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ABSTRACT

Motivation and Results: Durbin et al. (2002), Huber et
al. (2002) and Munson (2001) independently introduced
a family of transformations (the generalized-log family)
which stabilizes the variance of microarray data up to
the first order. We introduce a method for estimating the
transformation parameter in tandem with a linear model
based on the procedure outlined in Box and Cox (1964).
We also discuss means of finding transformations within
the generalized-log family which are optimal under other
criteria, such as minimum residual skewness and minimum
mean-variance dependency.

Availability: R and Matlab code and test data are available
from the authors on request.

Contact: bpdurbin@ucdavis.edu

1 INTRODUCTION

Gene-expression microarrays, with their ability to mea-

ing the unequal-variance, two-sampleest instead of the
equal variance alternative, but in any more complex design
than this, the assumption of equal variance is fundamen-
tal. For example, in the next simplest case of comparing
more than two groups by one-way ANOVA, power is poor
and size is not maintained if variance inhomogeneities oc-
cur. The problem is even more intractable for two-way and
more complex designs.

When confronted with data that fail to conform to one
or more of the standard assumptions, we may choose to
address problems individually or to take a more global
approach. For example, statistical weighting may be used
to address the problem of nonconstant variance, but will
fail to correct any skewness in the data. A transformation-
based approach, on the other hand, can often correct
multiple problems. We will compare the performance
of a transformation intended to correct several problems
simultaneously with those of transformations aiming to

sure the expression of thousands of genes simultaneousRPtiMmize a single criterion.
have the potential to revolutionize our understanding of; 1 The gener alized-log transformation

and its phenotype. However, data from microarrays hav e will focus our attention on the family of generalized-
e . . 0g transformations, motivated by the two-component
proven surprisingly resistant to analysis by standar

tatistical techni hich h hat sl d nerror model of Rocke and Durbin (2001). In this work it
statistical techniques, wnich has somewhat slowe Was demonstrated that the relationship between the true

ra_te at which new !nfqrmatlon hgs been gleaned _fronbxpression for an observation from a given gene and the
this technology. This is caused in part by the failure oasured expression can be modeled as
of microarray data to conform to the key assumptions

on which many standard statistical techniques, such as
linear regression and analysis of variance, are based.
These techniques often require that one assume that datdnerey is the measured expression for a single observa-
come from a normal distribution (or at least a symmetriction (either control or treatment in the case of a two-color
distribution), that the data have a simple mean structurerray) for a given gene on a microarrayis the mean ex-
and that the data have a constant error variance whicpression background for the given array and sampls,
does not depend on the mean of the data. the true expression, andandes are normally distributed
Violation of these assumptions can cause severe prof§ITor terms, with variances? ando/, respectively. This
lems in statistical analysis of expression data. In the simmodel also works well for Affymetrix GeneChip arrays

plest setting, in which a single gene is compared in exactlfither applied to the PM-MM data or to individual probes.

two groups, much of the problem can be dealt with us- Qbservations from the two-component model (1) have
variance

the connection between an organism’s genetic maken.?/

y=oa+puemn+e (1)

*To whom correspondence should be addressed.

Var(y) = /,LZS,? + 02, (2
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Transformation parameters

where 3? = e(o'nz)(e(o'nz) — 1). In Durbin et al. (2002), parameter via maximum likelihood, as was done in Box
Huberet al. (2002) and Munson (2001) it was shown thatand Cox (1964). The linear model structure will allow
for a random variable satisfyingV(z) = a2 + b?u2,  Us to account for the different sources of variation in the
with E(y) = u, there is a transformation that stabilizes data, such as variation between arrays, between replicated

the variance to the first order. There are several equivalePOts on the same array, and between colors on the same

ways of writing this transformation, but we will use array, in our estimation of the transformation parame-
ter. Furthermore, the linear model, fit to appropriately
h, (2) = IN(Z+ V22 + 1) transformed data, can itself be a useful analysis tool.

