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Abstract
Motivation—Uncovering the protein–protein interaction network is a fundamental step in the quest
to understand the molecular machinery of a cell. This motivates the search for efficient computational
methods for predicting such interactions. Among the available predictors are those that are based on
the co-evolution hypothesis “evolutionary trees of protein families (that are known to interact) are
expected to have similar topologies”. Many of these methods are limited by the fact that they can
handle only a small number of protein sequences. Also, details on evolutionary tree topology are
missing as they use similarity matrices in lieu of the trees.

Results—We introduce MORPH, a new algorithm for predicting protein interaction partners
between members of two protein families that are known to interact. Our approach can also be seen
as a new method for searching the best superposition of the corresponding evolutionary trees based
on tree automorphism group. We discuss relevant facts related to the predictability of protein–protein
interaction based on their co-evolution. When compared with related computational approaches, our
method reduces the search space by ~3 × 105-fold and at the same time increases the accuracy of
predicting correct binding partners.

1 INTRODUCTION
Protein–protein interactions are of primary importance in metabolic and signaling pathways.
Traditional experimental techniques (genetic, biochemical or biophysical) for the study of
individual interactions have been followed by high-throughput interaction-detection methods
such as two-hybrid systems, and protein complex purification using mass spectrometry. Several
computational approaches for predicting interactions have also been developed. Methods based
on genomic information such as phylogenetic profiling (Huynen and Bork, 1998; Pellegrini
et al., 1999), gene order conservation (Dandekar et al., 1998; Overbeek et al., 1998) and gene
fusion (Marcotte et al., 1999) have been successfully applied to predict sets of functionally
related proteins. Sequence-based methods include the study of correlated mutations (Pazos and
Valencia, 2002) and similarity of phylogenetic trees (Goh et al., 2000; Goh and Cohen,
2002; Pazos et al., 1997; Pazos and Valencia, 2001; Ramani and Marcotte, 2003). The
underlying assumption of the latter is that proteins and their interaction partners must co-evolve
so that divergent changes in one partner’s binding surface are complemented in the interface
with the other partner. This could explain the fact that phylogenetic trees of ligands show
significant similarity to the corresponding trees of receptors.

The co-evolution of interacting partners can be used to predict protein–protein interaction. One
approach is to take two families of orthologous interacting proteins such that each family
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contains proteins from the same set of species. The level of co-evolution between the two
families can be tested by assessing the agreement between the corresponding similarity
matrices (Pazos and Valencia, 2001, 2002; Valencia and Pazos, 2003). The agreement between
two trees is usually calculated using some information-theoretic similarity agreement measure
(usually correlation coefficient) of the corresponding similarity matrices. A significant
correlation between the evolutionary trees indicates that the proteins from the two families may
interact. Pazos and Valencia observed that this “mirror tree” approach can be used as a predictor
of protein interaction with >66% of true positives at correlation coefficient values better than
0.8 on a −1.0 to +1.0 scale.

Correlation of phylogenetic trees can also be used to predict specific interaction partners
between members of two families that are known to interact. Assume that each protein in one
family interacts with exactly one protein in the other family. In this case we have two similar
(by the assumption of co-evolution) phylogenetic trees and the objective is to establish a
mapping between the leaves of the two trees resulting in a one-to-one mapping between the
members of one family and those of the other (Ramani and Marcotte, 2003; Gertz et al.,
2003). The idea is to identify the mapping that “maximizes” the correlation between the two
similarity matrices. However, this is computationally intensive. The number of possible
mappings between two n × n matrices is equal to n!, a function that grows faster than any
exponential function. Ramani and Marcotte, and Gertz et al. independently proposed a Monte
Carlo algorithm that explores the search space of all possible superpositions of two similarity
matrices. In a single Monte Carlo step, the algorithm picks a pair of columns uniformly at
random and tests how swapping these columns (and the corresponding rows) would affect the
score (e.g. correlation coefficient) of the matrix superposition. The swap is subsequently
accepted/rejected using the Metropolis criterion (Metropolis et al., 1953). Ramani and
Marcotte observed that such an algorithm cannot address the problem successfully if the size
of the matrices is large (>30) or if the evolutionary trees are not sufficiently “complex”. The
obstacle to a successful prediction is the large search space, large number of possible moves
at each iteration and the possibility of getting trapped in a local optimum.

