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ABSTRACT
We present and review Coupled Two Way Clustering,
a method designed to mine gene expression data. The
method identifies submatrices of the total expression ma-
trix, whose clustering analysis reveals partitions of samples
(and genes) into biologically relevant classes. We demon-
strate, on data from colon and breast cancer, that we are
able to identify partitions that elude standard clustering
analysis.
Availability: Free, at http://ctwc.weizmann.ac.il.
Contact: eytan.domany@weizmann.ac.il
Supplementary Information: http://www.weizmann.
ac.il/physics/complex/compphys/bioinfo2/

INTRODUCTION

Two nearly concurrent recent advances - the development
of high density DNA chips and the deciphering of the hu-
man genome - hold great promise for significant progress
in biomedical research. A large umber of studies have been
published within the last years, attempting to classify, ex-
plain and perhaps help cure several human diseases, on
the basis of gene expression levels measured for popula-
tions of diseased and healthy subjects. Different forms of
cancer have been at the focus of such studies from early
on, using all available chip technologies.
A DNA chip measures simultaneously the expression

levels of thousands of genes for a particular sample. Since
a typical experiment on human subjects provides the ex-
pression profiles of several tens of samples (say Ns ≈ 100),
over several thousand (Ng) genes whose expression levels
passed some threshold, the outcome of such an experiment
contains between 105 and 106 numbers. These are summa-
rized in an Ng×Ns expression table; each row corresponds
to one particular gene and each column to a sample, with
the entry Egs representing the expression level of gene g in
sample s. Analysis of such massive amounts of data poses
a serious challenge for the development and application of
novel methodologies.
We present here Coupled Two Way Clustering (CTWC),

a recently introduced method (Getz et al., 2000), de-

signed to ”mine” gene expression data, and demon-
strate its strength by applying it to breast cancer and
colon cancer data. The CTWC software is accessible at
http://ctwc.weizmann.ac.il (Getz and Domany 2002).

CTWC is based on clustering, and as such it is unsuper-
vised and capable of discovering unanticipated partitions
of the data, exploring its structure on the basis of correla-
tions and similarities that are present in it. In the context
of gene expression, such analysis has two obvious goals:
1. Find groups of genes that have correlated expression
profiles. The members of such a group may take part in
the same biological process.
2. Divide the tissues into groups with similar gene ex-
pression profiles. Tissues that belong to one group are
expected to be in the same biological (e.g. clinical) state.
The straightforward way to carry out such analysis is to
cluster the data in two ways. Denote the set of all genes
that passed a threshold by G1 and the set of all samples
by S1. Each gene is a point in an |S1| dimensional space;
the first clustering operation, G1(S1), clusters all genes on
the basis of their expression levels over all samples. The
complementary operation, S1(G1), clusters the samples
on the basis of their expression levels over all |G1| genes.
A variety of clustering methods have been used to perform
these operations. Clustering is based on some measure of
similarity of pairs of samples s, s′ which, in turn, is gov-
erned by their ”distance” in the |G1| dimensional space of
expression levels.

As several groups noticed (Perou et al., 2000; Cheng
and Church, 2000; Califano et al., 2000), one runs into a
severe difficulty with this simple ”all against all” cluster-
ing approach. The reason is that in general only a small
subset of Nr relevant genes is involved in one particular
biological process of interest. Since usually Nr << |G1|,
the ”signal” provided by this subset may be completely
masked by the ”noise” generated by the much larger num-
ber of the other genes. Furthermore, it may well happen
that in order to assign samples into two clinically meaning-
ful classes (e.g. adenoma and carcinoma) on the basis of
the Nr relevant genes, one must first remove a previously
identified group of samples (e.g. healthy tissue), and clus-
ter only the remaining N ′

s < Ns tumors (using only the Nr
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relevant genes). Thus one should look for special Nr ×N ′
s

submatrices of the total expression matrix; such a search is
problematic since an exhaustive enumeration of such sub-
matrices is of exponential complexity. CTWC provides a
heuristic method to search for such submatrices. It has
been used successfully to mine data (Getz et al., 2000)
from experiments on colon cancer (Alon et al., 1999) and
leukemia (Golub et al., 1999), glioblastoma (Godard et al.,
2002), breast cancer (Kela 2001) and antigen chips (Quin-
tana et al., 2002). We present here results obtained by a
new, more interactive usage of CTWC on cDNA microar-
ray data from breast cancer (Perou et al.2000, referred to
as PAL; Sorlie et al., 2001, referred to as SAL) and on
oligonucleotide microarray data from colon cancer patients
(Notterman et al., 2001).

