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A statistical framework for the design of microarray experiments and effective

detection of differential gene expression

Shu-Dong Zhang and Timothy W. Gant

MRC Toxicology Unit, Hodgkin Building, Lancaster Road, University of Leicester, Leicester, UK

Microarray experiments generate a high data volume. However, often due to financial or exper-
imental considerations, e.g. lack of sample, there is little or no replication of the experiments or
hybridizations. These factors combined with the intrinsic variability associated with the measure-
ment of gene expression can result in an unsatisfactory detection rate of differential gene expression
(DGE). Our motivation was to provide an easy to use measure of the success rate of DGE detection
that could find routine use in the design of microarray experiments or in post-experiment assessment.

In this study, we address the problem of both random errors and systematic biases in microarray
experimentation. We propose a mathematical model for the measured data in microarray exper-
iments and on the basis of this model present a t-based statistical procedure to determine DGE.
We have derived a formula to determine the success rate of DGE detection that takes into account
the number of microarrays, the number of genes, the magnitude of DGE, and the variance from
biological and technical sources. The formula and look-up tables based on the formula, can be used
to assist in the design of microarray experiments. We also propose an ad hoc method for estimating
the fraction of non-differentially expressed genes within a set of genes being tested. This will help
to increase the power of DGE detection.

The functions to calculate the success rate of DGE detection have been implemented as a Java
application, which is accessible at

http://www.le.ac.uk/mrctox/microarray lab/Microarray Softwares/Microarray Softwares.htm.
Supplementary information at ftp://alcyone.mrc.le.ac.uk/ Pub/twg1/BioInf03-0661suppl.pdf

I. INTRODUCTION

Whole genome sequencing and the related develop-
ment of microarrays have given researchers unprece-
dented power to simultaneously determine the expres-
sions of many thousands of genes [1]. However, a sta-
tistical challenge facing microarray analysis is to identify
differential gene expression (DGE) with a high rate of
success and low rate of false positives. Such a method is
required because of the number of gene expressions being
simultaneously determined, and the variation associated
with each can give rise to an unacceptably large number
of false positives or low successful detection rate. The
variations associated with gene expression experiments
can be categorized into two sets. First, there are inter-
individual differences between members of a population,
thus sufficient biological individuals should be included
in the experiments in order to account for the biological
variation. Second, there are always technical errors aris-
ing from the experimental procedure, which may be fur-
ther sub-categorized into random errors and systematic
biases. Unlike random errors, which can be reduced by
making multiple measurements, systematic biases cannot
be reduced by simply doing more measurements, correct
experimental designs must be employed to negate them.

One of the most serious sources of systematic bias in
microarray experiments (for dual label hybridizations)
is the imbalance in the measured fluorescence intensi-
ties between the two fluorescent channels [2, 3, 4]. A
manifestation of this systematic bias is that when two
identical mRNA samples are labelled with different fluo-
rescent dyes and hybridized to the same microarray slide,
one channel has a higher average fluorescence level than

the other. To complicate matters further the imbalance
of the two channels is not uniform, but varies from fea-
ture to feature. A feature is the area of fluorescence on
a microarray corresponding to one gene and where hy-
bridization of the labelled nucleic acids derived from this
gene has taken place [5]. To correct the labelling dye im-
balance, different methods of normalizing the microar-
ray data by adjusting the measured fluorescence levels
have been proposed [4, 6, 7]. These methods can be
roughly classified into two categories. First, global nor-
malization, in which the fluorescence levels of all the fea-
tures are globally (uniformly) adjusted (by shifting or
re-scaling) to fulfill some assumptions about the relative
expressions of the genes, e.g. most genes are not differ-
entially expressed between the two samples [6]. However,
because global normalization adjusts the fluorescence lev-
els of all features uniformly, it cannot account for the
different magnitudes of imbalances from feature to fea-
ture, so a second type of normalization method is often
employed to take account of this variation. This normal-
ization method adjusts the fluorescence level according
to some local properties of the feature spot, e.g. the
overall brightness of the spot [4], and usually involves
fitting the measured data with a non-linear smoothed
curve. The fluorescence level is then adjusted according
the smoothed curve, which is assumed to describe the
dependence of the imbalance on spot fluorescence inten-
sity. But the fluorescence imbalances between the two
channels are more complicated than can be described by
a smoothed curve. Due to irregular intrinsic fluorescence
of the microarray slide and possibly some gene-specific
effect [8, 9], it is unlikely that the fluorescence imbal-
ance can be corrected for all features by the intensity-

http://arxiv.org/abs/q-bio/0405015v1
http://www.le.ac.uk/mrctox/microarray_lab/Microarray_Softwares/Microarray_Softwares.htm
ftp://alcyone.mrc.le.ac.uk/
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dependent normalization. To correct the fluorescence im-
balance of each feature a simple method is to reverse the
labelling dyes when hybridizing some microarrays. Kerr
et al [10] first proposed an ANOVA model for microarray
data, and showed that ANOVA methods can be used to
normalize the data and estimate real changes in gene ex-
pression. Taking biological variations into account, Dob-
bin et al [2] have addressed the problem of statistical
design of reverse dye microarrays to minimize variance
with a given number of microarray slides. We have taken
the analysis further to address the problem of identify-
ing DGEs with a desired detection power and controlled
number of false positives. A model and statistical testing
procedure are presented in the following sections to assist
research workers in the selection of an appropriate num-
ber of microarrays for an experiment in order to achieve
the desired detection power, or alternatively in assessing
the detection power achievable when the experiment has
been done.