In this paper we propose a new algorithm called MORPH to detect interacting pairs based on
the co-evolution hypothesis. The main idea in our approach is to reduce the search space and
the move-set by using information encoded in the evolutionary trees of the two families. In
other words, in addition to using the evolutionary distance information, we use the topological
information of the evolutionary trees. As a result, our reduced move-set greatly minimizes the
chances of getting trapped in a local optimum. We also introduce the concept of entropy of an
evolutionary tree and the information content of such a tree. We argue that these concepts
provide a formal measure of complexity of a tree, similar to that discussed informally by
Ramani and Marcotte.

We present a few graph-theoretic terms before introducing our approach. We call two trees
(graphs in general) isomorphic if there is a one-to-one mapping between their vertices (nodes)
such that there is an edge between two vertices of one graph if and only if there is an edge
between the two corresponding vertices in the other graph. Graph automorphism is an
isomorphism of a graph to itself. A graph can have more than one automorphism.

Similarly to the previous algorithms mentioned above, MORPH is based on a Monte Carlo
search. However, the search space and the method of searching are different. In our approach,
the search space corresponds to the automorphism group of a phylogenetic tree (after some
preprocessing), and each move corresponds to an automorphism of the tree onto itself. In the
extreme case, where the information content of the evolutionary tree is zero, our search space
becomes as big as the search space explored by the algorithms of Ramani and Marcotte and
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Gertz et al. However, if the evolutionary tree carries some information (which is usually the
case), MORPH is able to use this information to reduce the search space drastically.

2 CO-EVOLUTION, TREE AUTOMORPHISMS AND TREE COMPLEXITY
To illustrate the intuition behind our method, let us first consider an ideal case. Assume that
the evolutionary trees for both families (that are known to interact) have identical topologies
(they are isomorphic). Furthermore, assume that all edges have high bootstrap values,1 thus
the trees are reliable. We only need to focus on topology-preserving embeddings of one tree
onto the other tree, where by a topology-preserving embedding we mean an isomorphic
mapping of the two trees.

For illustration, consider the three pairs of trees given in Figure 1. We use the term cherry to
denote any subtree of a tree that consists of one internal node and a set of leaves. In Figure 1
(a), there are eight possible topology preserving superpositions of the two trees: any “cherry”,
say (a, b), of the bottom tree can be superimposed with any cherry (A, B) or (C, D) of the top
tree and within each cherry any of the two leaf mappings are possible. The number of
superpositions of the pair of trees in Figure 1(b) is also eight, despite the fact they have one
additional leaf compared with the trees in Figure 1(a). This is because the middle leaf, e, of the
bottom tree can be mapped only to the middle leaf, E, of the top tree (or else the topology will
not be preserved). Finally, the pair in Figure 1(c) has one fewer leaves compared to the trees
in Figure 1(b) but has the largest possible number of superpositions (4! = 24) among the three
pairs in Figure 1. In this case any leaf of one tree can be mapped to any leaf of the other tree
without violating the tree topology. Here the topology of the evolutionary tree does not provide
any additional information that would be helpful in reducing the number of possible mappings.

If two trees are isomorphic, the number of topology-preserving mappings between the two
trees will be same as the number of topology-preserving mappings of one of those trees onto
itself. In other words, when two trees are isomorphic, the total number of mappings between
those trees is the same as the number of automorphisms of either of those two trees. Let τ (T)
denote the number of automorphisms of tree T. We define the topological entropy EN (T) of a
tree T with N leaf nodes to be

Consistent with the information-theoretic definition, we define the information content I (T)
of a tree T to be

The tree with the highest entropy among all trees with N leaf nodes is the star tree (see Fig. 1c
for a star tree with N = 4). The entropy of a star tree is log (N!) ~ N log N. Thus, the information
content of any star tree is zero (regardless of the tree size).

Information content measures the reduction in the search space achieved by our approach. In
fact, the ratio of the size of the search space (number of all possible permutations) used by the
previous algorithms to the size of the search space (number of tree automorphisms) used by

1A bootstrap value is a percentage associated with each internal edge of a tree representing the confidence level on the edge. The higher
the percentage, the more reliable the edge is.
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MORPH is equal to 2I (T). As an example, consider the pair of nine-node trees in Figure 2(a).
The search space of a column-flipping algorithm for this pair of trees is 9! = 362,880 while the
size of the automorphism space is only 1,296. The information content for this set of trees is
>2 bits and the reduction in search space is 280-fold.