The analysis of Notterman et al.stopped at two way
clustering, which is the first step of CTWC - here our aim
is to demonstrate that by going beyond this step we un-
cover new partitions of the samples. The situation with
the breast cancer data is more interesting. PAL noticed
that simple two way clustering did not partition the sam-
ples in a meaningful way, and pruned their original set
of |G1| = 1753 down to 496 ”intrinsic genes”, that were
selected in a knowledge based way (which can be applied
only if the data contains pairs of samples taken from the
same patients). CTWC also identifies (much smaller) sets
of genes that are used to cluster the samples, but it is done
in an automated, objective, generally applicable way. It
was not clear a priori that CTWC will reproduce the valu-
able observations of PAL and SAL, and even less that it
will yield new results of possible biological or clinical sig-
nificance.

MATERIALS AND METHODS

Expression data - breast cancer. We studied two
data sets on breast cancer. The first expression matrix
was measured and analyzed by PAL and the second by
SAL. The PAL study characterizes gene expression pro-
files of 84 samples (the set S), composed of 65 tumors
(sample set S1) and 19 cell lines, using cDNA microar-
rays, representing 8,102 human genes. Twenty of the 65
tumors were sampled twice; 18 from patients who were
treated with doxorubicin (chemotherapy) for an average
of 16 weeks, with surgical biopsy done before and after

the treatment, and two more tumors were paired with a
lymph node metastasis from the same patient. The 25
remaining specimens included 22 tumors and three sam-
ples from normal breast tissues (nevertheless, we refer to
these also as ”tumors”). The full expression matrix in-
cluded 8,102 rows, each corresponding to a gene, and 84
columns, each corresponding to a sample. PAL first se-
lected the subset of genes whose expression varied by at
least 4-fold from the median of the samples, in at least
three of the samples tested. This filtering process left the
set G1 of 1753 genes, each of which is represented by 84
expression values. In the final expression matrix PAL split

the data into two submatrices; one of tissues and one of
cell lines. The two submatrices were, separately, median
polished (the rows and columns were iteratively adjusted
to have median 0) before being rejoined into a single ma-
trix. The expression matrix was two-way clustered; clus-
tering the genes on the basis of the 84 samples [operation
G1(S)], and clustering the 65 tumors using all 1753 genes
[S1(G1)]. Since S1(G1) did not yield any meaningful par-
tition, PAL concluded that the 1753 genes were not an
optimal set to classify the tumors, and they selected a
subset G(int) of 496 ”intrinsic” genes in the following way.
They calculated for each gene an index that measures the
variation of it’s expression between different tumors ver-
sus between paired samples from the same tumor. They
ranked all 8102 genes according to this index, and chose
the 496 top scorers. They argued that the expression levels
of the top scorers on this list represent inherent properties
of the tumors themselves rather than just differences be-
tween different samplings. From this point on they used
the 496×65 expression level matrix to cluster the genes of
G(int) and the tumors S1. This data is publicly available
at the Stanford website (see PAL).

The second study of breast cancer, by SAL, character-
ized gene expression profiles of 85 tissue samples repre-
senting 84 individuals. 78 of these were breast carcino-
mas (71 ductal, five lobular, and two ductal carcinomas
in situ, obtained from 77 different individuals; two tumors
were from one individual, diagnosed at different times) 3
were fibroadenomas and 4 were normal breast tissue sam-
ples were also included; three of these were pooled normal
breast samples from multiple individuals (CLONTECH).
These 85 samples included 40 tumors that were previously
analyzed and described by PAL. Fifty-one of the patients
were part of a prospective study on locally advanced breast
cancer (T3/T4 and/or N2 tumors) treated with doxoru-
bicin monotherapy before surgery followed by adjuvant ta-
moxifen in the case of positive ER and/or progesterone
receptor (PgR) status (Geisler et al., 2001). All but three
patients were treated with tamoxifen. ER and PgR sta-
tus was determined by using ligand-binding assays, and
mutation analysis of the TP53 gene was performed as de-
scribed in Geisler et al.. The cDNA microarrays used in
this study were from several different print runs that all
contained the same core set of 8,102 genes. In total, the 85
microarray experiments were carried out by using six dif-
ferent batches of microarrays and three different batches
of common reference, each independently produced. SAL
performed cluster analysis on two subsets of genes. One
subset, of 456 cDNA clones (427 unique genes), was se-
lected from the 496 ”intrinsic” gene list, previously de-
scribed by PAL. The second subset consisted of 264 cDNA
clones, that exhibit high correlation with patient survival,
were selected from the set G1 of 1753 genes. Clustering
analysis and patient classifications were based on the total
set of 78 malignant breast tumors. Survival analysis was
based on 49 patients with locally advanced tumors and
no distant metastases (two of the 51 patients from this
prospective study were retrospectively recorded to have
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a minor lung deposit and a liver metastasis, respectively)
that were treated with neoadjuvant chemotherapy and ad-
juvant tamoxifen (Geisler et al., 2001)
Expression data - colon cancer. In addition, we
studied a data set on colon cancer, previously published
by Notterman et al. The data set contains 22 tumor
samples; 18 carcinoma and 4 adenoma, and their paired
normal samples. The experiments with carcinoma and
paired normal tissue were performed with the Human 6500
GeneChip Set (Affymetrix), and the experiments with
the adenomas and their paired normal tissue were per-
formed with the Human 6800 GeneChip Set (Affymetrix).
First, following Notterman et.al, we created a compos-
ite database that included only accession numbers repre-
sented on both GeneChip versions. Values lower than 1
were adjusted to 1. Prior to application of CTWC, we
filtered the data using a filtering operation very close to
that used by Notterman et.al, remaining with 1592 genes.
Data from the two different chips were brought to the
same average expression level. The data was then log-
transformed, centered about the mean and normalized.
Second, we studied the 18 paired carcinoma samples sepa-
rately. Of the 6600 cDNAs and ESTs represented on the
array, only genes for which the standard deviation of their
log-transformed expression values was greater than 1, were
selected. After this filtering process we remain with 768
genes. These values were centered and normalized, prior
to application of the CTWC algorithm. The samples were
labeled according to additional information about the his-
tological characteristics of the tumor samples, the esti-
mated percentage of contamination with non-tumor cells,
the presence of mutations in the p53 gene, the clinical dis-
ease stage and the mRNA extraction protocol that has
been used.

