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Abstract

Background. A high-quality sequence alignment (SA) is the most important input feature for accurate protein
structure prediction. For a protein sequence, there are many methods to generate a SA. However, when given
a choice of more than one SA for a protein sequence, there are no methods to predict which SA may lead to
more accurate models without actually building the models. In this work, we describe a method to predict the
quality of a protein’s SA. Methods. We created our own dataset by generating a variety of SAs for a set of
1,351 representative proteins and investigated various deep learning architectures to predict the local distance
difference test (lDDT) scores of distance maps predicted with SAs as the input. These lDDT scores serve as
indicators of the quality of the SAs. Results. Using two independent test datasets consisting of CASP13
and CASP14 targets, we show that our method is effective for scoring and ranking SAs when a pool of SAs is
available for a protein sequence. With an example, we further discuss that SA selection using our method can
lead to improved structure prediction.

1 Introduction

All the top-performing groups in the most recent critical assessment of techniques for protein structure prediction
(CASP 2020) competition, including Alphafold2 [1], the Baker group [2], the Zhang group [3], and the tFold group
[4], have attributed their structure prediction accuracy to the quality of multiple sequence alignments (MSAs
or simply SAs in short), generated from the corresponding sequence. This highlights the criticality of SAs for
accurate structure prediction. Some groups are investigating if we can predict structures without using evolutionary
information. But the accuracy of these methods is significantly lower. Historically, a protein sequence’s SA
is understood to be a crucial component in predicting local secondary structures, residue-residue contacts, and
distances, and in finding homologous structural templates. Recent methods, however, use raw SA data as an input
to directly predict the three-dimensional structures. For example, methods such as Alphafold [5], Alphafold2 [1],
trRosetta [6], PrayogRealDist [7], RaptorX [8], tFold [4], and Multicom [9] predict structures or distances using a
SA as input.

Although all current protein structure prediction methods use SA generating methods such as HHBlits [10],
JackHmmer [11], and DeepMSA [12], there are several ways to generate a variety of SAs for a single protein
sequence. For example, AlphaFold uses three databases: UniRef90 [13], BFD [14], and MGnify [15] to obtain
related sequences by using HHblits, Jackhammr, and HHsearch to find potential templates. David Baker’s group
generated SAs using HHBlits using several rounds of iterative search against the Uniclust [16] database with e-
valued cutoffs gradually [17]. Additionally, they manually inspected the generated SAs to fine tune the e-value and
coverage cutoff in order to increase the metagenomic sequences. Similarly, Tencent lab uses a multi-MSA ensemble
[17] approach in their tFold method where they extract 83 groups of SA data from 6 different sequence databases
using HHblits, Jackhammr, and PSI-BLAST [18] with different combinations of e-values and iterations. We may
observe that all successful methods have their own procedures to generate SAs and it may be difficult to develop a
universal method of generating alignments. Also, it has been observed that the choice of a sequence database can
significantly affect the quality of the SA generated. For example, in the CASP14 competition, the tFold method
from Tencent Lab [4] had an accuracy of 35.13% when they used only one metagenomics database (metaclust50),
but after the CASP14 competition, they added the BFD metagenomic database to their method and the accuracy
significantly increased to 44.77%. Almost 10% improvement was achieved by adding just one additional database.

The quality of the SA generated determines the accuracy of the predicted structures, particularly in the case of
free-modeling or ab initio protein sequences. The case of the CASP14 target T1064 serves as an example. For this
target, Alphafold2 used a SA generated by their method to build the 3D models but the models generated had low
confidence. As a resolution, the group manually selected and added five additional sequences to the SA and re-ran
their pipeline. This helped them to achieve more confident models. Similarly, in a recently developed trRosetta
method [6], five different alternative alignments were generated using various databases and search algorithms. Four
different SAs were generated by searching the Uniclust30 database with HHblits using different e-value cutoffs and
by iteratively searching using HHblits followed by Hmmsearch against different metagenomic sequence databases.
The optimal SA was selected based on the average probability of the top-L predicted medium and long-range
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contacts. This SA selection improved the precision of the top-L prediction by 3.1% on the CASP13 FM set and
1.7% on the CAMEO hard targets over their baseline method. Also, in CASP14, the Zhang group generated
multiple sets of SAs using variants of their DeepMSA method [12]. The optimal SA was then selected based on
the highest cumulative TripletRes [19] probability for the top 10L contacts [17]. These examples further highlight
that selecting SA is a key for accurate structure prediction.