The entropy EN (T) of a tree measures precisely how symmetric a tree T with N leaf nodes is
and therefore provides a formal measure of tree ‘complexity’. The smaller the EN (T), the more
complex the tree T is. Based on the entropy of the similarity matrix, Ramani and Marcotte
(2003) proposed a different method for measuring the complexity of a tree. Their idea is to bin
the numerical entries of the similarity matrix M, and compute H(M) of the distribution of M’s
entries:

where x represents the bins of values and p(x) is the frequency with which those values are
seen in the matrix. The intuition behind their approach is that the larger the number of unique
(non-identical) entries/values in the matrix, the more complex the tree obtained from that matrix
would be. The authors suggest that H(M) is larger for more complex trees. Clearly H(M) is
minimized when all entries are equal (which corresponds to a least-complex star tree).
Unfortunately, H(M), in general, does not need to increase monotonically with the complexity
of a tree. Note, for example, that in Figure 3, the first tree is more complex than the second
despite the fact that the similarity matrix of the first tree has significantly smaller entropy.

3 MATERIALS AND METHODS
3.1 Interaction datasets

Our dataset of known protein interaction partners was obtained from Ramani and Marcotte
(2003). T-Coffee (Notredame et al., 2000) was used to align sequences from SwissProt
(Bairoch and Apweiler, 1997). Similarity matrices and phylogenetic trees from the multiple
sequence alignment were computed using CLUSTALW v1.83 (Thompson et al., 1994). Entry
Xij in the similarity matrix denotes the evolutionary distance between proteins i and j in a family
after corrections for multiple mutations per amino acid residue (Kimura, 1983). As in Ramani
and Marcotte (2003), Chemokine interactions were defined as described in Oppenheim and
Feldmann (2001) and other interactions according to the KEGG database v22.0 (Kanehisa,
1996).

3.2 Searching the automorphism space
In practice, the phylogenetic trees of two interacting protein families are often not isomorphic
despite looking so to the eye (Fig. 5). In addition, they often contain edges (internal) that are
not well supported with high bootstrap values. Such edges are not reliable and are sometimes
misleading when it comes to depicting the correct evolutionary relationship between proteins.
Thus, MORPH does not place high confidence on these edges, and it solves this problem by
contracting/shrinking edges with bootstrap values below a certain cutoff. There is a tradeoff
involved in choosing the cutoff value. A higher cutoff could lead to over-shrinking of the tree,
resulting in a loss of valuable topological information. A smaller cutoff will preserve the
topological information, but since the phylogenetic tree topology is not completely trustworthy
(Fig. 4), one might actually end up comparing isomorphic, but misleading, trees. After
extensive experimentation, we set the cutoff to 80%. Figure 4 illustrates an example where a
cutoff value of 80% will shrink edges with bootstrap values {40, 41} and {48, 73, 76} from
the left and right subtrees, respectively. During this shrinking process, we ensure that equal
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numbers of edges are shrunk on both trees. To achieve this, we shrink the edge with bootstrap
value 90 from the left subtree. The resulting trees in this case are not isomorphic. If the resulting
trees are not isomorphic, we further contract edges, in increasing order of the bootstrap values,
on both trees until the trees are isomorphic.

Once the trees are isomorphic, we search the tree automorphism space using a Monte Carlo
algorithm. Our algorithm keeps one of the two trees (and the corresponding similarity matrix)
frozen while performing elementary moves on the other tree (and its matrix). Each point of the
search space corresponds to a topology-preserving mapping of the variable tree onto the frozen
tree. Thus, each move has to go from one topology-preserving embedding to another topology-
preserving embedding. In other words, each move has to go from one automorphism of the
variable tree to another.

To compute all possible moves we need to identify all possible symmetries of the variable tree,
i.e. all isomorphic subtrees. Given a rooted tree, all isomorphic subtrees can be quickly
computed (in time linearly proportional to the number of vertices) (Aho et al., 1974). Once all
isomorphic subtrees are identified, we define the move-set. Every move in the move-set
constitutes two isomorphic subtrees adjacent to a common node. Consequently, every Monte
Carlo step in our algorithm picks a move from the move-set, uniformly at random, and swaps
the two subtrees using the Metropolis criterion, resulting in a topology-preserving embedding
of the variable tree (Fig. 6).

3.3 Methodology
The extent of agreement/superposition of similarity matrices R and S was evaluated using the
information theoretic-based measure correlation coefficient (r), given by

where n is the number of entries in the matrices, i.e. n = (N2 − N)/2, with N being the number
of protein sequences in the multiple sequence alignments, and  and  are the means of all
Ri and Si values, respectively. The value of r ranges from −1 to +1, with higher r indicating
greater agreement between the two matrices.