ALGORITHM

Since both SPC and CTWC have been described in detail
elsewhere, we present here only brief, albeit self contained
reviews of the procedures.

SUPERPARAMAGNETIC CLUSTERING - SPC

The idea behind this algorithm is rooted in the physics
and phase transitions of disordered magnets (Blatt et al.,
1996; for a detailed description see Blatt et al., 1997).
The four-step procedure presented here uses terminology
of graph theory, which is more familiar to computer scien-
tists.

Step 1: Weighted graph. N data points are associ-
ated with ”positions” Xi in a D-dimensional space; they
constitute N nodes of a graph. Each node is connected by
an edge to its neighbors. We identify the neighbors j of
each node i on the basis of the distances dij = |Xi − Xj |
1; the two points are neighbors if j is one of the K clos-

1Normally Euclidean distances are used.

est neighbors of i, and vice versa2. To each edge (ij) we
assign a weight Jij = f(dij) where f(x) is a decreasing
function3 of x.
Step 2: Cost function for graph partitions: To

characterize a partition of the graph, we assign to every
vertex i an integer label (a Potts spin variable in Physics
terminology), Si = 1, 2, ...q 4. Any particular assignment
of labels, {S1, S2, ...SN}, is represented as a ”configura-
tion” {S}. Si = Sj indicates that in the partition {S},
nodes i and j belong to the same component, whereas
Si 6= Sj means that they are in different components. The
cost function

H({S}) =
∑

<i,j>

Jij
(

1− δSi,Sj

)

(1)

places a high penalty Jij on assigning two similar nodes
i, j (i.e. with small dij), to different components. The
lowest cost, H({S}) = 0 is obtained when all data points
are in the same group; the highest cost is reached if no
point is in the same group as any of it’s neighbors. Hence
the value of H({S}) reflects the resolution at which the
partition {S} views the data.
Step 3: Ensemble of partitions. Rather than choos-

ing any particular partition (say by minimizing the cost
function), we consider all configurations {S} that have
(nearly) the same value ofH({S}) = E; to each of these we
give the same statistical weight, whereas all {S′} that cor-
respond to different resolutions (and hence H({ S’ }) 6= E)
get vanishing probability. The resulting ensemble of par-
titions {S} is the microcanonical ensemble of Statistical
Mechanics. For each value of E one can sample this en-
semble and measure average values of any quantity of in-
terest (see below). It is, however, more convenient to use
for such measurements the canonical ensemble, in which
rather than fixing the value of H, we control the value of
its ensemble average by a Lagrange multiplier, 1/T . In
the resulting statistical ensemble of partitions each {S})
appears with the statistical (Boltzmann) weight

P ({S}) ∝ e−H({S})/T (2)

At T = 0 only groupings with E = 0 have non-vanishing
weight; at T = ∞ all partitions have equal weight. For a
sequence of values of the temperature T we calculate, by
Monte Carlo simulation, the equilibrium average 〈A〉 of
several quantities A of interest, such as the magnetization,
susceptibility and correlation of neighbor spins:

Gij =
〈

δSi,Sj

〉

, (3)

Gij is the probability to find, at the resolution set by T ,
data points i, j in the same group. By the relation to gran-
ular ferromagnets we expect that the distribution of Gij

2K is a parameter of the algorithm - for genes we use 10 ≤ K ≤
20. By superimposing the minimal spanning tree, we ensure that all
vertices belong to a single connected component of the graph.

3We use f(x) = (1/
√
2πa)exp[−x2/2a2] (a is the average of dij).