Despite this need for a method to rank predicted sequence alignments based on their quality (quality here
refers to the usefulness towards building 3D models), no methods have been developed for this purpose. If there
existed a method that could select the best alignment for each possible residue pair, a significant improvement of
the alignment quality could be gained [20]. Previous studies on SA quality [21, 22, 23] have focused on comparing
the performance of SA generation methods using the benchmark databases such as BaliBASE [24], OXBench
[25], PREFAB [26], SABmark [27] and IRMBASE [28]. Additionally, [29] describes the use of protein structure
predictions to measure the quality of the MSA and [30] describes the use of secondary structure predictions to
measure the alignment quality to create benchmarking methods ConTest and QuanTest respectively.

Although protein sequence alignments (SAs) can serve many purposes, in this work, our interest is in predicting
the utility of SAs towards accurate structure prediction, i.e., predicting how informative they are for the methods
that use them to drive structure prediction. Although it is well understood that the ultimate accuracy of structure
prediction depends on many factors other than just the input SA, in general, a SA is the first seed that guides the
entire structure prediction process. In this work, we have developed a deep learning-based method to rank multiple
sequence alignments based on their quality, i.e., their usefulness for building 3D models. Given a protein sequence
and a set of alignments generated for it using multiple methods, our method predicts local distance difference test
(lDDT) scores [31] of the distance maps that can be predicted from the SAs. An lDDT score is in the range of [0,
1], where a score of zero indicates a complete mismatch and a score of one suggests identical distance maps. These
lDDT scores serve as the alignment quality scores. Irrespective of the method that is used to generate a SA, we
predict a score for it. Subsequently, these SAs can be ranked by the scores for selection. Finally, to demonstrate
an additional application of our method, we illustrate how it can be used to improve the quality of a SA for 3D
structure prediction.

2 Methods

2.1 Defining SA quality using inter-residue distance lDDT score

We define the quality of a SA as its ‘inform-ability’ for accurate structure prediction. In the absence of a single
metric that can be used to assess the quality (utility towards building 3D models) of a SA, we consider the local
distance difference test (lDDT) score of the Cβ-distance map, predicted from the SA, as a score that reflects the
quality of the MSA. lDDT is a superposition-free score that evaluates differences in distance of all atoms in a model
[31]. We use the DISTEVAL tool [32] to calculate the Cβ-lDDT score by ignoring all the pairs below a sequence
separation of six residues. For an input SA, we further hypothesize that if we can predict the lDDT score of the
inter-residue (inter-Cβ) distance map predicted using the SA, then this score can be used as the SA’s quality.
Our hypothesis is based on the findings that accurate inter-residue distance prediction leads to accurate structure
prediction [5] [8] [6]. Ideally, one would develop an end-to-end pipeline that builds 3D models (as in AlphaFold2 [1])
and evaluate the accuracy of the models as the quality of the SA. However, developing a fully end-to-end method
that predicts 3D models from a SA input is not an easy task (at least as of now). Overall, our formulation of
predicting lDDT score as SA quality score serves as to be a useful method for ranking and selecting SAs when we
have a multiple choice of MSAs.

2.2 Datasets

For training and hyper-parameter optimization of our deep learning models, we curated a representative set of
1351 protein chains obtained from the CATH [33] structural classification database version 4.2. CATH classifies
protein structural domains into a hierarchy consisting of 5 levels - class (C), architecture (A), topology/fold (T),
superfamily (H), and family. At the topology level, proteins are grouped into fold families depending on the overall
shape and connectivity of the secondary structures. From each topology, we selected a protein with the highest
length, resulting in 1351 chains. Since we choose a longer protein when possible, around 40% of the proteins in our
training sets have L = 512 and the remaining are evenly distributed with various lengths. A random subset of 51
chains were used for validation, leaving the remaining for training. We chose the topology level because selecting
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proteins from a lower level of the hierarchy (for example, superfamily) results in a much larger set requiring
computational resources beyond our access.

In addition to the validation set for selecting the deep learning hyper-parameters, we curated two datasets
for testing. The first set is SAs predicted by the RaptorX method by the Xu group at the Toyota Technological
Institute for 16 CASP13 free-modeling targets. The dataset is available at https://home.ttic.edu/ jinbo/. For each
target, four SAs are generated with the following parameters: 1) uniclust30 database with e-value 0.001 (uce3), 2)
uniclust30 database with e-value 0.00001 (uce5), 3) uniref90 database with e-value 0.001 (ure3), and 4) uniref90
database with e-value 0.00001 (ure5). The second test dataset consists of SAs predicted by the Zhang group at
the University of Michigan for 33 protein targets in the CASP14 competition. For each protein target in this
dataset, up to 18 SAs are generated using variants of three techniques [3]: using the JGI database containing
more than 60 billion microbial genes (mMSA) [34], using the standard DeepMSA pipeline (dMSA), and using a
four-stage iterative searching of SAs (qMSA). The original dataset consisted of SAs for 84 targets, but we focused
on evaluating only the 33 proteins for which the native (true) structures are available.