II. THE MODEL

The experimental situation analyzed here is one where
there are two sample groups. One of the groups might
have been subjected to an event such as chemical expo-
sure, the other being a suitable control, or the two groups
might be normal and tumor tissues or different organs.
For convenience the two groups will be designated as the
treated and control groups.
In cells, the amount of mRNA corresponding to a par-

ticular gene is taken to correspond to the expression level
of that gene. A microarray is a means to translate the
level of mRNA for many genes, which cannot be mea-
sured directly, into fluorescence that can be measured
directly. The model presented in this paper is designed
for experiments where each gene is spotted only once on
each microarray, and each individual sample is hybridized
only once using one microarray. For the purpose of intro-
duction consider one single feature spot on the microar-
ray. We assume that the log-intensity fluorescence of
this feature takes additive contributions from the follow-
ing sources: the amount of corresponding mRNA in the
biological sample, an effect from the quality of the fea-
ture spot, an effect from the labelling fluorochrome (in-
cluding the efficiency of labelling with the fluorochrome,
and possible pre-existing intrinsic fluorescence in favor of
this fluorochrome), and the random measurement error.
Therefore we have the following model

Gv,i,s,c = Iv,i +As +Dc + ǫv,i,s,c, (1)

where Gv,i,s,c is the log-intensity (base 2 logarithms are
utilized throughout this paper) of fluorescence of the fea-
ture spot;
Iv,i is the expression level of the gene in the ith indi-

vidual sample of group v (v = t for the treated group, or
v = c for the control group, and i = 1 · · ·n where n is the
number of individuals in each group). Iv,i is assumed to

be independently and normally distributed with a mean
Ev and a variance σ2

v , denoted by Iv,i ∼ N(Ev, σ
2
v);

As is the effect of feature spot quality, which is assumed
to be fixed for microarray slide s and independent of
fluorescent label used;
Dc is the effect of the fluorescent label c (c = g for

green dye, and c = r for red dye), which is assumed to be
fixed with label c and independent of microarray slide;
ǫv,i,s,c is the random error term which is assumed to

be independently and normally distributed with a mean
0 and a variance σ2

ǫ , denoted by ǫv,i,s,c ∼ N(0, σ2
ǫ ).

Note that for each of the features on the microarray
the log-intensity is described in the same form Eq.(1).
Although the equations are in the same form for each
feature the actual values of Ev, σ

2
v , As, Dc, σ

2
ǫ will be

feature dependent.
Ev is the mean expression level of the gene in the sam-

ple group v, so in comparing a gene’s expression between
the treated and control groups, the quantity of interest
is Et −Ec, the magnitude of differential expression. The
effects of feature spot quality As and fluorescent dye Dc

are not of interest and therefore need to be eliminated by
a suitable experimental design.

III. EXPERIMENTAL SETUP

Let’s introduce the notation (cj , ti) to represent a mi-
croarray as a result of the following hybridization: indi-
vidual sample cj labelled with green dye and individual
sample ti labelled with red dye. Here c and t indicate the
sample group while the subscripts index different indi-
viduals in each group. As a convention, the first sample
in the parenthesis is always labelled with green dye and
the second with red dye.
Consider the microarray (cj , ti). Here an individual j

is taken from the control group (v = c) and an individual
i from the treated group (v = t). RNA is extracted from
both and converted to labelled cDNA using fluorescent
labels green and red respectively. These are then simulta-
neously hybridized to the microarray a. This method of
labelling (control sample with green and treated sample
with red) is referred to as forward labelling. As a result
of this experiment we can derive from Eq.(1)

Gc,j,a,g = Ic,j +Aa +Dg + ǫc,j,a,g,

Gt,i,a,r = It,i +Aa +Dr + ǫt,i,a,r.

The difference Fa between the two fluorescence log-
intensities is therefore

Fa = Gt,i,a,r −Gc,j,a,g = It,i − Ic,j

+Dr −Dg + ǫt,i,a,r − ǫc,j,a,g, (2)

and Fa is normally distributed with an expected value
(mean) Et −Ec+Dr −Dg and a variance σ2

t + σ2
c +2σ2

ǫ .
Note that taking the difference of Gc,j,a,g and Gt,i,a,r

causes the spot effect Aa to be cancelled out and it does
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not therefore contribute to Fa. However, there is still the
labelling fluor effect Dr − Dg to consider. To eliminate
this effect microarrays with reverse labelling are required.
Consider the microarray (ti′ , cj′ ), where another two

individuals, i′ from the treated and j′ from the control
groups are hybridized to another microarray b. On this
occasion the individual from the control group j′ is la-
belled with red and the individual from the treated group
i′ with green. This method of labelling (control sample
with red and treated sample with green) is referred to
as reverse labelling. From this microarray b we get:

Gt,i′,b,g = It,i′ +Ab +Dg + ǫt,i′,b,g,

Gc,j′,b,r = Ic,j′ +Ab +Dr + ǫc,j′,b,r.