4In many of the applications we tried, Potts spins with q = 20
states were used. q has nothing to do with the number of clusters
determined by the algorithm - see below.
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is bimodal; if both spins belong to the same ordered grain
(cluster), their correlation is close to 1; if they belong to
two clusters that are not relatively ordered, the correlation
is close to 1/q.

Step 4: Identifying clusters. To produce ”hard”
clusters on the basis of the Gij , we construct a new graph,
in a three-step procedure.
1. Build the clusters’ “core” by thresholding Gij . For ev-
ery pair of neighbors i and j, check whether Gij > θ = 0.5;
if true, set a ”link” between i, j. Because of the bimodality
of the distribution of Gij the decision to link i, j depends
very weakly on the value of θ.
2. Capture points lying on the periphery of the clusters
by linking each point i to its neighbor j of maximal cor-
relation Gij .
3. Data clusters are identified as the linked components
of the graphs obtained in steps 1,2.

At T = 0 this procedure generates a single cluster of
all N points. At T = ∞ we have N independent spins,
and the procedure yields N clusters, with a single point
in each. Hence as T increases, we generate a dendrogram
of clusters of decreasing sizes.
This algorithm has several attractive features (Blatt et

al., 1997), one of these is the ability to identify stable
(and statistically significant) clusters, which makes SPC
most suitable to be used within the framework of CTWC.
Furthermore, it allows a quantitative estimation for the
P-value of a clustering operation, by clustering repeatedly
randomized data and checking the fraction of instances in
which stable clusters (i.e. as stable as those obtained for
non random data) appeared. We identify stable clusters
as follows. As we heat the system up, we record for every
cluster two temperatures: T1, at which it is ”born” (splits
from it’s parent cluster) and T2, at which it ”dies” (splits
into siblings). The ratio R = T2/T1 is a measure of a
cluster’s stability.
SPC was used in a variety of contexts, ranging from

computer vision (Domany et al., 1999) to speech recogni-
tion (Blatt et al., 1997). Its first direct application to gene
expression data has been (Getz et al., 2000) for analysis
of the temporal dependence of the expression levels in a
synchronized yeast culture (Eisen et al., 1998), identifying
gene clusters whose variation reflects the cell cycle.
Subsequently, SPC was used to identify primary targets

of p53 (Kannan et al., 2001) and p73 (Fontemaggi et al.,
2002).

COUPLED TWO WAY CLUSTERING - CTWC

The main motivation for introducing CTWC (Getz et

al., 2000) was to increase the signal to noise ratio of the
expression data. The method is designed to overcome two
different kinds of ”noise”. The first was mentioned above;
say only a small subset ofNr genes participate in a biologi-
cal process of interest, associated with a particular disease
A. In this case we expect these Nr genes to have corre-
lated expressions over subjects with disease A. This corre-

lation could, in principle, identify the diseased subjects as
”close” in expression space - but, in fact, for Nr << |G1|
the non-participating |G1| − Nr genes completely mask
the effect of the relevant ones on the distance between two
diseased subjects. Hence as far as the process of interest
is concerned, the non-participating |G1| − Nr genes con-
tribute nothing but noise, that masks the signal of the Nr

relevant ones. CTWC eliminates this noise by discarding
the irrelevant genes.

The second noise-reducing feature of CTWC is that it
uses the expression levels of a a set of genes, rather than
one gene at a time. Thereby intrinsic noise in the expres-
sion averages out.

CTWC is an iterative process, whose starting point is
the standard two way clustering mentioned above, i.e. the
clustering operations S1(G1) and G1(S1). We keep two
registers - one for stable gene clusters and one for stable
sample clusters. Initially we place G1 in the first and S1 in
the second. From S1(G1) and G1(S1) we identify stable
clusters of samples and genes, respectively, i.e. those for
which the SPC stability index R exceeds a critical value
and whose size is not too small. Stable gene clusters are
denoted as GI with I = 2, 3, ... and stable sample clusters
as SJ, J = 2, 3, ... In the next iteration we use every gene
cluster GI (including I = 1) as the feature set, to charac-
terize and cluster every sample set SJ . These operations
are denoted by SJ(GI) (S1(G1) was already performed).
In effect, we use every stable gene cluster as a possible
”relevant gene set”; the submatrices defined by SJ and
GI are the ones we study. Similarly, all the clustering op-
erations of the form GI(SJ) are also carried out. In all
clustering operations we check for the emergence of par-
titions into stable clusters, of genes and samples. If we
obtain a new stable cluster, we add it to our registers and
record its members, as well as the clustering operation
that gave rise to it. If a certain clustering operation did
not give rise to new significant partitions, we move down
the list of gene and sample clusters to the next pair.