2.3 Generating SAs for development

To prepare a diverse and representative SA dataset consisting of a wide range of quality, we generated five SAs for
each of the 1,351 proteins in our dataset. These SAs were generated using the following techniques: 1) running
HHblits [10] at an e-value threshold of 0.0001 (1e-4), coverage of 70%, and iteration set to three (we call these
SAs ‘Set A’), 2) e-value threshold of 0.001 (1e-3), coverage of 40%, and iteration set to three (Set B), 3) e-value
threshold of 0.1 (1e-1), coverage of 50%, and iteration set to three (Set C), 4) e-value threshold of 10 (1e1), coverage
of 30%, and iteration set to one (Set D), and 5) running Jackhmmer [11] with an e-value cutoff at 0.1 (1e-1) with
iteration value (n) set to 3 (Set E). We used the uniprot20 (2016 02 version) database with HHblits and uniref90
database with Jackhmmer. Consequently, our training and validation datasets consist of 6500 (1300 x 5) and 255
(51 x 5) examples, respectively. The mean (and standard deviation) of the lDDT scores of the trRosetta generated
alignments for the sets D, B, C, A, and E are 0.208 (0.15), 0.218 (0.16), 0.239 (0.13), 0.26 (0.13), and 0.29 (0.18),
respectively. Overall, by changing alignment generation parameters such as e-value, coverage, and iteration count,
we generated different types of SAs ranging from low to high quality so that our dataset is representative.

2.4 Feature generation

For each SA in our training and validation set, we generated a covariance matrix (441 2D channels), amino acid
composition (20 1D feature channels), position-specific frequency matrix (21 1D features), and positional entropy
(1D feature) where the one dimensional features are translated into 2D (2 x 42 = 84 channels) features by tiling and
‘transposing followed by tiling’ to build input features that can be supplied to a deep learning model. For generating
these features, we adapted the scripts in the trRosetta package available at https://github.com/gjoni/trRosetta.
We also used the Cβ-distogram predictions made by using trRosetta and a single-channel distance map prediction
obtained by ‘flattening’ the distogram as additional input features. A single distogram is a 37-channel tensor where
each channel represents the probability of 37 bins. There are 36 bins which are equally spaced with 0.5 Å and
one extra bin for distances larger than 20 Å. Flattening here refers to the process of translating a multi-channel
distogram into a single channel 2D distance map by computing the average of the lower-bound and upper-bound
distances of the range with the highest probability for each residue pair. For example, if the bin [6.5, 7] Å has the
highest confidence for a residue pair i and j, then the flattened distance between i and j is 6.75 Å. To summarize
all of our input features for a protein sequence, we have one SA that translates into a 564 channel volume: 526
channels obtained from the trRosetta scripts, 37 channels from the predicted distogram, and one additional channel
from the flattened distogram.

2.5 Label generation and deep learning training

For each SA in our dataset, we have a volume (3D features derived from the MSA) as the input and an lDDT
score (scalar value) as the output label for training a deep learning model. Specifically, for each SA we first
obtain the 564 channel tensor as the input feature and a corresponding lDDT score (calculated by comparing the
flattened distance map predicted using trRosetta and a true distance map) as the label for loss calculation during
deep learning training. This setting is similar to the image classification problem in computer vision, the difference
being a continuous value (regression problem) as an output instead of a class (classification problem). As evaluation
metrics, we used Mean absolute error (MAE) and Pearson correlation coefficient (PCC) to calculate the correlations
between the lDDT score of the distance map predicted from SA (true label) with the lDDT score predicted by our
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deep learning model (predicted model output). We started our model architecture search experiments with the
traditional VGG16 [35] architecture. However, because of a large model size (number of parameters), the training
time per epoch was high, so we switched to testing other architectures. We also experimented with variants of
ResNets [36] and also designed our own networks similar to the VGG16 with a smaller number of parameters. None
of these networks achieved a PCC higher than 0.8.