The difference of the two log-intensities is

Bb = Gt,i′,b,g −Gc,j′,b,r = Iti′ − Icj′

+Dg −Dr + ǫt,i′,b,g − ǫc,j′,b,r, (3)

and Bb is normally distributed with an expected value
Et − Ec +Dg −Dr and a variance σ2

t + σ2
c + 2σ2

ǫ .
The quantity Fa (or Bb) is the difference of two log-

intensities and is therefore equivalent to the logarithm
of the ratio of two intensities. Thus Fa (or Bb) is often
called the log-ratio of a gene. The variance of the log-ratio
of a gene, σ2

T = σ2
c +σ2

t +2σ2
ǫ , is the sum of the biological

variance of the control σ2
c , the treated σ2

t , and the mea-
surement variances associated with them 2σ2

ǫ . Hereafter
σ2
T is referred to as the total variance of the log-ratio of

the gene.
From Eqs.(2) and (3) it is clear that by combining

measurements from both forward and reverse labelled mi-
croarrays, it is possible to eliminate the fluorescent label
bias. One simple way of doing this is to take the average
of Eqs.(2) and (3). The expected value of this average is
then Et−Ec, which is the quantity of interest. The above
arguments therefore show that to eliminate the spot ef-
fect As, we need to hybridize the control and treated
samples onto the same microarray slide. To cancel out
the fluorescent label effect Dc we need to do both forward
labelled and reverse labelled microarrays. A general for-
malism is presented in the following sections to deal with
situations where the number of forward labelled microar-
rays and the number of reverse labelled microarrays are
not necessarily the same.
We will consider the following experiment:

(c1, t1), (c2, t2), · · · , (cnf−1, tnf−1), (cnf
, tnf

)

(tnf+1, cnf+1), (tnf+2, cnf+2), · · · , (tnf+nr
, cnf+nr

).

In this experiment there are in total nf + nr microar-
rays, nf of them are forward labelled, and the rest nr

are reverse labelled. In relation to similar studies by
other authors[11, 12, 13] using replicated microarrays,
this study focuses on a special case of microarray ex-
periment designs, i.e., direct comparison between two
groups with biological but no technical replicates in each

group. It is a special case of the balanced block de-
sign as described by [14]. They have showed that the
balanced block design is the most efficient experimental
setup when comparing two classes with a given number of
microarrays. The limitation of this experimental setup,
as Dobbin and Simon pointed out for the balanced block
design, is that it is not suitable for clustering analysis.

IV. DETECTING DGEs

A. Hypothesis test

For each gene printed on the microarrays, we want
perform a statistical test to determine whether this gene
is differentially expressed to a significant degree in the
treated group compared to the control group. The null
hypothesis is that the gene has the same expression level
in the two groups:

Null hypothesis H0 : Ec = Et (4)

Alternative hypothesis H1 : Ec 6= Et (5)

From each of the nf forward labelled microarrays an
intra-array log-ratio Fi between the treated sample and
the control sample is obtained, and similarly from each of
the nr reverse labelled microarrays a log-ratio Bj . Each
Fi has an expected value Et − Ec + Dr − Dg, so the

average F =
∑nf

i=1
Fi/nf has the same expected value.

Similarly the average B =
∑nr

j=1
Bj/nr has an expected

value Et − Ec −Dr +Dg. Averaging F and B gives

R =
F +B

2
=

1

2nf

nf
∑

i=1

Fi +
1

2nr

nr
∑

j=1

Bj , (6)

which will have an expected value Et − Ec, so R is an
unbiased estimator of our quantity of interest. Also R is
normally distributed with a variance

σ2
R =

σ2
T

4

(

1

nf

+
1

nr

)

. (7)

When the total number of microarrays nf + nr is fixed,
the variance of R is minimized at nf = nr, so whenever
possible, equal numbers of forward and reverse labelled
microarrays should be combined. The variances σ2

c , σ
2
t ,

and σ2
ǫ are unknowns, but fortunately there is no need to

estimate them individually. For the purposes of identify-
ing differential gene expression, estimating σ2

T as a whole
is sufficient and σ2

T can be estimated using its un-biased
estimator

s2 =
1

nf + nr − 2





nf
∑

i=1

(Fi − F )2 +

nr
∑

j=1

(Bj −B)2



 (8)

and (nf + nr − 2)s2/σ2
T will follow the χ2 distribution

with nf + nr − 2 degrees of freedom, independent of F
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andB[15], thus s2 is independent ofR. Note that in order
to estimate Et −Ec and σ2