This heuristic identification of relevant gene sets and
submatrices is nothing but an exhaustive search among the
stable clusters that were generated. The number of these,
emerging from G1(S1), is a few tens, whereas S1(G1) usu-
ally generates only a few stable sample clusters. Hence the
next stage typically involves less than a hundred clustering
operations. These iterative steps stop when no new sta-
ble clusters beyond a preset minimal size are generated,
which usually happens after the first or second level of the
process.

In a typical analysis we generate between 10 and 100
interesting partitions, which are searched for biologically
or clinically interesting findings, on the basis of the genes
that gave rise to the partition and on the basis of available
clinical labels of the samples. It is important to note that
these labels are used a posteriori, after the clustering has
taken place, to interpret and evaluate the results.
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RESULTS

Lists of the genes that constitute each of the clusters GI
mentioned below are given in the supplementary informa-
tion.

BREAST CANCER - PAL

We posed the following questions:
1. Do our methods of analysis reproduce the results ob-
tained by PAL?
2. Can we make observations that seem to be of interest
and were not reported by PAL?
As to the first question - CTWC reproduced all the main
findings of PAL directly, starting from the entire set G1
of 1753 genes, without filtering them to the intrinsic set.
Second, we found new tumor classifications that were not
mentioned by PAL.
Reproducing the results of PAL:

PAL used lower case letters to identify gene clusters,
and colors for samples (see their Figs. 1 and 3). We use
below their notation when comparisons are made.

G1(S): Following PAL, we used the same feature set,
S, of all samples and cell lines, to cluster G1, the full set
of 1753 genes. Since we also used the same normalization,
this operation provides a direct comparison of Average
Linkage (the clustering method used by PAL) and SPC.
All the gene clusters that were marked as interesting by
PAL, were also found by our clustering operation (Kela
2001).

S(G1): Next, we clustered (separately) the cell lines and
the tumors, using all 1753 genes. Since our normalization
here differs from that of PAL, we cannot compare directly
our results. However, in agreement with PAL, we also did
not find any meaningful partitions of the tumors, S1, from
this operation, leading to the same conclusion as reached
by PAL: namely, that G1 is not suitable to classify the
tumors and we should characterize them using different
subsets of genes. From here on CTWC deviates from the
procedure of PAL, who selected their ”intrinsic set” of 496
genes in a way that (a) necessitates having paired samples
from the same patients (before and after chemotherapy),
and (b) assumes that only genes that meet their criteria
(similarity of matched samples) are to be used. CTWC,
on the other hand, is an automated process, performing
operations S1(GI), i.e. clustering the tumors S1 using
different stable gene clusters GI, one at a time. Clustering
the 65 samples on the basis of these small subsets of genes,
one at a time, enabled us to identify the subclasses of
tumors that PAL found using their intrinsic set.

S1(G4): cluster G4 (that was obtained by the G1(S)
clustering process) has 10 genes - it is our homologue
of cluster j of PAL (see their Fig. 1). The operation
S1(G4) generates a stable sample cluster which is quite
similar to the ER+/luminal-like (blue) cluster of PAL (see
their Fig. 3); its members have high expression levels of
G4. S1(G4) identifies also PAL’s basal-like (yellow) group,
characterized by low expression levels of the G4 genes.

S1(G46), S1(G9): G46 is a cluster of 33 genes that are
part of the proliferation cluster found by PAL. The opera-
tion S1(G46) produces a good homologue of their normal-
like (green) cluster. Members of this group show low ex-
pression levels of G46 genes. The normal-like samples are
also identified in the operation S1(G9): the 13 genes of
G9 are a subgroup of cluster g of PAL. Normal-like tissues
have high expression levels of the G9 genes.

S1(G21): This operation separates the Erb-B2+ (red)
cluster from the other samples. G21 is homologous to gene
cluster d from Fig. 3 of PAL; it’s expression is high in the
Erb-B2+ tumors.

New observations (beyond PAL):
Of several new findings (Kela 2001) we chose to highlight
here one that bears on an issue that has been considered
important by PAL: that of separating the ER+ and ER-
tumors on the basis of their expression levels. We present
two such classifiers, which demonstrate two different ad-
vantages of CTWC. The first classifier could have been dis-
covered by PAL, since it is based on genes that do belong

to PAL’s intrinsic set, but their effect is masked by the
large number of the 496 ”intrinsic” genes; to see it, one
has to zero in on a small subset, as is done by CTWC. The
second classifier could not have been discovered by PAL’s

analysis since it is based on genes that are not included in

their intrinsic set.

S1(G4) : The cluster G4 (10 genes) was described above
- it is practically identical to cluster j from Fig. 1 of PAL
and to cluster c of their Fig. 3. It contains the estrogen
receptor and three other transcription factors (see sup-
plementary information of PAL) related to the estrogen
receptor pathway. The operation S1(G4) generated the
dendrogram presented in Fig. 1A. The variation in the
expression levels of the G4 genes correlates well with the
direct clinical measurements of the ER protein levels in
the tumors (supplementary information of PAL).