Inspired by the recent success of EfficientNets [37], we tested variants of EfficientNets for predicting lDDT scores
and observed remarkable improvements in the prediction accuracy. Developers of the EfficientNet architectures
have proposed a new compound scaling method that uniformly scales the network width, depth, and resolution.
EfficientNets have performed remarkably well in the field of computer vision, achieving much higher accuracy
and efficiency than previous ConvNets architectures. In particular, on the ImageNet dataset, EfficientNet-B7
architecture has 84.1% top-1 accuracy, which is a state-of-art performance [37]. Impressively, it is 8.4 times smaller
and 6.1 times faster than the previous state-of-the-art ConvNet architectures. In terms of top-1 accuracy, even a
much smaller version of EfficientNet, the EfficientNet-B1 architecture, is demonstrated to achieve 79.1% accuracy,
outperforming ResNet-152 [36] (77.8%), DenseNet-264 [38] (77.9%), Inception-v3 [39] (78.8%), and Xception [40]
(79%). For our model development, we used the smallest version of EfficientNet, known as Efficientnet-B0. We
adapted the existing implementation of this network in Keras so that it can accept inputs of different sizes since
proteins can be of arbitrary length. We first designed a large model that can accept a protein up to 512 residues long
sequences and padded all shorter proteins’ input features with zeros. We call this model M-512. Upon suspecting
that such a large model may not perform well for short proteins, we designed three separate models of small,
medium, and large size. Specifically, we designed: 1) a model that accepts a SA of a protein sequence up to 128
residues with input ‘shape’ fixed at 128 x 128 x N, i.e, the model can only accept sequences up to 128 residues
(M-128), 2) another that accepts up to 256 residues with 256 x 256 x N input (M-256), and 3) another one that
accepts up to 512 residues with 512 x 512 x N input (M-512). N is the number of input feature channels, which
is equal to 564 here. We also added extra layers at the end of the network to predict a single continuous value.
Specifically, we added a ‘Batch Normalization’ layer followed by a 2D convolution layer with a single filter and
rectified linear unit (ReLU) as an activation function. As the last layer, we added a ‘Global Average Pooling’ layer
to ensure that a single value is predicted regardless of the input size. Figure 1 summarizes our workflow and the
block diagram of our architecture. All networks have 4,231,158 parameters each, regardless of the input size.

Figure 1: Workflow of our method. The features generated from the SA, including covariance matrix and PSSM,
are concatenated with the distogram predictions by trRosetta to create a volume with 564 channels which becomes
the input to the deep learning module. The network architecture based on EfficientNet-B0 then predicts an lDDT
score.

We describe our training process next. Since our deep learning models are designed to predict an lDDT score,
a real number, our supervised learning is a regression problem. We chose mean absolute error (MAE) as the loss
function for calculating loss during training. In addition to evaluating the model using MAE, we also calculated
the Pearson’s correlation coefficient (PPC) between the true lDDT and predicted lDDT of the validation set as
our metric to determine the accuracy of the models. At first, we trained our M-128 model. Since most proteins
in our dataset are longer than 128 residues, to train this 128-size model, we chose a 128-length sub-sequence at a
random position and calculated the true lDDT score for this sub-sequence as the true label. In other words, for
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proteins longer than 128 residues, we chop out an input volume of size 128 x 128 x 564 at a random location along
the diagonal from the input volume of size L x L x 564, when L > 128. Since we implement this using Keras Data
Generators, it also serves as a method for data augmentation. If the size of the protein is smaller than 128, we pad
the input volume with zeros to make it 128 x 128 x 564. We trained this model for a total of 128 epochs, monitoring
the overall performance using MAE at each epoch and PCC at 16, 32, 48, 64, 96, and 128 epochs. Using a similar
approach, we trained the M-256 model. Since a bigger model takes much longer to train, for our M-512 model, we
used pre-trained weights from the M-256 and trained only for 8 epochs in order to train faster. For each model, the
network weights that deliver the lowest MAE on the validation set are saved as the optimal model. Nesterov-adam
(nadam) [41] was chosen as an optimizer.

In a Ubuntu server with dual 4215R 3.2GHz CPUs, 128 GB of RAM, and two NVIDIA Quadro RTX 6000
GPUs, each with 24 GB GPU-memory, one epoch of training the M-256 model takes around 6 hours to complete
and M-512 takes around 9.5 hours. All the five sets of input features for our 1353 proteins in the development set
occupy around 1.4 terabytes (TB) of space and were stored in solid-state disks (SSDs) for faster access. Python
along with the supported libraries Tensorflow, Keras, Scikit-learn, and Numpy were used for development.