T properly it is necessary that
nf ≥ 1, nr ≥ 1, and nf + nr > 2. In other words there
must be at least one forward and one reverse labelled
microarray, and at least three microarrays in total. It is
then apparent that

t =
R− (Et − Ec)

s

√

1

4

(

1

nf
+ 1

nr

)

(9)

is distributed as the Student’s t distribution with nf +
nr − 2 degrees of freedom. In testing the null hypothesis
Eq.(4), we insert Et = Ec into Eq.(9) and thus our test
statistic t0 is defined as,

t0 =
R

s

√

1

4

(

1

nf
+ 1

nr

)

(10)

Note that there is now no unknown quantity in Eq.(10).
Under the null hypothesis that Et = Ec, t0 follows the
Student’s distribution with nf+nr−2 degrees of freedom.
Based on the value of t0 the p-value of the test can be
calculated. If the p-value calculated is larger than some
pre-set threshold Pth, the null hypothesis is accepted that
the gene has the same level of expression in both the
control and treated groups. If the calculated p-value is
smaller than the threshold Pth, it is declared that the test
for this gene is positive, in the sense that its expression
level in the treated group is different from that in the
control group. Then depending on the sign of t0 the
gene is either designated as up (t0 > 0) or down regulated
(t0 < 0).

B. Setting the threshold p-value

A t test is performed for each gene, which is then de-
clared as differentially expressed, or not, according to the
above criteria. By adjusting the value of threshold Pth

a control can be exerted on the number of false DGE
calls made. By definition, p-value is the probability of
observing a value of the statistic as extreme or more ex-
treme than the observed value, under the condition that
the null hypothesis is true. For each gene whose null hy-
pothesis is true (we call each such gene a null gene), its
p-value is uniformly distributed in (0, 1). Therefore the
probability that a null gene’s p-value is smaller than Pth

is just Pth. Suppose that in a total number N genes,
N0 are null genes. When every gene on the microarray
is tested, the number of false DGE calls Ofp will has an
expected value N0Pth. So if one decides to tolerate an
expected number Nfp false DGEs the threshold p-value
should be set at Pth = Nfp/N0. However, in reality only
N is known and not N0 and therefore, it is necessary to
make an estimation of N0 or N0/N . Some methods for
estimating N0/N are discussed in Sec. VB.

Once the threshold value Pth is set, the ability to detect
genuine DGE, i.e. a gene with Et 6= Ec, depends on the
following factors: the magnitude of differential expression
Et−Ec, the total variance in one microarray experiment
σ2
T , and the number of forward and reverse labelled mi-

croarrays. Among these factors, the ones over which ex-
perimental control is exercised are nf and nr. In general
the larger nf and nr, the more powerful will be the sta-
tistical testing. The key question is therefore, how many
forward and reverse labelled microarrays are required in
order to achieve a desired power of DGE detection with
control on the number of false DGE calls? Based on the
standard normal Z test, several authors have presented
results on calculating the number of microarrays needed
to achieve given statistical power while controlling false
positive rate [2, 16]. These results would be applicable if
we knew σ2

T for each gene. In reality though the variances
cannot be assumed known, and more often than not, the
number of microarrays used to estimate the variances
is rather small. It is therefore necessary to use t-based
test rather than the standard normal test. Other au-
thors have also presented approximate formulas [17, 18]
for calculating the power of the traditional two-sample
t test with equal variance. In this paper we present an
exact formula for calculating the power of the t-based
statistical test developed here.

C. Determination of the threshold t-value

When the numbers of forward and reverse labelled mi-
croarrays are given, setting Pth is equivalent to setting a
threshold, say |ξ|, for the statistics t0 defined in Eq.(10).
With this threshold t-value, our criteria for claiming a
DGE is as follows: If t0 > |ξ|, the gene is claimed as
up-regulated (Et − Ec > 0); if t0 < −|ξ|, it is claimed as
down-regulated (Et−Ec < 0). So the rate at which false
positive claims are made is

Pth =

∫ −|ξ|

−∞

ρnf+nr−2(t0)dt0 +

∫ ∞

|ξ|

ρnf+nr−2(t0)dt0

= 2

∫ −|ξ|

−∞

ρnf+nr−2(t0)dt0 = 2Tnf+nr−2(−|ξ|),(11)

where ρr(x) is the probability density function (PDF) of
the Student’s distribution with r degrees of freedom, and
Tr(.) is the cumulative probability distribution function
(CDF) for the Student’s t distribution. It is therefore
apparent that the threshold t-value |ξ| can be obtained
by solving the equation 2Tnf+nr−2(−|ξ|) = Pth with a
given false positive rate Pth.

