P’ to indicate whether they are trained end-to-end (fine-tuning) or only
the classification layer (pretrained embedding), which is based on the
available computational resources. The maximum sequence length used
for training is 510, by removing around 3.4% of the training sequences
that exceed this length, to speed up the training process. For prediction,
amino acids after position 1022 are removed due to the maximum length
constraints of the transformer models. Different learning rates for the
transformer (3 × 10−6) and classification layer (2 × 10−5) are used,
and the training is terminated using early stopping. Mixed-precision and
model sharding techniques are utilized to efficiently fine-tune the models.
The PyTorch-lightning (Falcon et al., 2019) library and hardware provided
by Google Colaboratory GPUs2, and 2 Tesla V100s are used for training
and testing. We improve the speed and memory utilization of the final
tool using ONNX-runtime3 and dynamic quantization. The final predictor
(NetSolP) is an ensemble of fine-tuned, dynamically quantized ESM1b
models. Additionally, we provide a distilled (Hinton et al., 2015) version,
NetSolP-D, that preserves most of the performance but runs five times as
fast.

For qualitative analysis, we calculate the contributions of amino
acids in the sequence towards predictions, for the ESM12 ensemble,
using Integrated Gradients method (Sundararajan et al., 2017) from the
Captum4 library. The baseline is taken to be a <CLS> token followed
by <PAD> tokens i.e. an empty protein sequence. Other parameters are

2 https://colab.research.google.com/
3 https://github.com/microsoft/onnxruntime
4 https://captum.ai/

set to their default values. The per amino acid contribution for each
model in the ensemble is summed and then normalized over the protein
sequence using the L1-Norm. The importance is taken to be the absolute
value of the contributions. For calculating conserved residue scores the
tool provided by Capra and Singh (2007)5 is used with scaled Shannon
entropy and a window-size 0. The protein families are chosen from
the PSI: Biology training set using MMseqs2 (Steinegger and Söding,
2017) with a minimum sequence identity 0.2 and the coverage set to
0.5. Three families, FAD/NAD(P)-binding domain (InterPro domain
IPR036188), DNA breaking-rejoining enzyme, catalytic core (InterPro
domain IPR011010) and Trehalase (Panther domain PTHR31616), are
selected such that they have many sequences (48, 71, and 50 respectively)
and have average solubility close to 50% (56%, 51% and, 41%
respectively).

4 Results & Discussion
We compare PaRSnIP, Camsol, DeepSol-S2, ProteinSol, SWI, SoluProt,
and multiple transformer models using threshold-dependent metrics such
as accuracy, precision, Matthew’s correlation coefficient (MCC), and
a threshold-independent metric, area under the Receiver Operating
Characteristic curve (AUC). For most models the value recommended by
the authors is used as the threshold for predicting soluble proteins. Since
Camsol is not built for binary predictions we use a value of 1. The threshold
used in cross-validation for each model of the NetSolP ensemble is 0.5 and
the threshold for NetSolP is set as the average of optimal thresholds for each
of the five validation folds, computed using the Youden Index (Youden,
1950). This value was computed to be 0.69. Since the training dataset is
skewed towards the positive class, the value is greater than 0.5. PaRSnIP,
DeepSol-S2, and ESM-MSA require sequence profiles as input and thus
take a long time to predict a large set of proteins, it takes approximately
5 minutes per sequence on a 2x Intel Xeon Gold 6126 (2.60 GHz) node
while NetSolP-D takes about 3 seconds per sequence. Camsol, ProteinSol,
and SWI require only the protein sequence and thus scale well. Retrained
models of SWI (Bhandari et al., 2020) and SoluProt (Hon et al., 2021) are
used only with the cross-validation datasets, with one model trained per
fold. SWI was retrained using the scripts shared by the authors. SoluProt
was retrained using the downloadable software package as reference, with
only the features present in their final model. This is done to better represent
the scores with our modified dataset splits since each validation fold might
overlap with the original training sets.

NetSolP outperforms existing solubility prediction tools on the PSI:
Biology "Solubility" 5-fold cross-validation dataset (Table 1) of 11,226
sequences, with the highest AUC (0.73± 0.02), MCC (0.29± 0.04) and
accuracy (0.70 ± 0.02). Among transformer models the best scores are
obtained by ESM-MSA which uses sequence profiles. The independent
validation set (Table 2), compared among predictors that do not use
sequence profiles, shows that NetSolP also generalizes better with the
highest AUC (0.760), MCC (0.402), and accuracy (0.728). NetSolP-D,
which is the distilled version of the NetSolP ensemble, performs almost
as well with AUC (0.756), MCC (0.391), accuracy (0.723) and precision
(0.769).