In the dendrogram Fig. 1A the boxes representing sam-
ple clusters were colored according to the percentage of
ER- samples, ranging from red (100%) to blue (0%). In
Fig. 1B the samples were ordered according to the den-
drogram, and the colors represent the expression levels
of the 10 genes. SPC generated 3 main branches (clus-
ters); the upper - a with highest expression values, b -
intermediate and the lowest - c. Cluster a, the biggest
(41 samples), contains all but two of the tumors of the
luminal-like (blue) cluster of PAL (see their Fig. 3). More
interestingly, clusters a and b, contain 45 out of 48 of
the ER+ tumors (see blue leaves). Cluster c is rich (7
out of 11) in ER- tumors. Designating any sample that
does not belong to c as ER+, we get our best classifier,
with efficiency E = 45/48 = 0.94 and purity P = 0.83.
The corresponding numbers obtained by PAL (for their
”luminal-like” cluster) were E = 0.66 and P = 0.89.

S1(G30) : G30 is a cluster of 15 genes, related to cell
cycle proliferation. Only one of the 15 were included
in PAL’s intrinsic set. Clustering the 65 tumors using
the expression levels of these genes generated the dendro-
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Figure 1: S1(G4): clustering 65 tumors using the expres-
sion levels of gene cluster G4. A. The boxes in the den-
drogram represent clusters; they are colored according to
their percentage of ER- tumors (see color bar on left).
B. Clusters a,b,c are characterized, respectively, by high,
intermediate and low expression levels (see color bar on
right).

gram presented in Fig. 5A (see supplementary informa-
tion). The boxes that represent sample clusters are colored
according to their relative content of ER- samples. The
dendrogram exhibits a clear partition of the tumors into
clusters a with high expression levels of the G30 genes and
c with intermediate expression levels, as seen in Fig. 5B.
Cluster c contains 44 tumors, 38 of which were classified
as ER+, 3 as ER- and 3 unknown. Hence this cluster cap-
tured the ER+ group with efficiency of E = 38/48 = 0.79
and purity P = 38/44 = 0.86. Cluster a contains a high
proportion of ER- tumors; its sub-cluster b consists of 5
special ER+ tumors that have relatively high expression
levels of the G30 genes.

BREAST CANCER - SAL

Again we have two kinds of observations; those made
using genes that were not included by SAL in their intrin-
sic set, and hence could not have been found by them, and
observations made using genes that were included in the
previous analysis.

Since there is considerable overlap between the samples
of PAL and SAL, we did not repeat our attempt to re-
produce all their findings. We did, however, study some
aspects related to the clinical labels, that were the main
additional feature of the SAL data. We emphasize here our
findings concerning survival and p53 status. We found cor-
relations between expression levels of several gene clusters
and survival, and that the expression levels of these genes
is also a predictor of p53 mutation status. We also present
a very clear partition of the patients into two groups, for

which we do not yet have any clinical interpretation.

S1(G10) : cluster G10 contains 15 genes that are related
to the ER pathway, including 5 of the 10 members of G4
mentioned in our analysis of PAL, (such as GATA-binding
protein 3). Clustering the 85 samples (S1) using G10,
generates the dendrogram presented in Fig. 6A (supple-
mentary information). The boxes that represent sample
clusters are colored according to the median value of the
survival of the patients contained in each cluster, ranging
from red (median survival of 100 months) to dark blue
(4 months). Similarly to the results shown in Fig. 1, the
variation in the expression levels of the G10 genes corre-
lates well with the direct clinical measurements of the ER
protein levels in the tumors. The dendrogram of Fig. 6A
exhibits two main clusters; a contains most of the ER+
tumors, that exhibit higher expression levels of the G10
genes, as seen in Fig. 6B, and b, which contains mainly
ER- tumors that exhibit low expression levels of the G10
genes.

Analyzing the correlation with the p53 status, wild type
(wt) vs mutant, and with the survival parameter we get
similar results as were obtained by SAL. They showed
that the basal-like samples, corresponding to our cluster b,
come from patients with the shortest survival times and a
high frequency of p53 mutations. Two of the 17 members
of cluster b survived for 41 months and all the others - for
less than 26 months. The correlation coefficient between
survival and the average expression levels of the G10 genes
is 0.47. The Wilcoxon rank-sum test (WRST) indicated
that to the distributions of survival times in cluster b to
the rest of the patients are significantly different (P-value
= 3.710−4); patients that exhibit low expression levels of
the G10 genes have short survival.