D. Successful detection rate

The successful detection rate is the rate at which
DGE is correctly identified (either up-regulated or down-
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regulated). If a gene has Et − Ec = µ > 0, the success-
ful detection rate for this gene is the probability that
t0 > |ξ| is observed. On the other hand, if a gene has
Et −Ec = µ < 0, the successful detection rate equals the
probability that t0 < −|ξ| is observed. It can be shown
(see supplementary information I) that in both cases, the
rate at which the genes behavior is correctly identified,
i.e. µ > 0 or µ < 0, can be described by the following
equation

S

(

nf , nr,
|µ|

σT

, |ξ|

)

=

∫ ∞

0

pnf+nr−2(Y )×

Φ

[

−|ξ|

√

Y

nf + nr − 2
+ 2

(

|µ|

σT

)
√

nfnr

nf + nr

]

dY, (12)

where pr(Y ) is the PDF for the χ2 distribution with r
degrees of freedom, and Φ(.) is the CDF for the standard
normal distribution.
Therefore the successful detection rate S is a function

of nf , nr, |µ|/σT , and |ξ|, where |ξ| can be obtained by
solving Eq.(11) at a given Pth. Eventually, S is a function
of Pth, nf , nr, and |µ|/σT .

E. Usage of the S function

We have implemented the calculation of the S function
as a Java application, which is accessible through the
URL given in the abstract. Two look-up tables also are
provided in the supplementary for some typical results of
S for quick reference. Experiment designers can use these
to find the value of S at given parameters nf , nr, |µ|/σT ,
and Pth, thus get some general idea of what percentage of
truly DGEs can be detected by their experimental design.
The applicability of the S function can be seen from

two perspectives. First, for the user who has not car-
ried out any microarray experiments on their system
before, the total variances (σ2

T ) will be completely un-
known. In this situation the S function can serve as a
post-experiment assessment to inform the user of the de-
tection rate in their experiment based on the observed
values of R and s2 from the measurements. For exam-
ple, 3 forward and 3 reverse labelled microarrays, with
5000 genes printed on each microarray, were used in a
experiment. The tolerance for false positives is set at
Nfp = 2, and for simplicity the threshold p-value is set
as Pth = 2/5000. If most genes have an s2 around 1,
then the typical value of σ2

T for the set of genes is 1. We
can now ask: for genes with two-fold differential expres-
sion and typical variance, what percentage of them can
be correctly detected by this experiment? Remember-
ing that a two-fold differential expression corresponds to
µ = Et − Ec = 1 or µ = Et − Ec = −1, we have |µ| = 1
and σT = 1. Using the S calculator or the look-up ta-
bles (Supplementary Table I) we find that the successful
detection rate for nf = 3, nr = 3, Pth = 2/5000, and
|µ|/σT = 1 is 9.08× 10−3, which means that in this ex-
periment only 0.908% of genes with two-fold DGE and

with typical variance 1 can be detected, the remaining
99% are missed. If the same question was asked about
genes with four-fold DGE and one decides to tolerate
Nfp = 8 false positive claims and the threshold is set
at Pth = 8/5000, then the successful detection rate for
Pth = 8/5000, nf = 3, nr = 3, and |µ|/σT = 2 is 0.217,
which means 21.7% of them are successfully detected. If
the detection rate is unsatisfactory, then more forward
and reverse microarray datasets need to be added.

Second, if there is some general knowledge of total vari-
ance from previous experiments or other sources, then a
target for the detection rate can be set. In this case, the
S function will assist in the determination of how many
forward and reverse microarrays are required in the ex-
periment. For example, if from previous experience we
know that the typical value of the total variance for the
set of genes under consideration is σ2

T = 0.25, which gives
σT = 0.5; A microarray experiment is now designed to
identify DGEs between the treated and the control with
a tolerance of 8 false positive claims out of 5000 genes
being tested with Pth = 8/5000 for simplicity; The pre-
set target is that after this experiment no less than 60%
of genes with two-fold DGE and with typical variance
should be detected; How many forward and reverse la-
belled microarrays are needed? As before, two-fold DGE
corresponds to |µ| = 1, so one has |µ|/σT = 2. Us-
ing the look-up tables (Supplementary Table II, in the
|µ|/σT = 2 panel and Pth = 8/5000 column), one finds
that the row nf = nr = 4 gives a detection rate S = 0.605
which is closest to meet the target. Therefore 4 forward
and 4 reverse labelled microarrays are required in this
experiment.

V. CONTROLLING FALSE POSITIVES

A. Procedures

In this section, we explore further on how to effectively
control false positives in a multiple test situation. Gener-
ally speaking, all different multiple-testing methods even-
tually amount to effectively setting a threshold p-value,
and then rejecting all the null hypothesis with p-value
below this threshold. For example, the classical Bonfer-
roni multiple-testing procedure controls family-wise error
rate at α by setting the threshold Pth = α/N , where N
is the total number of hypothesis tested. In this study,
we aim to control the number false positives such that
the expectation of Ofp equals Nfp, our pre-set target.
As discussed in Section IVB, to achieve this, we should
set Pth = Nfp/N0, which requires an estimation of N0 or
N0/N , the fraction of null genes in the set.

