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1 Abstract

Motivation: The comparison of genomes using models of molecular evolution is a powerful approach
for finding or towards understanding functional elements. In particular, comparative genomics is a fun-
damental building brick in building high-quality, complete and consistent annotations of ever larger sets
of alignable genomes.
Results: We here present our new program ClaMSA that classifies multiple sequence alignments using
a phylogenetic model. It uses a novel continuous-time Markov chain machine learning layer, named
CTMC, that is learned end-to-end together with (recurrent) neural networks for a learning task. We
trained ClaMSA discriminately to classify aligned codon sequences that are candidates of coding regions
into coding or non-coding and obtained six times fewer false positives for this task on vertebrate and
fly alignments than existing methods at the same true positive rate. ClaMSA and the CTMC layer are
general tools that could be used for other machine learning tasks on tree-related sequence data.
Availability: Freely from https://github.com/Gaius-Augustus/clamsa.

2 Introduction

Quantitative evolutionary models are important for many Bioinformatics tasks, such as phylogenetic
tree construction or for testing hypotheses on whether an ORF is coding, for example in SARS-CoV-
2 genomes [Jungreis et al., 2020]. Further, the data to leverage such evolutionary models from large
numbers of genomes grows fast as evinced – for example — by the recent publication of alignments of
the genomes of 240 mammalian species and 363 birds [Armstrong et al., 2020].

The evolution of biological sequences through substitutions is widely modeled with continuous-time
Markov chains (CTMCs) on the state space of sequence characters and along the branches of a tree
[Goldman and Yang, 1994, Lin et al., 2011, Ronquist et al., 2012, Stamatakis, 2014]. Commonly, the
CTMCs are assumed to be stationary, homogeneous and time-reversible. Such a stochastic process is
parameterized by a rate matrix alone that holds the rates of substitutions (state transitions) for any
pair of different characters. Arguably most molecular phylogenetics programs estimate such a rate
matrix Q, alongside the tree T that relates the sequences of an input multiple sequence alignment
(MSA), e.g. the maximum-likelihood based program RAxML [Stamatakis, 2014] and the Bayesian method
MrBayes [Ronquist et al., 2012].

Other applications of continuous-time Markov chains only require to estimate the rate matrix for
a given tree and a multiple alignment of sequences observed at the leaves. Such applications are the
identification of sites in a protein family that are under positive selection, e.g. with PAML [Yang et al.,
1997], and the classification of genomic alignments into coding and non-coding, e.g. as done by PhyloCSF
[Lin et al., 2011, Mudge et al., 2019]. Both of these widely used applications have in common that they
require estimates of some parameterized form of a codon rate matrix that models evolution on the state
space of 64 (or 61 sense) codons. For example, codeml from the PAML software [Yang et al., 1997] uses
the codon substitution model GY94 of Goldman and Yang [Goldman and Yang, 1994] to estimate the
rate ratio ω = dN/dS of synonymous and non-synonymous substitutions. The commonly used GY94
model has only few parameters besides ω. The estimated rate ratio ω̂ has also been used for comparative
gene prediction with AUGUSTUS-CGP [König et al., 2016].
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We here consider the application to distinguish coding from non-coding regions in aligned genome
sequences using CTMC models of codons. For this, Lin et al. train a so-called empirical general time-
reversible model. Their program PhyloCSF uses rate matrices which are parameterized by the codon
equilibrium distribution π and a triangular matrix totaling 63+63 ·64/2 = 2080 free parameters per rate
matrix. Lin et al. trained two codon rate matrices generatively and independently using a maximum-
likelihood criterion. One rate matrix models only coding regions and one rate matrix models only
non-coding regions. These parameters are provided with PhyloCSF for a selection of animal clades as
well as yeast but users cannot train PhyloCSF themselves. A comparison of the two respective likelihoods
under two respective CTMCs is then used by PhyloCSF to classify codon or nucleotide multiple sequence
alignments into coding or non-coding.

The selection metric ω can also be used for the same classification task, to distinguish coding and non-
coding sequences, exploiting thereby the fact that, on average, most coding regions are under purifying
(negative) selection and ω < 1. Such a dN/dS test that thresholds the estimate of ω was compared by
Lin et al. to an earlier version of PhyloCSF and even performed best in their experiments [Lin et al.,
2008]. PhyloCSF as introduced in Lin et al. [2011], however, performed somewhat better than the dN/dS
test.