Interestingly, NetSolP is unable to discriminate between the minute
solubility changes produced by mutations compared to other methods
(Table 3). However, a high accuracy (94.6%) by ESM12 shows that it
may be more suitable for comparing highly similar proteins. Only SODA
(Paladin et al., 2017) was trained with the goal of predicting solubility
changes upon point mutations, unlike the rest which used the binary
solubility objective.

5 https://compbio.cs.princeton.edu/conservation/score.html
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Table 1. PSI:Biology Solubility. 5-Fold CV

Models ACC PRE MCC AUC
SoluProt 0.59 ± 0.03 0.70 ± 0.02 0.10 ± 0.03 0.59 ± 0.02
Parsnip* 0.61 ± 0.10 0.71 ± 0.03 0.16 ± 0.11 0.64 ± 0.08
Camsol 0.59 ± 0.08 0.77 ± 0.03 0.21 ± 0.09 0.65 ± 0.06
DeepSol S2* 0.54 ± 0.02 0.81 ± 0.05 0.22 ± 0.05 0.67 ± 0.04
ProteinSol 0.70 ± 0.03 0.70 ± 0.03 0.23 ± 0.08 0.68 ± 0.05
SWI 0.64 ± 0.04 0.80 ± 0.02 0.29 ± 0.05 0.69 ± 0.04
SWI† 0.63 ± 0.04 0.79 ± 0.03 0.28 ± 0.05 0.69 ± 0.03

ESM12-F 0.71 ± 0.03 0.75 ± 0.03 0.32 ± 0.04 0.73 ± 0.04
ESM1b-F 0.70 ± 0.02 0.74 ± 0.03 0.29 ± 0.03 0.73 ± 0.03
ProtT5-P 0.70 ± 0.03 0.77 ± 0.02 0.33 ± 0.04 0.73 ± 0.02
ESM-MSA-P* 0.71 ± 0.03 0.76 ± 0.02 0.33 ± 0.04 0.75 ± 0.03
NetSolP 0.70 ± 0.02 0.74 ± 0.03 0.29 ± 0.04 0.73 ± 0.02

†= Retrained on this dataset
* = Method requires sequence profiles

On the Price et al. (2011) dataset (Table 4) with the "Usability"
objective the highest AUC (0.71± 0.01), MCC (0.30± 0.03), precision
(0.64 ± 0.03) and accuracy (0.65 ± 0.01) is obtained by NetSolP.
Quantization proves to be very effective as NetSolP is able to retain most
of the performance of the constituent ESM1b models while reducing its
data storage by a factor of four.

Fig 1 shows that the solubility of shorter sequences is predicted slightly
better than that of longer sequences by our method as well as by SWI
which could be due to the abundance of shorter sequences in the datasets.
The trend seems to reverse for much longer sequences for our method,
but note that due to the small number of very long test sequences, the
confidence interval of the score is much larger for those. Raimondi et al.
(2020) observe that the ends of the protein sequence are more important
for predicting the solubility. However, in our case (Fig 2) the magnitude
of the effect is insignificant, with the exception of the initial amino acid.
The initial 1% of the amino acid sequence has 3% of the total importance
indicating that it is only a small bias. The signed contributions averaged
over all the positions for an amino acid (Fig 3) show an interesting
relationship between NetSolP and SWI. The spearman rank correlation
for these two sets of amino acid solubility scores is 0.66 (p-value=
1.48 × 10−3 ) suggesting that the average statistics learned are similar
but the performance improvement for NetSolP over SWI could be due
to the context-dependent contribution of amino acids towards solubility.
From the figure we can see that E,D,K are the most positively correlated
with solubility and C,W,R, the most negatively. Fig 4 shows that NetSolP
is the most effective at prioritizing proteins. The percentage of soluble
proteins in the selected proteins is the most when considering sequences
with the highest NetSolP scores. The conservation versus importance plots
(Fig 5) show that highly conserved regions tend to be more important
but not vice versa. The full importance plots for each of the families are
provided in the Supplementary Material (Supplementary Fig 1). It would
be interesting to try to synthesize proteins with modifications in positions
of high importance and observe the experimental solubility values. We
leave that for future work.