We present three procedures here for setting Pth to
control false positives:

Procedure A: Suppose we have made an estimation of
N0/N as c, then set Pth = Nfp/(cN). The method for
calculating c will be discussed below.
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Procedure B: Set Pth = Nfp/N . This can be seen as
using c = 1 as the crudest estimation of N0/N .
Procedure C: Suppose genes are sorted by their ascend-

ing p-values, so that p1 ≤ p2 ≤ p3 ≤ · · · ≤ pN , where pi
is the p-value for gene i. Set Pth = pi∗ , where i∗ is the
largest index satisfying pi[N − i + min(i, Nfp)] ≤ Nfp.
This can be seen as estimating N0/N by c = [N − i∗ +
min(i∗, Nfp)]/N . The idea behind this is that if gene i∗

and all genes indexed below it are to be declared DGEs,
these genes should not contribute to the fraction of null
genes. Thus this represents some improvement over the
crudest estimation c = 1.
We have performed simulations to compare the per-

formances of the three procedures. Procedure A allows
us to achieve the highest rate of DGE detection among
the three, and the observed false positives Ofp matches
our preset target Nfp statistically. Procedure B does not
estimate N0/N effectively, and it is the most conserva-
tive procedure. So Procedure A is recommended over
C and B (See Supplementary for details on simulation
procedures and data).
Benjamini and Hochberg [19] proposed the FDR ap-

proach to control the false discovery rate (FDR) at q by
setting Pth = i∗q/N , where i∗ is the largest index sat-
isfying pi ≤ iq/N . The false discovery rate was defined
as the expectation of the ratio of false to total positives,
i.e., q ≡ E(Ofp/i

∗). When the FDR procedure controls
false discovery rate at q, the observed false discovery rate
Ofp/i

∗ should have value around q, i.e., q ≈ Ofp/i
∗,

which gives Pth = i∗q/N ≈ Ofp/N . The expectation of
the threshold p-value under the FDR procedure is there-
fore E(Pth) ≈ E(Ofp/N) = Nfp/N . It is thus clear that
the FDR procedure of [19] is on average equivalent to
Procedure B in this section.

B. Estimating N0/N

Pounds and Morris [20] recently proposed the use of
a beta-uniform mixture (BUM) function to approximate
the distribution of p-values from a set of genes tested, and
estimate the fraction of null genes in the set. Here we pro-
pose another method to estimate N0/N , which does not
requires the BUM form of distribution of p-values. The
aim was to achieve a more accurate estimation of the frac-
tion of null genes. As in [20], we wanted to extract a uni-
form density from the observed distribution of p-values.
To achieve this, the genes were first sorted by their as-
cending p-values, so that p1 ≤ p2 ≤ p3 ≤ · · · ≤ pN , where
pi is the p-value for gene i. Then an empirical cumulative
distribution of p-values can be easily obtained by plot-
ting i/N versus pi. The idea was to find a straight line
tangent to the cumulative distribution curve with min-
imum slope. Taking into account that the cumulative
distribution curve is a non-decreasing function ending at
the point (1.0, 1.0), the minimum slope was found as fol-
lows. Each point (pi, i/N) on the cumulative distribution
plot was connected with the ending point (1.0, 1.0) with

a straight line, and the slope of the line calculated as
ci = (1.0 − i/N)/(1.0− pi). Then the minimum of ci at
a given range of p-value, say Pl ≤ pi ≤ Pu, was found

cmin = min
i
(ci | Pl ≤ pi ≤ Pu). (13)

cmin can be used as our estimation of the fraction of null
genes in the set.
We have carried out simulations to test the perfor-

mance of Eq.(13), and found that it tends to underes-
timate the true value of N0/N . Instead, using median
slope as the estimation of N0/N gives more accurate re-
sults than the minimum slope. We thus use the following
equation to estimate the fraction of null genes

cmid = median(ci | Pl ≤ pi ≤ Pu). (14)

In a recent paper [21], Storey and Tibshirani used a
natural cubic spline to fit the data of ci as a function
of pi for a given range of p-values, then took the value
of the spline at p = 1 as the estimation of N0/N . We
compared the Storey-Tibshirani method with Eq.(14),
an advantage of the latter is that it is computationally
much simpler than the Storey-Tibshirani method. As can
be seen from Table I, both our method and the Storey-
Tibshirani method become more accurate as N and/or
N0/N increases, and in all the cases our method gives
slightly better results, as indicated by the coefficient of
variation.
As for the values of Pl and Pu, a practical guidance

for choosing them is to set Pl a value between 0.4 and
0.5, and Pu between 0.9 and 0.95. In fact, Eq.(14) gives
quite robust results with respect to changing the val-
ues of Pl and Pu within the recommended range. For
a set of simulation tests with true null fraction 0.8, using
(Pl, Pu) = (0.4, 0.95) gives cmid = 0.800 ± 0.023, while
using (Pl, Pu) = (0.5, 0.9) gives cmid = 0.800± 0.024.
The method here to estimate N0/N does not depend