Siepel and Haussler [Siepel and Haussler, 2004] developed exoniPhy, which uses a hidden Markov
model (HMM) of order 3 to segment a genome alignment into coding and non-coding regions. Its
emission distribution is a CTMC model for an alignment column. exoniPhy also has three phylogenetic
models for alignment columns in coding, non-coding and conserved non-coding genome regions.

A relatively high conservation of sequence is also an indicator that a region could be protein-coding
[König et al., 2016]. However, such a predictive feature is prone to predict false positives in conserved
non-coding regions. If only two CTMC models are used, one for coding and one for non-coding regions,
then the different scale of their mutation rates is a nuisance parameter and atypical conservation hinders
highly specific discrimination between the two. Lin et al. therefore maximize for each of the two models
over a global mutation rate scaling factor in PhyloCSF. Siepel and Haussler coped with the problem by
introducing a third model for conserved non-coding regions.

Recently, PhyloCSF has been used for a genome-wide scan to discover new human protein-coding
genes, a ”needle-in-a-haystack problem” [Mudge et al., 2019]. As PhyloCSF reports too many likely
false potential coding regions, its output was further processed and filtered by a HMM and SVM whose
parameters were trained while the ones from PhyloCSF were kept fixed. A relatively small candidate set of
658 approximate regions was then manually curated to annotate 70 previously undetected protein-coding
genes. Although evolutionary models and comparative genomics are instrumental for identifying new
coding regions that cannot be identified with other data, the high false positive number in a genome-wide
scan remains a problem and the task to integrate the results into automatic gene structure annotation a
challenge.

We here introduce a novel method for end-to-end, discriminative training of arbitrarily many rate
matrices for a classification task. A new CTMC layer executes Felsenstein’s pruning algorithm in an
automatically differentiable and therefore end-to-end trainable form. This layer can be combined with
simple logistic regression, with neural networks or recurrent neural networks to evolutionarily classify
multiple sequence alignments. Our program ClaMSA outperforms both the dN/dS test and PhyloCSF
by a wide margin in the task of codon alignment classification. On vertebrate and Drosophila alignments
ClaMSA predicts fewer than 16% of the false positives that PhyloCSF predicts at the same level of
sensitivity. ClaMSA can be retrained by users for other tasks of evolutionary classification. However, a
retraining for specific clades may not be necessary for a high performance.

ClaMSA collects possibly powerful evolutionary evidence that a candidate exon or gene is indeed
protein-coding and conserved. The versatile CTMC layer module can be used independently for other
machine learning tasks that learn continuous-time Markov chains on trees. The code for both is freely
available under https://github.com/liemonade/clamsa.

3 Methods

We first present the new CTMC layer for evolutionary data and then how our new program ClaMSA uses
mostly established machine learning components and methods to classify multiple sequence alignments.
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Figure 1: CTMC layer and overall model. A: A dynamic programming algorithm computes in a leaf-
to-root traversal of the tree, the log-likelihood L, i.e. the logarithm of the probability of an alignment
column (blue leaves), marginalizing over all unknown characters at the ancestral nodes (red). B: Log-
likelihood Lmi is computed for each of M phylogenetic models specified by rate matrices Q(1), . . . , Q(M)

and for each alignment column 1, . . . , `. The remaining layers (Gated Recurrent Unit, Dense) estimate
the probability y1 that the input alignment is coding.

3.1 CTMC Layer

Our model is the standard general-time reversible (GTR) CTMC on a tree that we recall in the Sup-
plementary Data for convenience. In brief, the CTMC layer computes the log-likelihood Lmi of each
alignment column i ∈ {1, . . . , `} simultaneously in several evolutionary models m ∈ {1, . . . ,M} (see
Figure 1). We assume the alphabet has s characters that are numbered 1, . . . , s, in our application the
alphabet is the set of s = 64 codons {aaa, aac, . . . , ttt}, i.e. each codon is a single character. However
our program ClaMSA is not specific for codon evolution. Neither does the model explicitly use a genetic
code.