To indicate the p53 status, we placed a color bar next to
the leaves of the dendrogram, on which the patients with
mutant p53 are labeled red and the p53 wt - blue. Patients
with unknown p53 status were labeled white. Note that
the 17 patients of cluster b exhibit low expression levels of
the G10 genes. Ten of these 17 are p53 mutant, 5 have un-
known labels and only two are wt. Hence low expression
levels of the G10 genes seem to go along with a mutated
p53. The correlation coefficient of the average expression
levels of G10 with p53 status is 0.4; in particular, low
expression is a good predictor of mutant p53. To substan-
tiate the last statement, we compared the distributions
(using WRST) of the median expression levels of patients
with mutant p53 to wt. We found that the two distri-
butions are significantly different (P-value=1.210−4); the
wt p53 patients exhibit high and the mutant p53 exhibit
lower expression levels of the G10 genes.

S1(G33) : Cluster G33 contains 36 genes, related to cell
proliferation, which include 10 out of the 15 members of
cluster G30 found by CTWC in our analysis of the PAL
data. Clustering the 85 samples using the expression lev-
els of these genes generated the dendrogram presented in
Fig. 2A. The boxes are colored similarly to Fig. 6A; ac-
cording to the median survival (in months), of the patients
that belong to each cluster. The G30 genes partition the

6



Samples

−

+

10 20 30

10

20

30

40

50

60

70

8010

20

30

40

50

60

70

80

90

100

TMedian
Survival
    (m)

Genes

A B 

a 

b 

c 

Figure 2: S1(G33): The boxes in the dendrogram A rep-
resent sample clusters that are colored according to the
median value of the survival of the patients contained in
each cluster, ranging from dark red (median survival of
100 months) to blue (median - 4 months) - see left color
bar. B. The clusters a,b, and c exhibit high, intermediate
and low expression levels (see color bar at right). The cen-
tral color bar represents p53 status: red - mutant, blue -
wt and white - unknown. Members of a are characterized
by high expression, low survival and mutant p53.

samples into 3 main clusters, a, b and c, as shown in the
dendrogram. The corresponding G33 expression levels, as
seen in Fig. 2B, are high, intermediate and low, respec-
tively. The average expression level of the G30 genes is
inversely correlated with survival (correlation coefficient
-0.24). Cluster a contains patients with high expression
and short survival; only one of its 21 members survived
beyond 43 months, whereas clusters b and c contain long
(up to 100 months) as well as short survival. Comparison
of the distributions of the survival times of the patients in
cluster a to those in clusters b and c indicates that there
is a significant difference (P-value = 0.0016).
As to p53 status, we note that among the 21 patients in

cluster a, 13 were mutant p53 and 4 had unknown status.
Cluster c, of low expression levels, contains only two mu-
tant p53 patients (out of 16 members of the cluster). The
correlation coefficient between the average expression lev-
els of G33 genes and p53 status is -0.4. Hence high expres-
sion levels of these genes is a good predictor for mutant
p53, whereas low expression predicts wt p53. Compar-
ison of the distributions of the median expression levels
between the p53-mutant and the p53-wt patients yields
significantly different distributions (P-value=4.510−5).
S1(G36) : cluster G36 contains genes that are related

to apoptosis suppression (e.g. bcl-2) and cell growth inhi-
bition (e.g. INK4C cyclin-dependent kinase inhibitor 2c).
Using the expression levels of this set of genes to cluster
the 85 samples, we generate the dendrogram presented in
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Figure 3: S1(G36): A. The genes of G36 gave rise to a
very clear partition of the samples to high (cluster a) and
low expression levels b. No clinical interpretation of this
partition has been found yet.

Fig. 3A. The boxes are colored similarly to Fig. 2A, ac-
cording to the median survival of the patients in each clus-
ter. The dendrogram exhibits partition of the samples into
two very distinct clusters; a contains patients with high
expression levels and b - patients with low. We found no
correlation between membership in either of these clusters
and any of the clinical labels that were reported by SAL.
However, the clarity of the partition calls for further inves-
tigation of the two groups of patients, which may reveal
some so far unknown role played by the genes of G36 in
breast cancer.

COLON CANCER

We applied CTWC on the colon data set of Notterman
et al., containing 18 paired carcinoma and 4 paired ade-
noma samples. We refer to the set of all 44 samples as S
and to the 36 paired carcinoma samples as S1. We present
gene clusters which differentiate the samples according to
the known normal/tumor classification, previously shown
by Notterman et al.. Furthermore, we show the advantage
of CTWC in mining new partitions which have not been
found using other clustering methods and may contain rel-
evant biological information.
Tumor - Normal separation
S(G8) : G8 contains 55 genes, which show high expres-

sion levels in the normal samples compared to the ade-
noma and carcinoma. Several genes within this cluster
are known to be repressed in colorectal neoplasms; for ex-
ample, guanilyn and DRA (down-regulated in adenoma).
Some of these genes were previously mentioned by Notter-
man et al.Clustering the 44 samples, using the expression
levels of G8, generated the dendrogram shown in Fig. 4A.
The dendrogram exhibits a clear separation into two
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Figure 4: S(G8): A clear separation of the tumor car-
cinoma and adenoma samples from the normal samples,
using the G8 group of genes. (A) The boxes are colored
according to the percentage of the tumor samples. (B)
The expression level matrix of S1(G8). Rows correspond
to all the samples and the columns correspond to the genes
of cluster G8. The matrix shows relatively high expression
levels of the G8 genes in the normal samples compared to
the tumor samples.