An example of such an analysis would be the ANOVA
wherer = a?/b? = %2/55 andz = y —a ory — . normalization method for microarray data developed in

We shall refer to this transformation as the generalizedKerret al. (2000).
log transformation, as in Munson (2001), since the log
transformation is a special case of this family foe 0. 2 MAXIMUM-LIKELIHOOD ESTIMATION

(We will not specifically address background subtrac-The maximume-likelihood estimation of the linear model
tion in this work; however, for proper application of the and transformation parameters can be conducted essen-
transformation the data must first have been adjusted sially as in Box and Cox (1964), with the key distinction
that E(z) = u, that is, the expectation of the adjusted databeing that we shall search for an optimal transformation
must be equal to the true expression level. In the cDNAwithin the family of generalized log transformations, as
array example of Section 2.1 a global expression backin (1.1), rather than among the power transformations. We
ground was subtracted from each channel prior to applishall omit some of the details of the derivation; the inter-
cation of the transformation, ‘global’ meaning that all ob- ested reader may refer to Box and Cox (1964).
servations from the same channel and chip are assumedThe procedure outlined in Box and Cox (1964) is as
to share the same value @ffollowing image processing. follows: Suppose that there exists somesuch that the
Background subtraction, in principle, can be accomplishedransformed observatiorif; ; } have independent normal
as part of the transformation, with the caveat that the morelistributions with linear mean structure and constant
parameters one includes in the transformation, the moreariances2. That is, suppose there exists lambda such that
difficult the estimation becomes, due to the increase in the T
dimension of the search space. In light of this, more so- hi=(hs o hns)t =XB +e @)

phisticated normalization methods, such as print-tip NOry heren is the number of observations in the data Xeis

malization, are best applied prior to data transformation.),q design matrix from the linear modgls a fixed vector
The generalized log transformation converges @l ot unknown linear model parameters, and N(0, o-21).
In(2) for large z (equivalent to a log transformation, as  The Jikelihood of the untransformed observations is
the additive constant does not affect the strength of thg,erefore a normal likelihood in terms of the transformed
transformation) , and is approximately linear at 0 (Durbinggeryations times the Jacobian of the transformation
etal., 2002). The inverse transformation is (which allows for the change in scale of the data due to
transformation). For the generalized-log transformation,

-1 _ (U _ g
h,“(u) = (e —1e7)/2 the Jacobian is

Both h, and its inverse are monotonic functions, defined L |dh;;
for all values ofz andu, with derivatives of all orders. Jzn=]] dz (4)
When transforming data from two-color arrays or from =1
complex multi-array experiments, the closed form expres- L
P Y exp b =T11//2+x (5)

sion for the transformation parameter shown in (1.1) is
less useful than in the single color, single array case. Even
data from different colors on the same two-color array Box and Cox (1964) then suggest that if one should
might have different estimated values for the model padivide each transformed observation by théh root
rametersy? ando2, which makes it unclear exactly how of the Jacobian, the likelihood of the original data in
we should obtain the transformation parameter. Pooling oferms of the Jacobian-corrected transformed data will be,
data from different sources in order to estimate parametelgproximately, a normal likelihood, rather than a normal
could work well for some designs, but is not very flexible. likelihood times the Jacobian. (The ‘approximate’ nature
An estimation method which specifically accounts for theof the likelihood comes from the fact that we are ignoring
structure of the data would be useful in these situations. the variability of thenth root of the Jacobian, which will

One such approach is to fit a linear model to thebe quite minimal given the size of most microarray data
data while simultaneously estimating the transformatiorsets).

I
i
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Therefore, we will model the Jacobian-corrected transeutliers, which are disregarded by the robust estimation

formed observations; as procedure, and relies heavily on the assumption that
differentially expressed genes constitute only a small
wy, =X +¢, (6)  fraction of the data.
where . n 2.1 Examples
wi 5 = hj - (H |22 + A) We illustrate this estimation method using two example
=1 data sets, one from a two-color cDNA-array experiment