As depicted in Figure 6, MORPH performs necessary contraction of internal edges on the
phylogenetic trees of the interacting families until they are isomorphic. It then freezes the first
phylogenetic tree and its corresponding matrix while it performs elementary moves on the
second tree and its corresponding matrix. The Monte Carlo algorithm with simulated annealing
is used to navigate through the search space and maximize the agreement between the two
trees/matrices. Each step (move) in the search process constitutes picking two isomorphic
subtrees (connected to a common parent) of the variable tree, uniformly at random, and
swapping their respective positions. The corresponding columns in the variable matrix are
swapped as well. If the performed move results in a better agreement (increased r), the swap
is kept. Otherwise, the move is kept with probability p = exp(δ/T), where δ is the decrease in
r as a result of the move, and T is the temperature control variable governing the simulated
annealing process. T is initially set to a value such that p = 0.8 to begin with, and after each
iteration T is decreased by 5%. Once the probability of accepting a decrease falls below 10%,
the algorithm initiates the sampling process. In the sampling process, 100 snapshots of the
variable similarity matrix are recorded at M step intervals, where M is the number of unique
moves that can be performed on the tree. Proteins heading equivalent columns in the frozen
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matrix and the snapshot of the variable matrix are predicted to interact. From these 100
snapshots, the frequency of a given protein pair interaction is calculated. Then, every protein
represented in the frozen matrix is predicted to interact with the most frequently paired protein
in the variable matrix. For consistency and reproducibility of the predictions, the algorithm
was run 10 times, producing a total of 1,000 snapshots.

4 RESULTS AND DISCUSSION
4.1 Results

The phylogenetic trees of two interacting protein families, the Ntr-type two-component
regulators and their corresponding sensors, are shown in Figure 5. At first sight, the trees look
topologically similar. The ntrC and hydG proteins from Escherichia coli in the regulator tree
are next to the ntrC and hydG proteins from Salmonella typhimurium, respectively. Their
corresponding interaction partners in the sensor tree, the ntrB and hydH proteins from E.coli
and S.typhimurium, have identical topological relationship. On a closer examination, one can
see that the trees are, in fact, not identical. For example, the topological relationships among
Borrelia burgdorferi, Aqcuifex aeolicus and Helicobacter pylori proteins are not the same on
both trees.

For the Ntr-type two-component sensor and regulator families, there are a total of 14 interaction
pairs according to the KEGG database, spanning genes from 8 organisms. MORPH was used
to align the two trees/matrices, and the cumulative results of 10 runs are presented in Figure
7. Each entry in the prediction matrix on the left represents the number of times a given protein
pair was predicted to interact out of 1000 snapshots from 10 runs, and each entry in the matrix
on the right represents the number of times (out of 10 runs) the matrix alignment with maximal
agreement predicted interaction of the given pair of proteins. Proteins are arranged such that
the main diagonal corresponds to correct binding partners. The matrix on the right in Figure 7
predicts 8/14 binding partners correctly, and the one on the left predicts 10/14 pairs correctly.
The incorrect predictions can be justified if one takes a closer look at the branch lengths of the
incorrect pairings (Fig. 4). For example, the two A.aeolicus proteins from the sensor family
are correctly predicted to interact with the two A.aeolicus proteins from the regulator family,
but in the wrong order. Topologically, the predictions are correct since the longer branch
(A.aeolicus 230) from the regulator family is predicted to interact with its longer counterpart
(A.aeolicus 1115) from the sensor family, and the shorter branch (A.aeolicus 1117) from the
regulator family with its shorter counterpart (A.aeolicus 231) from the sensor family.

As defined by Ramani and Marcotte (2003), we used two measures to assess the accuracy of
predicted interactions: stringent and effective accuracy. Stringent accuracy is defined as the
accuracy of exact matches of known binding partners, whereas effective accuracy accepts
matching orthologous proteins (i.e. it accepts matching the ntrC protein from E.coli to the ntrB
protein from S.typhimurium rather than to the ntrB protein from E.coli). The stringent accuracy
for the Ntr-type two-component sensor and regulator families was 71.4% and the effective
accuracy was 85.7%. Table 1 summarizes the prediction results for all 34 instances we tested
using MORPH. For comparison purposes, the table also contains prediction results from
MATRIX (Ramani and Marcotte, 2003). Unlike MORPH, MATRIX uses root mean square
difference (r.m.s.d.) to calculate the agreement between the similarity matrices, with the smaller
r.m.s.d. indicating better agreement. MORPH’s results remained unchanged when run with
r.m.s.d. instead of the correlation coefficient (data not shown).