We choose a standard parametrization of GTR s × s rate matrices, except that we insert another
first dimension to account for M different evolutionary models. Different evolutionary models m =
1, 2, 3, . . . could e.g. represent protein-coding, non-coding, conserved non-coding and other subsets of
aligned sequences. However, m can be interpreted as a latent variable and the MSAs are not explicitly
assigned to a particular evolutionary model. Let the rate matrices Q be defined as

Qmij =


πmjRmij , i < j

πmjRmji , i > j

−
∑

k 6=iQmik , i = j

. (1)

Here, m indexes an evolutionary model, π ∈ [0, 1]M×s are the stationary probabilities of the M GTR
models (

∑s
i=1 πmi = 1 for all m) and R ∈ R+

M×s×s holds the rate factors: For each model m the
matrix Rm,:,: is upper triangular and holds s(s−1)/2 positive rate factors. Here, we use a colon notation
analogous to Python code R[m,:,:] of Numpy, TensorFlow or PyTorch. We also use the notation
Q(m) = (Qmij)ij for the m-th rate matrix.

The input of the CTCM layer are multiple sequence alignments, specified as a 3-tensorX ∈ {0, 1}`×n×s
in one-hot encoding, i.e. Xiua = 1 if and only if sequence u has character a at site i. Gaps and com-
pletely unaligned sequences are treated separately as missing data. Further, the layer requires a tree T
with times or branch lengths t that relates the aligned input sequences. In our experiments we used
the same species tree for all MSAs in a given clade. The tree can be unrooted but we assume that it is
rooted. The choice of the root is arbitrary and without effect on the output as all Markov chains are by
construction time-reversible. We do not require that each ancestral node has exactly two children. Let
T = ({1, . . . , n+k}, E) be the directed tree with n leaves 1, . . . , n, with k ancestral nodes n+1, . . . , n+k
(non-leaves) and with edges E that are directed towards the root node n+k. For an example, see Figure
1 A).
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The output of the CTMC layer is an M × ` matrix L = (Lmi), where entry Lmi is the log-likelihood
of the i-th alignment column (’site’) under the m-th evolutionary model:

Lmi := lnP (Xi,:,: |T,Q(m))

= ln
∑
x

πm,x(n+k)

∏
(u,v)∈E

exp(tuvQ
(m))[x(v), x(u)] (2)

Here, x : {1..n+ k} → {1..s} ranges over all assignments of nodes of tree T to characters that agree on
the leaf set {1..n} with the observed characters (Xiua = 1 ⇒ x(u) = a), tuv is the length of the branch
from node u to node v, exp is the matrix exponential and the brackets [·, ·] in (2) are a notation to index
the exponentiated matrix in row x(v) and column x(u).

3.1.1 Pruning Algorithm

It is well-established [Felsenstein, 1973] that the likelihood of the leaf data, implicitly given by equation
(2), can be computed for constant alphabet size s in time O((n + k)`) with the pruning algorithm,
a dynamic programming algorithm that computes conditional likelihoods of subtrees in a leaf-to-root
order. Algorithm 1 is essentially the execution of this pruning algorithm in parallel for all models m and
all sites i. α is the array of dynamic programming variables: αm,i,v,a is the conditional likelihood under
the m-th phylogenetic model of the leaf assignments at site i in the subtree of T rooted at node v, given
that node v is assigned character a. The algorithm makes use of vectorization and shape broadcasting.
Line 5: exp is the matrix exponential, here applied to all square matrices tu,vQ

(m) for all m in parallel
and the resulting matrices are stacked, so that the red array (tensor) is again of shape M × s× s. The
multiplication of the red and blue factors are M × ` multiplications of a s× s matrix with a size s vector
(shape broadcasting). Line 7: The multiplication is a dot product simultaneously carried out for M × `
pairs of size s vectors and the logarithm is applied elementwise.

Algorithm 1 CTMC(X;π,R, T ).

Require: X ∈ R`×n×s, π ∈ RM×s probability vectors, upper triangular matrices R ∈ RM×s×s
+ , T a tree

with edges E and times t
1: Calculate Q ∈ RM×s×s according to (1)
2: Initialize α ∈ RM×`×(n+k)×s as empty array.
3: Initialize DP variables at leaves for all models m = 1, . . . ,M :

αm,:,1:n,: ← X
4: for v = n+ 1, . . . , n+ k do . loop over ancestral nodes
5: α:,:,v,: ←

∏
(u,v)∈E exp

(
tu,v ·Q

)
· α:,:,u,:

