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Abstract

A key issue in supervised protein classification is the representation of in-
put sequences of amino acids. Recent work using string kernels for pro-
tein data has achieved state-of-the-art classification performance. How-
ever, such representations are based only on labeled data — examples
with known 3D structures, organized into structural classes — while
in practice, unlabeled data is far more plentiful. In this work, we de-
velop simple and scalable cluster kernel techniques for incorporating un-
labeled data into the representation of protein sequences. We show that
our methods greatly improve the classification performance of string ker-
nels and outperform standard approaches for using unlabeled data, such
as adding close homologs of the positive examples to the training data.
We achieve equal or superior performance to previously presented cluster
kernel methods while achieving far greater computational efficiency.

1 Introduction

A central problem in computational biology is the classification of proteins into functional
and structural classes given their amino acid sequences. The 3D structure that a protein
assumes after folding largely determines its function in the cell. However, it is far easier
to determine experimentally the primary sequence of a protein than it is to solve the 3D
structure. Through evolution, structure is more conserved than sequence, so that detecting
even very subtle sequence similarities, or remote homology, is important for predicting
function.

The major methods for homology detection can be split into three basic groups: pairwise
sequence comparison algorithms [1, 2], generative models for protein families [3, 4], and
discriminative classifiers [5, 6, 7]. Popular sequence comparison methods such as BLAST
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and Smith-Waterman are based on unsupervised alignment scores. Generative models such
as profile hidden Markov models (HMMs) model positive examples of a protein family,
but they can be trained iteratively using both positively labeled and unlabeled examples
by pulling in close homologs and adding them to the positive set. A compromise between
these methods is PSI-BLAST [8], which uses BLAST to iteratively build a probabilistic
profile of a query sequence and obtain a more sensitive sequence comparison score. Finally,
classifiers such as SVMs use both positive and negative examples and provide state-of-the-
art performance when used with appropriate kernels [5, 6, 7]. However, these classifiers still
require an auxiliary method (such as PSI-BLAST) to handle unlabeled data: one generally
adds predicted homologs of the positive training examples to the training set before training
the classifier.

In practice, relatively little labeled data is available — approximately 30,000 proteins with
known 3D structure, some belonging to families and superfamilies with only a handful of
labeled members — whereas there are close to one million sequenced proteins, providing
abundant unlabeled data. New semi-supervised learning techniques should be able to make
better use of this unlabeled data.

Recent work in semi-supervised learning has focused on changing the representation
given to a classifier by taking into account the structure described by the unlabeled data
[9, 10, 11]. These works can be viewed as cases of cluster kernels, which produce sim-
ilarity metrics based on the cluster assumption: namely, two points in the same “cluster”
or region of high density should have a small distance to each other. In this work, we
investigate the use of cluster kernels for protein classification by developing two simple
and scalable methods for modifying a base kernel. The neighborhood kernel uses aver-
aging over a neighborhood of sequences defined by a local sequence similarity measure,
and the bagged kernel uses bagged clustering of the full sequence data set to modify the
base kernel. In both the semi-supervised and transductive settings, these techniques greatly
improve classification performance when used with mismatch string kernels, and the tech-
niques achieve equal or superior results to all previously presented cluster kernel methods
that we tried. Moreover, the neighborhood and bagged kernel approaches are far more
computationally efficient than these competing methods.

2 Representationsand kernelsfor protein sequences

Proteins can be represented as variable length sequences, typically several hundred char-
acters long, from the alphabet of 20 amino acids. In order to use learning algorithms that
require vector inputs, we must first find a suitable feature vector representation, mapping
sequence x into a vector space by « — ®(x). If we use kernel methods such as SVMs,
which only need to compute inner products K (z,y) = (®(z), ®(y)) for training and test-
ing, then we can accomplish the above mapping using a kernel for sequence data.

Biologically motivated sequence comparison scores, like Smith-Waterman or BLAST, pro-
vide an appealing representation of sequence data. The Smith-Waterman (SW) algorithm
[2] uses dynamic programming to compute the optimal local gapped alignment score be-
tween two sequences, while BLAST [1] approximates SW by computing a heuristic align-
ment score. Both methods return empirically estimated E-values indicating the confidence
of the score. These alignment-based scores do not define a positive definite kernel; how-
ever, one can use a feature representation based on the empirical kernel map

O(z) = (d(z1,2),...,d(Tm, ))

where d(x,y) is the pairwise score (or E-value) between = and y and z;, i = 1...m,
are the training sequences. Using SW E-values in this fashion gives strong classification
performance [7]. Note, however, that the method is slow, both because computing each SW
score is O(]z|?) and because computing each empirically mapped kernel value is O(m).