3 Results

3.1 Deep learning model selection using the validation set

In this problem of taking a protein SA as input and predicting an lDDT score, a key challenge is to design a deep
learning model that can accept a SA for a protein of arbitrary length and predict a single score. A solution is to
design a large model, say for example, a model that can accept proteins up to 512 residues in length and use the
model for all protein lengths. To train such a model, input features for all the proteins shorter than 512 residues
should be padded. However, such a model could be biased towards predicting the lDDT of longer proteins (close
to 512 residues) more accurately. Hence, we designed three models: one that accepts proteins up to 128 residues in
length (M-128), one that accepts proteins up to 256 residues (M-256), and finally one up to 512 residues (M-512).
We also evaluated the performance when we selected one of the three models at runtime based on the input size
(M-Select). Specifically, to generate M-Select prediction for a protein of length L, M-128 is selected if L ≤ 128,
M-256 is selected if 128 < L ≤ 256, and M-512 is selected if 256 < L ≤ 512. For example, if the input protein
length is 120, lDDT prediction from M-128 is chosen as the predicted lDDT. Similarly, if the input length is 450,
M-512 is selected for predicting lDDT. Our objective of designing M-128 and M-256 is to check if these models
outperform M-512 for shorter proteins.

Our validation dataset consisting of 51 proteins (each with five SAs) was used to investigate which of the four
models (M-128, M-256, M-512, or M-Select) performs the best for proteins of all lengths. For this investigation, we
predicted lDDT scores for all the 255 (51 x 5) SAs in the validation set using the four models and compared the
scores with true lDDT scores. For calculating true lDDT scores, ‘distograms’ predicted by trRosetta were evaluated
against the true PDB structures using DISTEVAL [32]. The five SAs for each protein (Set A through Set E) are
generated using various alignment generation tools and various parameters for running these tools with an overall
goal of generating SAs of diverse quality (see Methods).

Figure 2 shows a comparison of true and predicted lDDT scores for M-128, M-256, M-512, and M-Select, for
all five sets of SAs in the 51 validation proteins. It can be observed that the true-vs-prediction scatter plot for
M-512 is more accurate than M-128 and M-256. The Pearson’s correlation coefficient (PCC) calculated between
true lDDT scores and predicted lDDT scores confirm this observation—PCC values are 0.83, 0.87, and 0.93 for
M-128, M-256, and M-512 respectively. Comparison of M-512 and M-Select using PCC values also shows that the
two models have similar performance—PCC values are 0.93 and 0.95 for M-512 and M-Select. Since our M-Select
method requires all three methods and M-512 is a single model, we chose to use M-512 as our final method for
evaluation on other test datasets. The true-vs-prediction plot for M-512 also illustrates that the model is not biased
towards longer proteins. Detailed PCC calculations for each of the four models and each of the five SA sets are
reported in Table S1.

3.2 Identifying high-quality SAs via lDDT predictions

Our deep learning model that predicts lDDT score may be used to blindly select a high-quality SA from a pool of
SAs. In addition to our validation set, two additional independent datasets are included to discuss our evaluation of
SA selection. In our validation set, we have 51 protein sequences, each of which has five different SAs generated (set
A through set E) with a variety of quality. Our first independent test set consists of 16 proteins in the free-modeling
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Figure 2: True vs. predicted Cβ-lDDT scores for 51 proteins in the validation set predicted using the four methods:
M-128, M-256, M-512, and M-Select. The bubble sizes in all plots correspond to the relative lengths of the proteins,
and the color of the points represent the methods used to generate the SAs. Pearson’s correlation coefficient for
M-128, M-256, M-512, and M-Select are 0.83, 0.87, 0.93, and 0.95, respectively.

category of the CASP13 competition, each of which has four SAs. The second independent test set consists of 33
proteins released as targets in the CASP14 competition for which the Zhang group predicted up to 18 SAs. For
each SA generated for all of these 100 proteins (51 validation + 16 CASP13 + 33 CASP14), we ran trRosetta to
generate input features and ran M-512 to predict lDDT scores. From a pool of SAs for each protein, the SA with
the highest predicted lDDT score was selected as the top/best predicted MSA. For evaluation, in each data set, we
compare the mean lDDT of our top selected SAs with each individual SA generation method.

Figure 3, where we report the summary of our results, shows that for all three datasets, the true mean lDDT
scores of the SAs selected by M-512 are higher than any of the individual SA generation methods. For the validation
set, the SA generation technique in Set E is best with an average lDDT score of 0.294. Using M-512 to select the
best MSA, we obtain a mean lDDT of 0.34. Similarly, for the CASP13 free-modeling set consisting of 16 proteins,
SAs selected by M-512 are slightly better (lDDT 0.341 versus 0.337). In this dataset, only a slight improvement is
observed over the best SA generation method because of two reasons: 1) the number of choices is limited to four,
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Figure 3: True mean lDDT scores for sequence alignments (SAs) generated using various techniques for the val-
idation dataset (top left plot), the CASP13 FM set (top right plot), and the CASP14 Zhang set (bottom plot).
True lDDT scores were obtained by evaluating the trRosetta predicted ‘distograms’ and serve as an indicator of
the quality of the overall SA generation method. The mean lDDT score of the top selected SA, using the M-512
model’s scoring, is also reported (green bars). For each dataset, the maximum possible mean lDDT score (the
performance of an ideal predictor) is also shown using dotted grey lines.