and one from an experiment conducted using Affymetrix
> oligonucleotide arrays. The first example comes from
hi =In (Zi ARV +)\>- a toxicology experiment by Bartosiewiogt al. (2000)
) in which male Swiss Webster mice were injected with
If we, for the moment, regard the transformation pa-5 toxin. We shall focus on a single slide from this
rameter as fixed (but still unknown), iF isa re_Iatiyer sim- experiment. For this array, the treatment mouse was
ple matter to ot_)taln closed-form maxmum—l;k_ellhood eS-injected with 015 mg/kg of S-napthoflavone dissolved in
timates of the linear model parametg@&ando© interms 109 m/kg of corn oil, and the control mouse was injected
of the unknowni. These formulas may then be plugged yith 10 mi/kg of corn oil. mRNA from the livers of
into the log likelihood to obtain the partially-maximized hese mice was reverse transcribed and fluor labelled, with
log likelihood the treatment sample labelled with Cy5 and the control
n._ ., sample labelled with Cy3. The samples were hybridized to
Imax(2) = ~5 Ing=(h) aspotted cDNA array on which each of the 138 genes was
n replicated between six and 14 times, resulting in a total of
= —ESSE(Z A/, 1008 spots.
For the mouse data, we will model the differences of the
where n transformed control and treatment observations rather than
_ S a2 the transformed observations themselves. The difference
SSHZ M) = Z (w' w') ' @ of the transformed observations from replicatef gene
i, Ah,jj, can be modeled as

and

i=1

andwj is the predicted value for thi¢h observation under
the linear model fit tow,. The partially-maximized log Ahyij = pi + €ij, 8)
likelihood depends on the data only through $5E),

and is a monotone decreasing function of this quantitywhere; is a gene effect anel; is a normally distributed
so we may findi, the MLE of A, sSmply by minimizing ~ €rror term. Notice that (8) is a one-way ANOVA model.
SSHz 1) (Box and Cox, 1964). A minimum value may (Also note that in the case of differences, the sample
be found by plotting the error sum of squares as @ize for the linear model will not be the total number of
function of X, or via numerical optimization methods, Observations, but the total number of differences).

such as Newton’s method (see Appendix for details), Figure 1 shows the partially maximized log likelihood
Estimates off and o2 on the scale of the transformed for the mouse data as a function of the transformation

data without the Jacobian correction may be obtaine@@rameteri. The likelihood is maximized at = 1.13 x

by fitting the linear model again using the MLE, as 10°. Note that the median value @is 4.6 x 104.' which is

the transformation parameter or by multiplying by — onthe ordero_f/i, which is 37x_104, suggesting that the

JYn(z, ) and multiplyings 2 by J"(z, 3). squared median of the fjata might be a plau3|b_le starting
Referring to a procedure for estimation of a transfor-vaue for of 4 for Newton's method or other algorithms.

mation as a ‘maximum-likelihood’ method might cause AN asymptotic 95% confidence interval for the MLE,

some confusion with readers familiar with the maximum-Cconsists of those values bffor which

likelihood method presented in Hubetral. (2002). One . 1,

should bear in mind that ‘maximum-likelihood’ refers Imax(%) — Imax(X) < 5X1.05

to a very large class of estimation methods, which are

distinguished from one another primarily by the modelwherexf.05 is the upper 5% quantile of;@l2 distribution

for which parameters are estimated. The method preBox and Cox (1964)). This yields a confidence interval

sented above models the residuals from the linear modébr 1 of (8.67 x 108, 1.47 x 10°).

following transformation, whereas the method presented Figure 2 shows a quantile—quantile plot of the residuals

in Huber et al. (2002) models the unexpressed genesfrom the linear model (8) fit to the transformed data versus

Their method treats the differentially expressed genes as standard normal distribution. The residuals appear to
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Fig. 2. QQ plot of residuals versus standard normal, maximume-likelihood transformation, mouse data.
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Fig. 3. QQ plot of residuals versus standard normal, maximum-likelihood transformation, autism data.

come from a distribution with heavier tails than a normal For the autism data, we model the transformed perfect
distribution. Although the plot appears to exhibit somematch minus mismatch observation from ggnen array
skewness, this is entirely due to the four observations, hyij, as

in the lower left-hand corner. These observations appear hij = wi +nj + &ij, 9)