5 Conclusion
We propose NetSolP, a predictor based on protein language models and
deep learning, that outperforms existing tools for in silico solubility
and usability prediction. We curate new datasets with an emphasis on
strict partitioning based on sequence identity and ensuring that there are
no spurious correlations between the sequences and target labels. Our
experiments find that larger transformer models are better and fine-tuning

Table 2. Price Solubility. Independent Validation

Method ACC PRE MCC AUC
SoluProt 0.624 0.704 0.187 0.634
Parsnip 0.558 0.786 0.221 0.663
Camsol 0.570 0.751 0.199 0.646
DeepSol-S2 0.450 0.764 0.117 0.595
Protein-Sol 0.641 0.694 0.190 0.679
SWI 0.680 0.712 0.269 0.690

ESM12-F 0.698 0.743 0.328 0.732
ESM1b-F 0.723 0.764 0.386 0.761
ProtT5-P 0.702 0.714 0.314 0.733
ESM-MSA-P 0.712 0.715 0.340 0.745
NetSolP 0.728 0.773 0.402 0.760
NetSolP-D 0.723 0.769 0.391 0.756

Table 3. Camsol Solubility Mutation. Independent Validation

Method Trevino Miklos Tan Dudgeon Total Accuracy
SoluProt 17 / 22 3 / 3 1 / 1 11 / 30 32 / 56 57.1
PROSO II 16 / 22 3 / 3 1 / 1 12 / 30 32 / 56 57.1
SolPro 15 / 22 3 / 3 1 / 1 21 / 30 40 / 56 71.4
Parnsip 8 / 22 3 / 3 1 / 1 11 / 21 54 / 56 41.1
Camsol 22 / 22 3 / 3 1 / 1 28 / 30 54 / 56 96.4
DeepSol-S2 8 / 22 3 / 3 1 / 1 23 / 30 35 / 56 62.5
ProteinSol 14 / 22 3 / 3 1 / 1 1 / 30 19 / 56 33.9
SWI 21 / 22 3 / 3 1 / 1 30 / 30 55 / 56 98.2
SODA 22 / 22 3 / 3 1 / 1 30 / 30 56 / 56 100.0

ESM12-F 19 / 22 3 / 3 1 / 1 30 / 30 53 / 56 94.6
ESM1b-F 14 / 22 3 / 3 0 / 1 14 / 30 31 / 56 55.3
NetSolP 16 / 22 3 / 3 0 / 1 18 / 30 37 / 56 66.1

Table 4. Price Usability. 5-Fold CV

Method ACC PRE MCC AUC
SoluProt† 0.63 ± 0.02 0.63 ± 0.03 0.26 ± 0.03 0.63 ± 0.02
SoluProt 0.62 ± 0.01 0.60 ± 0.02 0.24 ± 0.02 0.67 ± 0.02
Parsnip 0.61 ± 0.01 0.66 ± 0.02 0.22 ± 0.01 0.66 ± 0.01
Camsol 0.55 ± 0.02 0.63 ± 0.12 0.13 ± 0.07 0.62 ± 0.05
DeepSol-S2 0.54 ± 0.02 0.59 ± 0.06 0.09 ± 0.05 0.57 ± 0.02
Protein-Sol 0.55 ± 0.02 0.53 ± 0.02 0.13 ± 0.04 0.60 ± 0.02
SWI 0.58 ± 0.01 0.54 ± 0.01 0.20 ± 0.02 0.64 ± 0.02

ESM12-F 0.64 ± 0.01 0.63 ± 0.01 0.29 ± 0.03 0.71 ± 0.01
ESM1b-F 0.65 ± 0.01 0.64 ± 0.03 0.30 ± 0.03 0.71 ± 0.01
NetSolP 0.65 ± 0.02 0.65 ± 0.04 0.30 ± 0.04 0.70 ± 0.01

†= Retrained on this dataset

the models is more effective than the pretrained embeddings. Qualitative
analysis reveals an interesting correlation with a previous method SWI
and finds no significantly important regions for solubility in contrast to the
study done by Raimondi et al. (2020), which can be explained by the bias
present in the dataset they use.

The predictor is available at https://services.healthtech.dtu.dk/service.php?NetSolP
and the open-sourced code is available at https://github.com/tvinet/NetSolP-
1.0.
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Fig. 1. Top: The length distribution of the test set. Bottom: Change in accuracy based on the
length of the protein sequences computed on the Price Solubility independent validation set
of 1323 sequences. A dip in accuracy with longer sequences can be seen for both NetSolP
and the best existing tool SWI

Fig. 2. Qualitative analysis of ESM12 model using Integrated Gradients computed on the
independent solubility dataset. The importance of position in solubility prediction is shown.
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