and 2) the pool does not contain high-quality SAs as the maximum possible lDDT (if we knew the best alignment)
is only 0.36. Finally, significant improvements are observed in the case of the CASP14 dataset consisting of 33
proteins. Of the 18 alignment generation methods, the best alignment generation method, ‘qMSA’, has the highest
average lDDT of 0.289. When the highest-scored SA is selected based on the M-512 predicted lDDT score, the
average lDDT score increases to 0.316. This average lDDT is slightly less than the maximum possible lDDT score
of 0.323, i.e, the average lDDT if we knew the best SA for each protein. For all three evaluation datasets, the
Pearson’s correlation coefficients (PCC) between the true and predicted lDDT scores for each set of MSAs are
higher than 0.8 in most cases. These results are reported in Table S2.

To investigate why our method is not as effective in selecting the best SA for the CASP13 set as for the
validation set and the CASP14 set, we sought to experiment by adding a set of higher quality SAs to the pool of
SAs. Specifically, in addition to the four SA sets in the CASP13 set, we added another set of SAs generated in the
trRosetta work. These SAs are accessible at https://yanglab.nankai.edu.cn/trRosetta/. The average true lDDT
of the distogram predictions obtained from these SAs is 0.437, which is much higher than for any of the four sets
(mean lDDT scores with 0.305, 0.296, 0.335, and 0.337). After adding this SA set, we re-ran our M-512 model.
The average true lDDT score of the SA selected by M-512 is 0.439, which is slightly higher than the trRosetta set.
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Of the 16 proteins, M-512 correctly selected the best SA for 14 proteins.
To further cross-check our method of SA ranking and selection, for the 33 protein sequences in the Zhang

CASP14 set, we compared our method with Zhang group’s SA selection and ranking presented in the CASP14
conference by the group [3]. The Zhang dataset also includes a SA named ‘protein.a3m’ that the group selected
as the final alignment for distance and structure prediction. For each protein, the Zhang group had scored and
ranked SAs using their in-house method that selects the best SA among the 18 SAs based on the highest cumulative
TripletRes [19] predicted probability for the top 10 L contacts [17]. Here, L refers to the target sequence length. The
average lDDT score of these 33 SA files (‘protein.a3m’ files) selected by the Zhang method is 0.312. For calculating
this lDDT score, we used the alignment as input to the trRosetta pipeline and evaluated predicted distances using
DISTEVAL, i.e., the same process used for calculating all other lDDT scores in this work. This lDDT score of
0.312 can be viewed as a benchmark for assessing our methods. For the same set, ranking and selecting SA using
our M-512 method, on the other hand, we obtain an average lDDT score of 0.316. These results suggest that our
M-512 method performs on par or better than the Zhang group’s SA scoring and selection method.

3.3 An alternative method for feature generation

Figure 4: Comparison of lDDT scores of distograms predicted by trRosetta and ProSPr for the 33 targets (times
18 SA combinations) in the CASP14 dataset. Pearson’s correlation coefficient between the two sets is 0.95.

For our experiments, we chose to use the features and distogram predictions from trRosetta, but there are
alternatives. For example, the ProSPr [42] method also runs entirely on Tensorflow and predicts distograms. To
fully validate that our method development is independent of the choice of a feature generation tool, we would
need to generate the features using an alternative method such as ProSPr and repeat our training and evaluation.
However, if the lDDT scores predicted by trRosetta and ProSPr are the same (or close) then repeating the training
experiments can be considered redundant. Hence, we sought to compare the lDDT scores predicted by ProSPr and
trRosetta using the same input SAs. For this comparison, we chose the CASP14 dataset consisting of 33 proteins
and 18 sets of alignments. On this dataset, for the 18 SA sets, the Pearson’s correlation coefficient (PCC) between
lDDT scores calculated from distograms predicted by trRosetta and by ProSPr range from 0.92 to 0.97. The overall
PCC between all the lDDT scores from trRosetta and ProSPr distances is 0.95. The comparison of lDDT scores in
Figure 4 shows that the lDDT scores for ProSPr are slightly lower than that of trRosetta. One possible reason for
the lower lDDT of ProSPr predicted distograms is because the distograms by ProSPr have bigger bins of 2 Å range
(0-4 Å, 4-6 Å, 6-8 Å, etc.) compared to more granular trRosetta’s bins of 0.5 Å (2-2.5 Å, 2.5-3 Å, 3-3.5 Å, etc).
During the flattening process, smaller bins translate to higher resolution distances, causing the flattened distance
map to yield a higher lDDT score.
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3.4 Selecting SA leads to more accurate structure prediction