on the specific form of statistical tests being used, as
long as the p-values pertaining to the tests are obtained.
But similar to the BUM method and the the Storey-
Tibshirani method, the method we are proposing here
also implicitly assumes that the multiple test statistics
are independent, or at least the true null statistics are
independent. In the context of microarray experiments,
this would require that the null genes’ expressions are
independent of each other. This may be not realistic,
thus the estimation of the fraction of null genes based on
these methods will be less accurate. An extreme exam-
ple is when all the null genes in each biological sample
behave in a concerted manner, and all the non-null genes
express in a synchronized way, then the p-values we ob-
serve will be concentrated on two separate points, one for
all the null genes and one for the non-null genes. Such a
situation will defy all the methods for estimating N0/N
discussed here. Estimating the fraction of null genes with
possibly strong inter-gene dependence is an important is-
sue, and probably a very difficult one, especially without
specifying their structure of interdependence beforehand.
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This is beyond the scope of current study, and is an issue
worth of future investigation and continuous efforts. Un-
til further statistical advances are made in this respect,
the method we proposed in this paper can serve as an
approximation for estimating the fraction of null statis-
tics.

VI. DISCUSSION

The data volume generated by microarray studies com-
bined with the intrinsic variability of the system demands
that rigorous statistical analysis be applied to the data to
avoid the problem of false positives and/or low successful
rate in DGE detection. In this study we have taken into
account all the major variables associated with microar-
ray data. The procedure proposed in this paper deals
with fluorescent label bias often present in microarray ex-
periments. A t statistic has been derived for hypothesis
testing based on a model that describes each gene indi-
vidually with its own set of parameters. An advantage
of this design is that if there exists any fluorescent biases
(Dg 6= Dr) for some genes they will be corrected by the
reverse labelling procedure. For genes with no fluores-
cent bias (for example, some genes may have Dg = Dr)
the method will perform equally satisfactorily.
In this work, we have adopted the normality assump-

tion, which leads to the test statistic t0 following the
Students’ t distribution under the null hypothesis. Thus
the successful detection rate S can be calculated in closed
form. While the normality assumption seems reasonable
with common technologies, especially for the measure-
ment error ǫvisc, large scale replicate experiments have
not yet been performed to make a precise assessment [1].
If normality is not met, R defined in Eq.(6) will continue
to be an unbiased estimator of the quantity of interest
but t0 will not follow Students’ t distribution. In this case
some non-parametric methods [22, 23, 24, 25] could be
employed. While those methods can be readily applied
to microarrays with a common reference design, where
the systematic dye bias subtracts out in the calculation
of the test statistic, the application of those methods to
the direct comparison design needs to be further devel-
oped and investigated. If non-parametric methods have
to be used the rate of successful detection cannot be as
readily calculated as in Eq.(12).
In the published literature it is a common practice to

apply some form of normalization (global or local) to re-
move systematic biases before the statistical analysis of
microarray data. Here we are proposing to remove much
of the systematic bias by experimental means, i.e. by
a dye-swapping procedure. Since the model deals with
the fluorescent bias for each gene individually, no other
local normalization procedure (e.g. LOWESS [7]) should

be applied before the statistical testing procedure given
here. However, some form of global normalization is ap-
propriate, such as that utilized by Pollack et al [26], or
that described in [6], where the log-ratios in a microar-
ray dataset are globally shifted so that the most probable
value of log-ratio becomes 0. The purpose of global nor-
malization is to adjust the effect of global factors that
could generally affect the fluorescence, such as a differ-
ence between the overall concentrations of two mRNAs,
and possibly the difference of photo-amplifier voltages
used between the two fluorescent channels when the mi-
croarray image was scanned. All the local feature-specific
bias is looked after by the reverse labelling and statistical
testing procedure proposed here.

Finally a word for the overworked bench researcher
facing the prospect of multiple hybridizations in order to
achieve a reasonably high level of S without having to
contend with an unsatisfactory false positive rate. What
can be regarded as reasonable? This depends on the de-
sired outcome of the experiment. If for example the inter-
est is in defining genes which might give rise to differential
susceptibility, then there will be a desire to have a high
value of S in order not to miss any potential candidate
genes. There would be two ways of achieving this, either
by increasing the number of hybridizations or by accept-
ing a higher false positive rate. In an experiment such as
the one described then the candidate genes will probably
be verified by other methods downstream. Therefore the
balance is driven by the need to achieve a high S and
the decision is between whether it is more economical to
use more microarrays, or put more resource into down-
stream verification. Where no downstream verification
of DGEs identified in a microarray experiment are pro-
posed then it is essential to maintain a low value of false
positive rate, at the expense of S if the total number
of microarrays is limiting. This study does not seek to
put a figure on the number of microarrays that should
be hybridized in an experiment. Rather a framework is
provided for the experiment designer to decide on the
number of microarrays to hybridize taking into account
the system, availability of sample, downstream analysis
primarily and the objective of the experiment.

Acknowledgement

We wish to acknowledge the support of the microarray
team of the MRC Toxicology Unit particularly Reginald
Davies, David J. Judah, JinLi Luo and Joan Riley. We
thank Andy Smith and Michael Festing for critical read-
ings of the manuscript and helpful discussions. We also
thank anonymous referees for very helpful and construc-
tive comments.