to be outliers resulting from phenomena such as dusfherey; is a fixed array effecty; is a fixed gene effect,
on the slide, since they all occur in genes which areande;; is a normally distributed error term. Notice that
expressed near background in the control data, and featugg)r model is a two-factor ANOVA model without an
asingle observation which differs so hugely from the otherinteraction term. (We cannot fit the interaction term due to
replicates that it is unlikely to result from actual genethe absence of replicated genes, but we would not expect
expression. (These observations will be excluded from the gene-array interaction effect anyway.)
analysis of Section 3.) Examination of residuals from the For the autism data, the likelihood is maximizediat
linear model appears to facilitate identification of outlying 3870, and a 95% confidence interval fois (375Q 4000.
observations, since these outliers were much more obviou=or these data lies in between the squared median of the
in the residuals than they would have been in the raw datalata, which is 900, and the squared mean, which is 32 400.
When the maximum-likelihood estimation is conductedFigure 3 shows a quantile—quantile plot of the residuals
again after removal of the 4 outliets = 9.67 x 108, with ~ from the linear model (9). The residuals, again, appear to
a95% confidence interval of (87 x 107, 1.22 x 10°). come from a symmetric distribution with tails heavier than
The second example comes from an experiment usingnormal distribution.

four Affymetrix HG_U95 arrays, which is described in
Gelleret al. (2003). In this experiment, a lymphoblastoid 3 OTHER METHODS OF ESTIMATING THE

cell line from a single autistic child was grown up in four ~ TRANSFORMATION PARAMETER

separate flasks. RNA extraction, cDNA synthesis, and inMaximum-likelihood estimation of the transformation
vitro labelling were conducted separately on each of thgparameter in the manner described above in essence
four samples, and each of the samples was hybridized tosimultaneously optimizes constancy of variance, the fit of
separate array. the transformed residuals to a normal distribution, and the
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fit to the linear model. In some applications, some of thesénterval for thet-minimizing transformation consists of
criteria may be more important than others. For examplethose values of for which thet-statistic is not significant
for many traditional statistical techniques data that areat the 5% level. For 136 degrees of freedom (since we
symmetric are almost as good as data that are normallyave 138 genes and lose 2 degrees of freedom from fitting
distributed, and by trying to force the transformed data tahe regression parameters) the cutoff for significance of
fit all of the moments of a normal distribution we may the t-statistic is+1.9776, which yields the confidence
inadvertently compromise those characteristics in whichnterval (2.02 x 10°, 8.09 x 10°). This confidence interval
we are most interested. In such cases, we may sear@xcludes the maximum-likelihood transformation, where
within the family of generalized-log transformations for a A = 9.67 x 108,
transformation optimizing the quantity of interest, simply However, examination of Figure 4, showing the replicate
by minimizing the appropriate statistic. mean and standard deviation for the maximum-likelihood
For example, to find a transformation minimizing the transformation and thé-minimizing transformation (in
skewness of residuals from the linear model, we wouldhe lower left-hand and upper-right-hand panels, respec-
look for a transformation for which the skewness coeffi-tively) indicates that both of these transformations provide
cient of the residuals is equal to 0. To find a transformareasonable variance stabilization. For comparison, the
tion for which the fixed effects in an ANOVA model are |ower-right-hand panel shows log ratios of the same data,
the most linear, we would look for a transformation mini- which shows dramatic mean-variance dependency.
mizing theF -statistic for the interaction term inthe model. |t s perhaps surprising that the maximum-likelihood
(Notice that the two estimation procedures just mentionegransformation provides good variance-stabilization and
both incorporate the linear model structure used in th%ymmetrization in light of the fact that the normal
maximume-likelihood estimation.) To find a transformation |ikelihood is almost certainly the ‘wrong’ likelihood
minimizing the dependency of the replicate mean on th@or the transformed data, given the apparent heavy-
replicate variance, we would regress the replicate standafgliled distribution of the transformed residuals. However,
deviation of the transformed. data.o.n Fh_e replicate meathe data appear (anecdotally speaking) to be somewhat
and look for the transformation minimizing the absolutejnsensitive to which member of the generalized-log family
value of thet-statistic for the significance of the slope s ysed.
parameter. These other optimal transformations also pro- Ropust statistical methods could certainly be used to
vide a means of assessing the quality of the maximumaqdress the heavy-tailedness of the residual distribution.
likelihood estimate of the transformation parameter. If theqowever, robust methodologies tend to be much more
MLE differs too greatly from the optimal transformation computationally expensive and hence slower to run than
parameter under another criterion, this might be cause fhe methods presented here. Given that the normal-theory
concern. L . approach gives reasonable results, the additional effort
We illustrate the skewness-minimizing transformation s ysing robust methods may not be worthwhile for the