In this section, we discuss the application of SA selection to build more accurate protein three-dimensional (3D)
models. From our CASP14 dataset, we selected all single-domain targets with less than 250 residues (L ≤ 250)
and built 3D models using DISTEVAL [32], which extends CONFOLD [43] to accept distance restraints instead
of contacts. For these 18 targets, we built 3D models with SAs from the the best alignment generation method
‘qMSA’. The average TM-score of the top-one model (out of 20 model decoys), in this case, is 0.388. On the
other hand, the average TM-score for the top-one model generated using the SAs selected by M-512 is 0.401, with
improvement observed in 13 out of 18 cases. Our model building method, however, is naive and the decoy size is
only a handful (20 models). Hence, our results only serve as proof of the concept and improvements should be
much more remarkable if more powerful methods such as Rosetta [44] or i-Tasser [45] are used. Detailed results
are reported in Table S3. Finally, with a CASP14 free-modeling (hard) target T1041 (L = 242) as an example,
next we discuss how improved SA selection can lead to improved structure prediction. For this target, the Zhang
group had a total of twelve SA predictions using their DeepMSA2 method and additional six SAs using the JGI
database—18 SA options in total. These SAs yield a variety of true lDDT scores ranging from 0.007 to 0.46. The
TM-score of the top-one model (out of 20) with ‘qMSA’ SA as the input is 0.62. The ‘qMSA’ method of alignment
generation is the best of all 18 methods. Prediction of lDDT scores using our method M-512 and ranking, enabled
us to precisely select the best SA as our top one. The TM-score of the top model for this top-ranked SA is 0.71
(see Figure S1). This example demonstrates that SA selection can be effectively used to select high-quality SAs
from a pool of SAs and can ultimately help in building more accurate 3D models.

3.5 Bootstrapping to improve SA quality

As an additional example application of our method in the field of structure prediction, we investigated if the
quality of a SA can be improved even in the absence of a native structure for the input protein sequence. A
sequence alignment constitutes of aligned sequences and each of them contribute to the overall quality of the SA.
When building a SA via remote sequence-homology search, poor quality sequences also get collected. This follows
that if we bootstrap, i.e., randomly sub-sample sequences from a SA, and create a new SA, there is a probability
that such a sub-SA has a higher quality. If we generate many such sub-SAs, some of these decoy sub-SAs may be
better in quality than the original SA. To test this hypothesis, we randomly selected 15 protein targets within the
CASP13 set and generated 100 sub-SAs for each of the four SA sets (uce0, uce3, ure3, and ure5), by removing up
to 40% of the sequences selected randomly. These 100 decoy SAs were then passed through our M-512 model to
predict the lDDT scores and the SAs within the SA set were ranked using the predicted scores. Finally, for each
SA set, we compared the true lDDT score of the top-ranked sub-SA as well as the best sub-SA among the top-5
sub-SAs (ranked by predicted lDDT) with the true lDDT of the original SA. Our results show that we could obtain
a higher quality SA for 49 out of 60 cases with up to 12.68% improvement in lDDT score (see Table S4). These
results suggest that, in future, advanced methods of bootstrapping and generating more decoys will likely yield
significantly better results.

4 Conclusion

In this work, we demonstrated that protein sequence alignments (SAs) can be scored with the help of deep learning
without building three-dimensional models. We also illustrated that selecting a high-quality SA from a pool of SAs
can lead to more accurate structure predictions. Our findings suggest that deep learning can be useful for not just
selecting an SA from a pool but also to sieve poor quality sequences out from a given SA. We also speculate that
using more recent deep learning architectures such as attention networks can also lead to more accurate results.

5 Availability

Our methods and data are available at https://github.com/ba-lab/Alignment-Score/.
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[18] Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997)
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids re-
search, 25(17), 3389–3402.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.14.456366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.14.456366
http://creativecommons.org/licenses/by-nc/4.0/


[19] Li, Y., Zhang, C., Bell, E. W., Zheng, W., Zhou, X., Yu, D.-J., and Zhang, Y. (2021) Deducing high-accuracy
protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks.
PLoS computational biology, 17(3), e1008865.

[20] Elofsson, A. (2002) A study on protein sequence alignment quality. Proteins: Structure, Function, and Bioin-
formatics, 46(3), 330–339.

[21] Ahola, V., Aittokallio, T., Vihinen, M., and Uusipaikka, E. (2006) A statistical score for assessing the quality
of multiple sequence alignments. BMC bioinformatics, 7(1), 1–19.