6: return ln((α:,:,n+k,:)
ᵀ · π)

3.1.2 Learning CTMC

Let Θ := (π,R) be the parameters of the CTMC model that need to be learned. Because the CTMC
layer is designed to be used as one of several layers that can be learned end-to-end using stochastic
gradient descent, we need to be able to compute the gradient

∂L

∂Θ
, (3)

where L = (Lmi) = CTMC(X;π,R, T ) is the output of the layer. This was achieved using the
automatic differentiation capabilities of TensorFlow [Abadi et al., 2016]. In particular the gradient of
the matrix exponential exp(A) = I + A + A2/2 + A3/3! + · · · is required. Like in Matlab and R, in
TensorFlow the matrix exponential is approximated using the Padé approximation [Higham, 2005]. This
approach requires as elementary functions only the multiplication and addition of matrices as well as
computing an inverse and a power of a matrix. These functions are all automatically differentiated by
the TensorFlow backend.

For the default choice of M = 8 phylogenetic models and the codon alphabet s = 64 the CTMC layer
has 16632 = 8 × (63 + 64 · 63/2) parameters to store eight rate matrices implicitly through stationary
distributions πm,: and triangular rate factor matrices Rm,:,: each.
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3.2 Prediction Layers and Loss

The output L of the CTMC layer has dimensions of sizes M and `, of which the alignment length `
varies with the input. In order to produce a fixed-dimension output, e.g. the probabilities of two classes,
regardless of the input length, we add layers that aggregate along the sequence dimension and produce
a prediction. We will refer to the layers after the CTMC layer the prediction layers (see Figure 1).

Sequence Model: Recurrent Neural Network. By default ClaMSA uses a sequence model and
fully-connected neural network for binary classification. To describe the architecture we will use high-level
machine-learning notation like L = CTMC(X), which means that L is the output that the CTMC layer
produces on input X. The default version of ClaMSA uses a Gated Recurrent Unit (GRU) as sequence
layer [Cho et al., 2014]. As a special kind of recurrent neural network, a GRU is, in principle, capable of
modeling autocorrelation that MSAs can show, e.g. due to local secondary or tertiary structure. Finally,
two ”Dense” layers, which are fully-connected neural networks (sometimes called multilayer perceptrons)
produce the prediction:

rnn = Bidirectional(GRU(32))(L)

D = Dense(16, activation = "sigmoid")(rnn)

y = Dense(2, activation = "softmax")(D)

These prediction layers have 9138 = 8064 (bidirectional GRU for M = 8) + 1040 (first Dense) + 34
(second Dense) parameters. Here, half of the parameters of the output (last) layer are redundant and
could be saved using the logistic sigmoid function as activation for ŷ. However, this form allows ClaMSA
to be used for more than two output classes. The suitability for multiclass classification is an advantage
over methods that use a likelihood ratio (PhyloCSF) or a threshold on ω̂ = dN/dS (PAML).

The training criterion is to minimize the cross-entropy error (CEE) as loss function

CEE = −
∑
j

1∑
i=0

yji ln ŷji , (4)

where ŷj and yj ∈ {0, 1}2 are the vector of the two predicted probabilities and the corresponding one-
hot encoded training label for the j-th training example, respectively. All rate matrices as well as the
parameters of the prediction layers are trained simultaneously with stochastic gradient descent to mimize
the loss on labeled training data.

Logistic Regression. In order to be able to attribute performance gains to the CTMC layer rather
than the prediction layers, we also implemented a very simple alternative that we call the LogReg variant
of the prediction layers. A simple averaging of the M log-likelihoods along the sequence dimension (of
length `) produces a sequence model output of fixed size M .

means = mean(L, axis = 1)

y = Dense(2, activation = "softmax")(means)

These prediction layers have only 2(M+1) = 18 parameters (M+1 = 9 free parameters) and compute
after a parameter transformation the following prediction function:

L̄m =
1

`

∑̀
i=1

Lmi (m = 1, . . . ,M)

ŷ1 =σ(w0 + w1L̄1 + · · ·+ wM L̄M ),

where σ(z) = 1/(1 + exp(−z)) is the logistic sigmoid function. Setting ŷ0 := 1− ŷ1 we again use CEE as
optimization criterion

Maximum-Likelihood. In principle, the CTMC model also allows to compute a maximum likelihood
estimate of a rate matrix under a model of independent alignment columns. This can be achieved when
setting M = 1 and using −`L̄1 as loss funtion. We confirmed on simulated alignments that indeed a
ML-estimate of Q(1) approximated well the rate matrix used in the simulation (data not shown), but
have not used this functionality in the work described here.
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number of size of set
clade species train val test
vertebrate 12 12138 1500 3000
fly 12 16709 1500 3000
yeast 7 2258 300 1000

Table 1: Data sets of aligned candidate exons.