and the transformation minimizing dependency of theesearcher interested in obtaining a quick answer.
replicate mean and variance using the mouse data. For

these data, the skewness coefficient is non-monotonic i
the transformation parameter, so there are two value CONCLUSIONS
of A for which the skewness coefficient is equal to 0,The generalized-log transformation of Durbet al.
which are 231 x 107 and 227 x 10°. A asymptotic ~ (2002), Huberet al. (2002) and Munson (2001) with
95% confidence interval for the skewness-minimizingparameterh = a?/b? stabilizes the variance of data
transformation consists of those valuesdor which the ~ Where Vatz) = a2 + b?E2(z). Maximum-likelihood
absolute skewness coefficient is not significant at the 5%stimation in the manner of Box and Cox (1964) can
level. For a sample of size 1004 the absolute skewned3e used to estimate a transformation parameter for data
is not statistically significant if it is less than1®15, Wwhere observations have different values afand b.
which yields the confidence intervé2.71 x 10°, 2.00 x ~ This procedure estimates the transformation parameter
10%). This interval includes the maximum likelihood while simultaneously fitting a linear model to the data,
transformation, { = 9.67 x 108 following removal of  allowing for easy and quick estimation of the transforma-
the outliers), implying the the MLE does provide sufficienttion parameter (by minimizing the error sum of squares
symmetry. of the linear model fit to the transformed data) while
A transformation minimizing mean-variance depen-accounting for the experimental structure of the data.
dency may be found by minimizing thestatistic of Transformations minimizing residual skewness, mean-
the regression of the replicate standard deviation on theariance dependency, and other criteria may be found
replicate mean. For the mouse data, tiatistic is equal by minimizing the appropriate statistic. The maximum
to 0 atx = 4.03 x 10°. An asymptotic 95% confidence likelihood estimate appears to perform well compared to
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Fig. 4. Replicate mean and standard deviation of differences of transformed observations, three different transformations.

transformations specifically minimizing residual skew-Ferguson,T.S. (1996) Course in Large Sample Theory. Chapman
ness and mean-variance dependency, especially in light of and Hall, London.

the fact that the normal likelihood is a first approximation Geller,S.C., Gregg,J.P., Hagermann,P. and Rocke,D.M. (2003)
to the ‘true’ distribution of the transformed data and was Transformation and normalization of oligonucleotide microarray

: : : : data.Bioinformatics, 19, in press.
hosen primarily for com ional convenience. .
chosen primarily for computational convenience Huber,W., von Heydebreck,A.,i8mann,H., Poustka,A. and Vin-
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indeed constitute a global maximum. Den%@SEA) by

SSE(1) and, > SSH)) by SSE (1). A new estimate of,
An+1), may e obtained from the previous estiméig,
using

SSE(Am))

_—. 10
SSE/()\.(I’])) (10)

An+1) = Am) —

Convergence is achieved whEBSE(1)| is less than the

The second derivative of the error sum of squares is

n
SSE(1) = ZZ(wm — iy)?

+ ZZ(w,\,

N
Wjij (wx. Wyi),

predetermined application tolerance. where
For the generalized log transformation with parameter , 52
b Wi = g2
2 n ’ ’ 1 -1 —1,.2 _3
SSE(M) =23 (wi — bai)(wy — by), (1) =237 0@ +F + 0T 47
i=1
where A V0@ + 2+ A+
i =X BV,
xiT is theith row of the design matrix, +(z + zi2 + )\)_1{zi2 + k}_% %J_l/”
/ ad 52
Wy = — Wij
M= +In(z + zi2+)\)w.]_l/”
_ : 2 /52 —17-1/n
=[2{zi +/zf + A} Zia-Hd J (1) and
+In@z +/7 +x)ar1/“(x), 2y o
— 37" = Ay e
where 812 "= Z{ - .
gungy = L Xn:J_l/”(A)/{Z(ZZ + 1) - Xn:{zz + 237270
EN T n& ! ’ n =
N 9 92
w;j = an Wi Wi = mwxi

=x" XTX) "X Tw;,

=x (XTX) "X Tw; .
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