Note, from the results in Table 1, that for families with orthologs (single interaction partners
from multiple organisms), the prediction accuracy is appreciably higher than that for families
with paralogs. The higher prediction accuracy in this case can be attributed to the background
“species tree” information present in the trees. For families with paralogs (top half of Table
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1), the prediction accuracy for families with out-paralogs2 is higher than that for families with
in-paralogs. This is expected, since very high sequence similarity between in-paralogs makes
them indistinguishable. Our assessment penalizes for incorrect predictions in this case and this,
one can argue, is not necessarily fair. In other words, for families with in-paralogs, one can
hope to predict only interacting pairs of clades (A.aelocius proteins in Fig. 4). If one takes this
into account while assessing the quality of MORPH’s predictions, the prediction accuracy
numbers will be better than in Table 1.

4.2 Discussion
The main idea of co-evolution-based methods is to exploit the tendency for interacting proteins
to have similar phylogenetic trees. Rather than finding a maximal agreement between the two
phylogenetic trees of interacting proteins, previous methods focused on the maximal agreement
of the two corresponding similarity matrices (Goh et al., 2000; Pazos and Valencia, 2001; Gertz
et al., 2003; Ramani and Marcotte, 2003), never using the topological information contained
in the trees explicitly. Their prediction results were based on how well the matrices agree: the
better the agreement, the more likely the predictions are true/reliable. In contrast, our results
indicate that better agreement does not necessarily have to translate into better prediction
accuracy. For all but one instance, our algorithm found better matrix agreement scores
compared with that of correct pairings (note the correlation coefficient values in Table 1).
Based on this, we make the following observation: correct pairing of interacting proteins
between two phylogenetic trees will result in a high agreement score between the corresponding
similarity matrices, but a maximal agreement between the similarity matrices does not
necessarily mean correct pairing of interacting proteins between the corresponding
phylogenetic trees. Theoretically, maximal agreement of similarity matrices should translate
into correct pairing of interacting proteins. However, this cannot be verified in practice as
similarity matrices obtained from multiple sequence alignments are an imperfect estimation of
evolutionary distances, let alone the approximation of sequence alignments. Therefore, our
Monte Carlo algorithm is not only directed toward finding the optimal alignment but also
toward sampling the suboptimal solutions so that such cases can be detected. Consequently,
our algorithm reports predictions based on how frequently the suboptimal solutions are sampled
as opposed to how well the matrices agree. If one were to consider a prediction with ≥50%
accuracy to be a successful prediction, we observe that a prediction with agreement score
(correlation coefficient) better than 0.86 is highly reliable (Fig. 8).

Even though we used T-Coffee to perform the multiple sequence alignments, our algorithm is
independent of sequence alignment algorithms as alignments using CLUSTALW and
MUSCLE produced comparable results (data not shown). However, there were a few extreme
cases. For cheA/cheB–bacteria (shown in Fig. 4), sequence alignment using T-Coffee resulted
in an accurate prediction of all eight interaction pairs, whereas sequence alignment using
CLUSTALW v1.83 resulted in the correct prediction of only one interacting pair. For Nar-type
regulators/sensors, T-Coffee alignment predicted 2 out of 22 interactions correctly, whereas
CLUSTALW v1.83 got 8 out of 22 (36.4%) predictions correct. We observed in a few instances
that optimal and suboptimal solutions may give superpositions that are almost equally good.
In an extreme case (Cit-type regulator/sensors–E.coli/B.subtilis), the difference was so small
that whether the global optimum corresponded to the correct pairing of interaction partners
depended on the version of the alignment algorithm used. Although CLUSTALW v1.71
accurately predicted all five interaction pairs, CLUSTALW v1.83 was able to predict only
three out of five pairs correctly.

2Paralogs can be further classified into in-paralogs (gene duplication occurred after speciation) and out-paralogs (gene duplication
occurred before speciation) (Sonnhammer and Koonin, 2002).
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There was one instance (ParC/ParE–bacteria) where our greedy shrinking procedure resulted
in two isomorphic trees with misleading move-sets. This restricted our algorithm from making
the “right” moves, resulting in a lower correlation coefficient score. High shrink factors in
Table 1 are often a consequence of MORPH’s greedy shrinking procedure and/or the topologies
of the two trees being significantly different. Our current research is directed toward a more
systematic shrinking procedure, which we believe will definitely yield better results and, most
importantly, faster computing times.