3.3 Data Sets

For training and testing ClaMSA we generated multiple sequence alignments of potential coding exons
(’exon candidate MSAs’) in a clade of vertebrate species, a clade of fly species and a clade of yeast species
as summarized in Table 1. The first two clades were previously often used to benchmark comparative
genomics methods. The yeast clade was chosen because it is the only non-metazoan clade for which
PhyloCSF provides parameters. In each clade, the set of labeled MSA examples was randomly partitioned
to achieve a defined size of the test and validation set, the remaining examples constitute the training
set.

As basis for finding alignments of candidate coding regions we used multiple genome alignments. For
the vertebrate clade we downloaded a MULTIZ multiple genome alignment from the UCSC Genome
Browser [Lee et al., 2020], for fly and yeast we constructed one ourselves using CACTUS [Paten et al.,
2011]. An exon candidate MSA is an aligned tuple of potential exons in the same reading frame that
does not contain a stop codon in any of the considered rows. Each row could therefore be a complete
coding exon. Exon candidate MSAs were compiled as described in the supplementary data and labeled
as coding (positive, y1 = 1) or noncoding (negative, y1 = 0) using a reference genome annotation. The
negative examples were filtered not to overlap a reference coding region in the same frame and on the
same strand, as such a case could arguably be counted as partially correct. For practical reasons and as
the vertebrate and fly data sets are strongly imbalanced towards the negatives labels, we chose a ratio
of 1:2 between positive and negative examples.

The negative exon candidate alignments are on average shorter than the positives. In order to remove
the influence of the length, we subsampled the negative examples by length, so that for each species the
positives and negatives have very similar length distributions (see Supplementary Figure 1). The average
number of exon candidates (= rows, species) in an candidate exon MSA are 4.5 (vertebrate), 4.1 (fly)
and 3.0 (yeast). The average length in nucleotides are 158, 367 and 688, respectively.

Tree construction. A random selection of positive exon candidate MSAs was converted with ClaMSA

convert to NEXUS format and subsequently a tree constructed with MrBayes [Ronquist et al., 2012]
for each clade. The three trees are show in Supplementary Figure 3, as well as the command lines. They
were used as input to the training and prediction procedures.

Codon alignments. As a preprocessing, nucleotide alignments with an assumed reading frame for
all sequences of the MSA are converted to codon alignments as shown in Supplementary Figure 2.
Thereby, two codons are aligned with each other in the output codon alignment if and only if all three
corresponding bases were aligned with each other in the input nucleotide alignment.

4 Results

4.1 Benchmarking of Tools

We compared ClaMSA against PhyloCSF [Lin et al., 2011] and the program codeml from the PAML
package [Yang et al., 1997]. PhyloCSF and ClaMSA were input identical FASTA formatted multiple
sequence DNA alignments that started with complete codons of a candidate coding region. The frame or
strand needed not be inferred by the programs. Codeml requires codon alignments as input. Therefore,
for its input the nucleotide alignments were first converted to codon alignments with clamsa convert.
The command lines for running the programs are stated in the supplementary data.

Evaluation as a binary decision. Each tool outputs a number: ClaMSA a probability, PhyloCSF a
log-likelihood ratio and codeml an estimation for ω (dN/dS rate ratio) (see Suppl. Figure 4). In each case
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clade method AUC errors fpr at
tpr 0.8

ClaMSA 0.992 68 0.3%
ClaMSA vert 0.992 64 0.2%
ClaMSA fly 0.991 108 0.2%

vertebrate ClaMSA yeast 0.891 752 14.4%
ClaMSA LogReg 0.988 83 0.3%
PhyloCSF 0.945 447 2.6%
codeml 0.915 1021 8.7%

Table 2: Accuracy Comparison. Best performances are in bold face.

the number can be interpreted as a binary decision on whether a given input candidate exon alignment
is coding in the specified frame and on the specified strand. For ClaMSA the prediction is positive if and
only if (iff) the output probability of ”coding” is larger than 50%, for PhyloCSF iff the log-likelihood
ratio is larger than 0, for codeml iff the estimated ω is less than 1, i.e. if the sequences are estimated to
have been as a whole under purifying (negative) selection.