[1] P. Baldi and G. W. Hatfield, DNA microarrays and Gene

expression (Cambridge University Press, 2002).
[2] K. Dobbin, J. H. Shih, and R. Simon, Bioinformatics 19,



8

803 (2003).
[3] S. Dudoit, Y. H. Yang, T. P. Speed, and M. J. Callow,

Stat. Sinica. 12, No.1 111 (2002).
[4] Y. H. Yang, S. Dudoit, P. Luu, D. M. Lin, V. Peng,

J. Ngai, and T. P. Speed, Nucleic Acids Res. 30, No.4
e15 (2002).

[5] V. G. Cheung, M. Morley, F. Aguilar, A. Massimi,
R. Kucherlapati, and G. Childs, Nat. Genet. 21, 15
(1999).

[6] T. W. Gant and S.-D. Zhang, in Life Sciences Review

(2002), pp. 17–20, bioArrays Conference, Cambridge.
[7] J. Quackenbush, Nat. Genet. 32, 496 (2002).
[8] G. C. Tseng, M. K. Oh, L. Rohlin, J. C. Liao, and W. H.

Wong, Nuclec Acids Res. 29, 2549 (2001).
[9] Y. Zhou, F. G. Gwadry, W. C. Reinhold, L. D. Miller,

L. H. Smith, U. Scherf, E. T. Liu, K. W. Kohn, Y. Pom-
mier, and J. N. Weinstein, Cancer Res. 62, 1688 (2002).

[10] M. K. Kerr, M. Martin, and G. A. Churchill, J. Comput.
Biol. 7, 819 (2000).

[11] M. J. Callow, S. Dudoit, E. L. Gong, T. P. Speed, and
E. M. Rubin, Genome Research 10, 2022 (2000).

[12] W. Jin, R. M. Riley, R. D. Wolfinger, K. P. White,
G. Passador-Gurgel, and G. Gibson, Nature Genetics 29,
389 (2001).

[13] M. K. Kerr, C. A. Afshari, L. Bennett, P. Bushel, J. Mar-
tinez, N. J. Walker, and G. A. Churchill, Stat. Sinica. 12,
203 (2002).

[14] K. Dobbin and R. Simon, Bioinformatics 18, 1438 (2002).
[15] K. A. Brownlee, Statistical theory and methodology in sci-

ence and engineering (John Wiley and Sons, Inc., 1965).
[16] L. Wernisch, Comp. Funct. Genom. 3, 372 (2002).
[17] L. M. McShane, J. H. Shih, and A. M. Michalowska, Jour-

nal of Mammary Gland Biology and Neoplasia 8, 359
(2003).

[18] R. M. Simon, E. L. Korn, L. M. McShane, M. D. Rad-
macher, G. W. Wright, and Y. Zhao, Design and Analysis

of DNA Microarray Investigations, Statistics for Biology
and Health (Springer, 2004).

[19] Y. Benjamini and Y. Hochberg, J. R. Statist. Soc. B 57,
289 (1995).

[20] S. Pounds and S. W. Morris, Bioinformatics 19, 1236
(2003).

[21] J. D. Storey and R. Tibshirani, Proc. Natl. Acad. Sci.
USA 100, 9440 (2003).

[22] B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher, J.
Am. Stat. Assoc. 96, 1151 (2001).

[23] W. Pan, J. Lin, and C. Le, A mixture model approach

to detecting differentially expressed genes with microar-

ray data (2001), research Report 2001-011, Division
of Biostatistics, University of Minnesota, Available at
http://www.biostat.umn.edu/cgi-bin/rrs?print+2001.

[24] W. Pan, Bioinformatics 19, 1333 (2003).
[25] V. G. Tusher, R. Tibshirani, and G. Chu, Proc. Natl.

Acad. Sci. USA 98, 5116 (2001).
[26] J. R. Pollack, C. M. Perou, A. A. Alizadeh, M. B. Eisen,

A. Pergamenshikov, C. F. Williams, S. S. Jeffrey, D. Bot-
stein, and P. O. Brown, Nat. Genet. 23, 41 (1999).



9

TABLE I: The fraction of null genes as estimated by Eq.(14) (cmid) and by the Storey–Tibshirani method (π0). Parameters
used are: µ = 1, σT = 0.5,nf = 2, nr = 2, Pl = 0.4, Pu = 0.95. Results are based on 16 simulations for each cell in the table.
cv, the coefficient of variation, is defined as the standard deviation divided by the true value of null fraction, N0/N .

N = 100 N = 500 N = 1000 N = 5000
N0/N mean stdev cv mean stdev cv mean stdev cv mean stdev cv
0.2 cmid 0.186 0.040 0.200 0.205 0.017 0.085 0.197 0.013 0.067 0.201 0.009 0.044
0.2 π0 0.158 0.109 0.544 0.209 0.061 0.307 0.178 0.042 0.212 0.203 0.017 0.087
0.8 cmid 0.767 0.112 0.140 0.807 0.047 0.059 0.805 0.031 0.038 0.800 0.023 0.029
0.8 π0 0.724 0.284 0.355 0.785 0.097 0.121 0.792 0.064 0.080 0.807 0.060 0.075