large clusters (a and b) and two small ones (c and d).
Clusters c and d contain all the normal samples (both
carcinoma and adenoma), a - the tumor carcinoma sam-
ples and b - the tumor adenoma samples. The colors (see
bar on the right hand side of the expression matrix - see
reordered data) represent the expression levels of the genes
in G8, with red (blue) denoting high (low) values.

S1(G25) : The data set we analyzed next contains the
18 carcinoma and their paired normal samples, S1. The
group G25 contains 51 genes, some of which are known
to be over expressed in carcinoma and are found to be
related to colon cancer or other forms of neoplasma e.g,
myc, matrilysin, GRO-γ (see Notteman et al., 2001), and
additional genes which may very well be related to colon
cancer. Clustering the 36 samples of S1, using the ex-
pression levels of the gene cluster G25, gave rise to a clear
partition of the samples into two clusters; one of normal
samples (a), and the other of tumor samples (b), with
relatively high expression levels of the G25 genes in the
tumor cluster (see Fig. 7, supplementary information).
New observations (protocols A,B):
S1(G3) : Two experimental protocols that were used;
16 RNA samples (paired samples 3-6,8-10,11) were ex-
tracted using a method that isolates mRNA prior to re-
verse transcription (’protocol A’), and the other 20 sam-
ples (paired samples 12,27,28-29,32-35,39-40) were pre-
pared by extracting total RNA from the cells (’protocol
B’). Clustering the 36 carcinoma samples, using the ex-
pression levels of the 27 genes of cluster G3, exhibits a

clear partition of the samples into two clusters (see Fig 8A,
supplementary information). Cluster b contains 20 tissues
of protocol B, and cluster a contains 14 tissues of proto-
col A. This separation has two mistakes; both samples of
patient 9 were labeled A and appear in the cluster of pro-
tocol B.
New observations (unknown interpretation):

S10(G24), S10(G7), S10(G12) : Clustering only the 18
carcinoma samples (S10, obtained in a previous CTWC
iteration) on the basis of their expression over different
sets of genes, revealed the following partitions:

The clustering operation S10(G24) generated a clear
separation of the tumor samples into 2 clusters. Samples
33,34,35,40 are clustered together in b, and show high
expression levels of the G24 genes (Fig. 9, supplementary
information).

The operation S10(G7) separated tumor samples
27,32,33,40 from the other 14; the small group has low
expression levels of the G7 genes (Fig. 10, supplementary
information) .

S10(G12) clustered tumor samples 33,34,35,12,40 to-
gether (cluster b in Fig. 11, supplementary information);
the expression levels of the G12 genes are high in these 5
samples. Hence we discovered that tumor samples 33,40
and 35 were repeatedly separated from the remaining tu-
mors, which implies that these patients may share some
common characteristics, perhaps representing a true bio-
logical meaning. However, due to lack of additional infor-
mation about the patients we were unable to determine
the biological origin of this separation.

DISCUSSION AND CONCLUSION

We described the Coupled Two Way Clustering method
and demonstrated it’s ability to extract useful information
from breast cancer and colon cancer data. For both data
sets we reproduced the findings of previous analyses and
discovered new structure of biological significance, demon-
strating the advantages of CTWC compared to standard
clustering techniques.

The central strategy of CTWC is to cluster the samples
on the basis of their expression levels over small, corre-
lated sets of genes, and vice versa. The relevant sets of
genes and samples are found by using, one at a time, sta-
ble clusters of genes (or samples), that were identified in
preceding iterations of the algorithm. Whenever such a
clustering operation generates new, statistically significant
partitions of the clustered objects, the result is recorded,
to be used in further iterations and to be scanned for pos-
sible biological or clinical interpretation.

Perou et al. also reached the conclusion that performing
an ”all against all” analysis does not reveal the effects of
relatively small groups of relevant genes. They were able
to produce significant findings only after reduction of the
genes used to a smaller number. The smaller ”intrinsic
set” was identified using a particular guiding principle,
one that can be used only when there are at least two
samples from each of several patients. Furthermore, the
selection criteria used exclude genes that, according to our
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findings, do contain important information.
CTWC does not only generate the important partitions

of the samples; it also identifies small groups of genes that
are responsible for the separation of different classes. For
both breast and colon cancer we found partitions that have
no clear interpretation at the moment, a fact that demon-
strates the strength of unsupervised approaches such as
clustering; unsuspected structure buried in the data can
be revealed.
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