Table 2 shows the results on the test sets summarized in Table 1. Method ”ClaMSA” was trained on
a training set of alignments from fly, vertebrate and yeast sequences, mixed at equal parts. ”ClaMSA
{fly, vert, yeast}” refer to a version that was trained on a training set from the respective clade. Column
”errors” shows the total numbers of misclassification (false positives or false negatives). In all three
clades ClaMSA made the fewest errors, PhyloCSF made about 7, 2.5 and 7 times as many errors on
vertebrates, flies and yeasts, respectively, Codeml even more (Table 2, Suppl. Tab. 1). On each clade
we compared the default ClaMSA which had been trained on a mixture of alignments from the three
clades with a native version that was trained, like PhyloCSF, on the same clade the test is performed
on. For the vertebrate and fly clades this version of ClaMSA was somewhat or considerably better than
the universal version that was otherwise used for experiments on all clades.

ROC analysis. Above thresholds (0.5, 0, and 1 for ClaMSA, PhyloCSF and codeml, respectively)
need not be reasonable, e.g. when in a genome-wide scan a large number of false positives is not tolerable
or if – contrary – a very sensitive search is required. We therefore also compared the receiver operating
characteristic (ROC) curves. Table 2 shows the area under curve (AUC) values and in the last column the
false positive rate (false positives/actual negatives) at the respective choice of the threshold for which the
true positive rate (sensitivity, true positives/actual positives) is just above 80%. The difference between
the AUC and the optimal value of 1, is reduced by ClaMSA in comparison to PhyloCSF from 5.5%
to 0.8% on vertebrates, from 9.5% to 2.1% for flies and from 4.4% to 2.1%. Apparently, the accuracy
advantage of ClaMSA over PhyloCSF is smaller for yeast than for the other two clades. A possible
explanation is that the overall number of exons is small in yeast as most genes are intronless. In that
sense yeast constitutes an atypical example for the commonly studied eukaryotic genomes because most
CDS are complete genes and can therefore more easily be identified with non-evolutionary methods. We
compiled only a total of 4590 positive examples of aligned coding exons in yeast. It can be expected that
the overlap of the training set of PhyloCSF with our random test sets makes up a larger fraction of the
overall training set of PhyloCSF that is not available to us. We included results on yeast in order to be
able to compare to PhyloCSF on a non-animal clade.

Influence of alignment attributes. Counterintuitively, all tools – and most strikingly PhyloCSF –
appear to loose accuracy when the MSAs are particularly long (see Supplementary Figure 5). This is
mainly due to false positive classifications of long alignments of few (mostly two) sequences. It appears
that that section of the data could be classified with fewer errors using a simple additional filter on
MSA width and length. We chose not to use the width or length of the alignment as a criterion as this
would likely degrade the generalizability across clades. In addition, we expect that arguably most search
tasks for novel coding regions would filter out candidate exons that are present in only very few species,
anyways.
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Figure 2: Accuracy on vertebrates.

4.2 Generalizability and Cross-Clade Training

Both ClaMSA and PhyloCSF train 64 × 64 codon rate matrices with thousands of parameters, which
raises the question of generalizability: Can the accuracy on users’ sequence data ’unrelated’ to the
training set be expected to match the average accuracies reported here? This question will be discussed
on several levels.

Firstly, an overlap between our test sets and the training sets could account for a lower performance
than reported here. For ClaMSA we have naturally excluded any overlap. However, as PhyloCSF cannot
be trained by users, we could not control the fraction of test genes that were also used in its training. This
could in particular be an issue for the yeasts as their genomes have in comparison very small numbers
of exons.

Secondly, homologs of any degree of sequence similarity can exist within the genome of a species and
between species. Data that is guaranteed to be ’unrelated’ to the training data cannot be found. More
important is, however, that the parameter sets perform well when used to classify alignments from a
broad set of species, e.g. because intrinsic properties of the genetic code and amino acid similarities were
learned, rather than the frequencies of individual transitions events in the training set.