An interesting aspect of our search space and the proposed move-set is that it avoids the high
energy barriers apparent in previous approaches. For example, assume that the pair of ‘trees’
in Figure 2(b) has not only identical topology but also an identical set of distances. Because of
the tree symmetry, the embedding on Figure 2(b) has a relatively high score but is not optimal.
Getting out of this local optimum using the single-column-swapping method used by previous
algorithms requires a highly unlikely move—swapping one of the leaves a, b, c with one of
the leaves c, d, e (the score after the swap will be significantly worse)—whereas our algorithm
can swap whole subtrees in one move. Swapping the subtrees with leaves a, b, c and c, d, e
does not encounter any energy barrier, and since it results in a better score, it will be performed
with high probability. We confirmed these expectations experimentally by running the
corresponding algorithms on such a matrix where the lengths of the three “long” edges were
one, and the lengths of the edges within the three 3-edge subtrees were all set to 0.1, 0.15 and
0.2, respectively.

4.3 Computing time
Ramani and Marcotte (2003) note that their column-swapping technique does not guarantee
the correct solution for large matrices (>15 proteins) because of the enormous search space
they consider in their algorithm. As a compromise, they propose running their algorithm 100
times, and predict that the most frequent protein pairings interact. This results in a running time
of ~ 500 min, 5 min for each run, to make predictions on protein families of size 15. For the
34 instances we considered, the average search space reduction by our algorithm, when
compared with that of Ramani and Marcotte (2003), is ~363 000-fold. Reduction in search
space significantly reduces our algorithm’s computing time, which consequently facilitates
solving much larger instances.
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Fig. 1.
Three pairs of isomorphic (topologically identical) trees. The number of topology-preserving
superpositions of one tree onto another is (a) 8, (b) 8 and (c) 24.
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Fig. 2.
(a) A pair of highly symmetrical trees. The search space size of the column-swapping approach
for this pair of trees is 9! = 362 880, and the automorphism space has size (3!)4 = 1296. (b)
and (c) two possible topology-preserving superpositions of the lower tree in (a). MORPH can
move between (b) and (c) in one step. The column swapping approach is highly likely to get
stuck in the local minimum represented in Figure 1b.
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Fig. 3.
Example illustrating that matrix entropy can be a misleading measure of tree complexity.
Contrary to Ramani and Marcotte’s hypothesis, the first tree with a smaller matrix entropy
(9.62) is more complex than the second tree with a larger matrix entropy (17.41). Our measure
(topological entropy) of 4 and 8 for the respective trees gives an accurate estimation of tree
complexity in this case (the smaller the topological entropy, the more complex the tree is).
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Fig. 4.
Evolutionary trees (not drawn to scale) of cheA–bacteria and cheB–bacteria obtained from
multiple sequence alignment using CLUSTALW v1.83. The numbers along the internal edges
represent the bootstrap values of the edges. The tree topologies are clearly different, defying
the hypothesis that the evolutionary trees of families (that are known to interact) have similar
topologies. Even though the corresponding left subtrees are topologically identical, the
positioning of ‘tma_TMxxxx’ and ‘afu_Afxxxx’ proteins is not the same.
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Fig. 5.
Phylogenetic trees of Ntr-family two-component sensor histidine kinases and their
corresponding regulators.
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Fig. 6.
Schematic representation of the MORPH algorithm.
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Fig. 7.
Predicted interactions between Ntr-type two-component regulators and sensors. The main
diagonal of the matrix indicates the correct interacting pairs based on the KEGG database.
Each entry in the left matrices represents the number of snapshots (out of 1000) in which the
given pair of proteins was predicted to interact. Each entry in the right matrices represents the
number of times (out of 10 runs) the matrix alignment with maximal agreement predicted
interaction of the given pair of proteins. Boxes in bold represent predicted interaction partners,
and regular boxes represent the interaction partners when interactions between orthologs are
allowed.
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Fig. 8.
From the correlation coefficient score of the maximal agreement of a given set of similarity
matrices, one can say how good/reliable the predictions are. If one were to consider a prediction
with ≥50 + % prediction accuracy to be a successful prediction, then a prediction with score
0.86 or more is highly likely to be reliable.
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