[22] Aniba, M. R., Poch, O., and Thompson, J. D. (2010) Issues in bioinformatics benchmarking: the case study
of multiple sequence alignment. Nucleic acids research, 38(21), 7353–7363.

[23] Wang, Y., Wu, H., and Cai, Y. (2018) A benchmark study of sequence alignment methods for protein clustering.
BMC bioinformatics, 19(19), 95–104.

[24] Thompson, J. D., Koehl, P., Ripp, R., and Poch, O. (2005) BAliBASE 3.0: latest developments of the multiple
sequence alignment benchmark. Proteins: Structure, Function, and Bioinformatics, 61(1), 127–136.

[25] Raghava, G., Searle, S. M., Audley, P. C., Barber, J. D., and Barton, G. J. (2003) OXBench: a benchmark
for evaluation of protein multiple sequence alignment accuracy. BMC bioinformatics, 4(1), 1–23.

[26] Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic
acids research, 32(5), 1792–1797.

[27] Van Walle, I., Lasters, I., and Wyns, L. (2005) SABmark—a benchmark for sequence alignment that covers
the entire known fold space. Bioinformatics, 21(7), 1267–1268.

[28] Subramanian, A. R., Weyer-Menkhoff, J., Kaufmann, M., and Morgenstern, B. (2005) DIALIGN-T: an im-
proved algorithm for segment-based multiple sequence alignment. BMC bioinformatics, 6(1), 1–13.

[29] Fox, G., Sievers, F., and Higgins, D. G. (2016) Using de novo protein structure predictions to measure the
quality of very large multiple sequence alignments. Bioinformatics, 32(6), 814–820.

[30] Le, Q., Sievers, F., and Higgins, D. G. (2017) Protein multiple sequence alignment benchmarking through
secondary structure prediction. Bioinformatics, 33(9), 1331–1337.

[31] Mariani, V., Biasini, M., Barbato, A., and Schwede, T. (2013) lDDT: a local superposition-free score for
comparing protein structures and models using distance difference tests. Bioinformatics, 29(21), 2722–2728.

[32] Adhikari, B., Shrestha, B., Bernardini, M., Hou, J., and Lea, J. (2021) DISTEVAL: a web server for evaluating
predicted protein distances. BMC bioinformatics, 22(1), 1–9.

[33] Pearl, F. M., Bennett, C., Bray, J. E., Harrison, A. P., Martin, N., Shepherd, A., Sillitoe, I., Thornton, J., and
Orengo, C. A. (2003) The CATH database: an extended protein family resource for structural and functional
genomics. Nucleic acids research, 31(1), 452–455.

[34] Chen, I.-M. A., Chu, K., Palaniappan, K., Ratner, A., Huang, J., Huntemann, M., Hajek, P., Ritter, S.,
Varghese, N., Seshadri, R., et al. (2021) The IMG/M data management and analysis system v. 6.0: new tools
and advanced capabilities. Nucleic Acids Research, 49(D1), D751–D763.

[35] Simonyan, K. and Zisserman, A. (2014) Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556,.

[36] He, K., Zhang, X., Ren, S., and Sun, J. (2016) Deep residual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition pp. 770–778.

[37] Tan, M. and Le, Q. (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. , pp.
6105–6114.

[38] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017) Densely connected convolutional
networks. , pp. 4700–4708.

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.14.456366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.14.456366
http://creativecommons.org/licenses/by-nc/4.0/


[39] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016) Rethinking the inception architecture
for computer vision. , pp. 2818–2826.

[40] Chollet, F. (2017) Xception: Deep learning with depthwise separable convolutions. , pp. 1251–1258.

[41] Dozat, T. (2016) Incorporating nesterov momentum into adam. ,.

[42] Billings, W. M., Hedelius, B., Millecam, T., Wingate, D., and Della Corte, D. (2019) ProSPr: democratized
implementation of alphafold protein distance prediction network. BioRxiv, p. 830273.

[43] Adhikari, B., Bhattacharya, D., Cao, R., and Cheng, J. (2015) CONFOLD: residue-residue contact-guided ab
initio protein folding. Proteins: Structure, Function, and Bioinformatics, 83(8), 1436–1449.

[44] Park, H., Lee, G. R., Kim, D. E., Anishchenko, I., Cong, Q., and Baker, D. (2019) High-accuracy refinement
using Rosetta in CASP13. Proteins: Structure, Function, and Bioinformatics, 87(12), 1276–1282.

[45] Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., and Zhang, Y. (2015) The I-TASSER Suite: protein structure
and function prediction. Nature methods, 12(1), 7–8.

13

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 15, 2021. ; https://doi.org/10.1101/2021.08.14.456366doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.14.456366
http://creativecommons.org/licenses/by-nc/4.0/