We therefore tested, how well the parameters of ClaMSA generalize between clades. Table 2 shows
these cross-clade applications. For example, when ClaMSA was trained on fly alignments only (ClaMSA
fly) its performance on vertebrates is with an AUC of 99.1% almost as good as the version that was
natively trained (ClaMSA vert, AUC 99.2%). Vice versa, when ClaMSA was trained on vertebrate
MSAs only it performed somewhat worse (AUC 95%) than ClaMSA that was trained on flies (AUC
97.9%), but still considerably better than PhyloCSF (AUC 90.5%) (Supp. Table 1). Note for these
comparisons that, we always used the PhyloCSF version that was trained for the clade we tested its
performance on. Thusly, the cross-species performance of ClaMSA is in these cases better than the
within-clade performance of PhyloCSF. However, this is not the case for cross-clade training between an
animal and yeast. The vertebrate and fly version perform much worse on yeasts. However, the default
ClaMSA version which was trained on all three clades performs even somewhat better than the native
version (Supp. Table 1).

4.3 Breakdown of Accuracy Gains

This manuscript contains several new ideas for approaches, that more traditional approaches for esti-
mating codon rate matrices such as PAML and PhyloCSF do not have; in particular, a variable number
of empirical rate matrices, prediction layers (sequence model) that have their own parameters, end-to-
end learning and discriminative rather than generative learning of the matrices. In order to assess the
individual contribution of some of the main ideas to the overall accuracy, we have compared ClaMSA
against versions of itself, where some component has been replaced or parameters have been changed.

The number of rate matrices M has only a small influence on the accuracy, provided it is at least 3
(Supplementary Figure 6), suggesting that most of the gain is not due to the larger number of parameters
of the model.
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Figure 3: Discovery of a presumably novel human coding region with ClaMSA. A: A region in the
human genome that contains two candidate exon MSAs (black bars) that were highly confidently (94.9%
and 93.3% probability) classified by ClaMSA as coding. The regions are bordered on both sides by
conserved splice site patterns, suggesting the larger ClaMSA region is part of a novel human spliced
gene. The UCSC genome browser [Lee et al., 2020] contained in March 2021 neither an annotation
from RefSeq, GENCODE or CCDS, nor were there aligned transcript sequences, retroposed genes or
repeats (Supplementary Figure 7). There is also no PhyloCSF candidate region [Mudge et al., 2019]. B:
Amino acid alignment. The alignment in the regions of the smaller ClaMSA region is gapless. C: Codon
alignment. Codons that are identical to human are shown as ”...” and in gray. Codons differing from
the human codon are shown explicitly and are color-coded by groups of similar amino acids. codeml

estimates a rate ratio of nonsynonymous versus synonymous mutations of ω = dN/dS = 0.61, suggesting
the region has been under purifying selection.

We replaced the gated recurrent unit (GRU) as sequence model against the very simple logistic regres-
sion model introduced in section 3.2, called ’ClaMSA LogReg’ in table 2. It is otherwise trained like the
default version of ClaMSA. Omitting the recurrent neural network reduces the AUC on vertebrates and
fllies only by 0.4 and 1 percent points, respectively. The reduction on yeasts is more pronounced (94.3%
versus 97.9% AUC). A possible explanation is that yeast exons are usually complete genes and therefore
a bidirectional recurrent neural network could benefit more from learning positional inhomogeneity than
on clades where introns can rather arbitrarily interrupt coding sequences.

Further, we compared the GRU against a simple RNN as well as a long short-term memory (LSTM)
model. For each sequence model class we varied the number of units. Both alternative sequence model
classes performed slightly worse than the GRU (data not shown).

4.4 Application Example

Figure 3 shows an example of a candidate novel human coding region that was identified with ClaMSA.
The aligned genome regions in cow and tenrec also have no gene annotated. However, the presumably
homolog regions in mouse and rat have annotations in GENCODE and RefSeq. The homolog of the
region depicted in Figure 3 is a large initial CDS of the mouse gene Zpld2 (Supplementary Figure 7).

5 Discussion

We applied a modern machine learning approach to estimate the parameters of a classical statistical
model that has been used in phylogenetics for many decades. With it, the state-of-the-art performance
in classifying multiple alignments phylogenetically can be pushed significantly. We demonstrated that
the binary classification of codon multiple sequence alignments into coding and non-coding can be much
improved. The previously published method PhyloCSF was based on a ratio of likelihoods of two gen-
eratively and independently trained rate matrices. Our new tool ClaMSA, however, trained all rate
matrices simultaneously discriminatively and end-to-end together with a prediction model. On our test
set of 12-way vertebrate alignments, ClaMSA reduced the false positive rate of 2.6% of PhyloCSF to 0.2%
when classifying 12-way vertebrate alignments at sensitivity levels of 80%, even when its rate matrices
were trained on flies.
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6 Conclusion

ClaMSA does not necessarily require pre-trained parameters for each specific clade. Overall, we believe
that most users may prefer to use the default parameters that performed well in all our experiments
over retraining parameters for a specific clade of interest. However, ClaMSA provides the functionality
for users to train it given labeled alignments and a tree. Possible direct applications of ClaMSA are
the classification of candidate ORFs as shown here, based on this a genome-wide scan for novel coding
regions, or a quantitative genome browser track with per base coding probabilities.

Our discriminatively trained rate matrices can be used by other tools as well. Tools that use a rate
matrix and the pruning algorithm to compute the log-likelihood of a codon site can replace their own
matrix by the ones we trained. We have published for this purpose a set of rate matrices in text format
that is included in the ClaMSA distribution. In particular, we plan to use these ClaMSA-trained codon
rate matrices for comparative gene prediction with AUGUSTUS [König et al., 2016]. Other potential
applications are the evolutionary discrimination of amino acid or DNA alignments.

Even of higher meaning could be the general CTMC layer that allows to compute gradients of the tree-
likelihood under the almost universally used continuous-time Markov chain model. The differentiation
can be done with respect to the rate matrix as well as simultaneously to the branch lengths (not used
here). In contrast, common practice in phylogenetic programs is the numerical differentiation with
respect to each rate matrix parameter individually (RAxML, Stamatakis [2014]) or to simultaneously
make small random changes to all rates (MrBayes, Ronquist et al. [2012]).
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K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using RNN

encoder-decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

J. Felsenstein. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters.

Systematic Biology, 22(3):240–249, 1973.

N. Goldman and Z. Yang. A codon-based model of nucleotide substitution for protein-coding dna sequences. Molecular Biology

and Evolution, 11(5):725–736, 1994.

N. J. Higham. The scaling and squaring method for the matrix exponential revisited. SIAM Journal on Matrix Analysis and

Applications, 26(4):1179–1193, 2005.

I. Jungreis, R. Sealfon, and M. Kellis. SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus

genomes. bioRxiv, 2020.

S. König, L. W. Romoth, L. Gerischer, and M. Stanke. Simultaneous gene finding in multiple genomes. Bioinformatics, 32(22):

3388–3395, 2016. doi: 10.1093/bioinformatics/btw494.

C. M. Lee, G. P. Barber, J. Casper, H. Clawson, M. Diekhans, J. N. Gonzalez, A. S. Hinrichs, B. T. Lee, L. R. Nassar, C. C.

Powell, et al. UCSC Genome Browser enters 20th year. Nucleic Acids Research, 48(D1):D756–D761, 2020.

M. F. Lin, A. N. Deoras, M. D. Rasmussen, and M. Kellis. Performance and scalability of discriminative metrics for comparative

gene identification in 12 Drosophila genomes. PLoS Comput Biol, 4(4):e1000067, 2008.

M. F. Lin, I. Jungreis, and M. Kellis. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding

regions. Bioinformatics, 27(13):i275–i282, 2011.

J. M. Mudge, I. Jungreis, T. Hunt, J. M. Gonzalez, J. C. Wright, M. Kay, C. Davidson, S. Fitzgerald, R. Seal, S. Tweedie, et al.

Discovery of high-confidence human protein-coding genes and exons by whole-genome PhyloCSF helps elucidate 118 GWAS

loci. Genome Research, 29(12):2073–2087, 2019.

B. Paten, D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, and D. Haussler. Cactus: Algorithms for genome multiple sequence

alignment. Genome Research, 21(9):1512–1528, 2011.

10

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 10, 2021. ; https://doi.org/10.1101/2021.03.09.434414doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.09.434414
http://creativecommons.org/licenses/by/4.0/


F. Ronquist, M. Teslenko, P. Van Der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard, and J. P.
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