Another appealing idea is to derive the feature representation from a generative model for
a protein family. In the Fisher kernel method [5], one first builds a profile HMM for the
positive training sequences, defining a log likelihood function log P(x|0) for any protein
sequence z. Then the gradient vector Vg log P(z|6)]g=g,, Where 6, is the maximum like-
lihood estimate for model parameters, defines an explicit vector of features, called Fisher
scores, for z. This representation gives excellent classification results, but the Fisher scores
must be computed by an O(|z|?) forward-backward algorithm, making the kernel tractable
but slow.

Itis possible to construct useful kernels directly without explicitly depending on generative
models by using string kernels. For example, the mismatch kernel [6] is defined by a
histogram-like feature map that uses mismatches to capture inexact string matching. The
feature space is indexed by all possible £-length subsequences a = aqas . . . ar, Where each
a; is a character in the alphabet .4 of amino acids. The feature map is defined on k-gram «
by ®(a) = (¢pp(c)) 4= Where ¢g(a) = 1 if cv is within m mismatches of 3, 0 otherwise,
and is extended additively to longer sequences: ®(z) = >} jamse. (). The mismatch
kernel can be computed efficiently using a trie data structure: the complexity of calculating
K(z,y)is O(ck (Jz| +|y|)), where ¢ = k™T1|.A|™. For typical kernel parameters k = 5
and m = 1 [6], the mismatch kernel is fast, scalable and yields impressive performance.
Many other interesting models and examples of string kernels have recently been presented.
A survey of related string kernel work is given in the longer version of this paper.

String kernel methods with SVMs are a powerful approach to protein classification and
have consistently performed better than non-discriminative techniques [5, 7, 6]. However,
in a real-world setting, protein classifiers have access to unlabeled data. We now discuss
how to incorporate such data into the representation given to SVMs via the use of cluster
kernels.

3 Cluster kernelsfor protein sequences

In semi-supervised learning, one tries to improve a classifier trained on labeled data by
exploiting (a relatively large set of) unlabeled data. An extensive review of techniques
can be found in [12]. It has been shown experimentally that under certain conditions, the
decision function can be estimated more accurately in a semi-supervised setting, yielding
lower generalization error. The most common assumption one makes in this setting is
called the “cluster assumption,” namely that the class does not change in regions of high
density.

Although classifiers implement the cluster assumption in various ways, we focus on clas-
sifiers that re-represent the given data to reflect structure revealed by unlabeled data. The
main idea is to change the distance metric so that the relative distance between two points
is smaller if the points are in the same cluster. If one is using kernels, rather than explicit
feature vectors, one can modify the kernel representation by constructing a cluster kernel.
In [10], a general framework is presented for producing cluster kernels by modifying the
eigenspectrum of the kernel matrix. Two of the main methods presented are the random
walk kernel and the spectral clustering kernel.

The random walk kernel is a normalized and symmetrized version of a transition matrix
corresponding to a ¢-step random walk. The random representation described in [11] in-
terprets an RBF kernel as a transition matrix of a random walk on a graph with vertices
zi, Pz, — z;) = ZKi?ip' After t steps, the probability of going from a point z; to a
point «; should be high if the points are in the same cluster. This transition probability
can be calculated for the entire matrix as P! = (D~'K)*, where D is a diagonal matrix

such that D;; = Zp K;p. To obtain a kernel, one performs the following steps. Com-




pute L = D~'/2KD~'/2 and its eigendecomposition L = UAU . let \; — Af, where
A\i = Ay, and let L = UAUT. Then the new kernel is K = D'/2LD'/2, where D is a
diagonal matrix with D;; = 1/L;;.

The spectral clustering kernel is a simple use of the representation derived from spectral
clustering [13] using the first k eigenvectors. One computes the eigenvectors (vs, ..., vk)
of D=2 KD~z with D defined as before, giving the representation ¢(z;), = vp,. This
vector can also then be normalized to have length 1. This approach has been shown to
produce a well-clustered representation. While in spectral clustering, one then performs k-
means in this representation, here one simply gives the representation as input to a classifier.

A serious problem with these methods is that one must diagonalize a matrix the size of the
set of labeled and unlabeled data. Other methods of implementing the cluster assumption
such as transductive SVMs [14] also suffer from computational efficiency issues. A second
drawback is that these kernels are better suited to a transductive setting (where one is given
both the unlabeled and test points in advance) rather than a semi-supervising setting. In
order to estimate the kernel for a sequence not present during training, one is forced to
solve a difficult regression problem [10]. In the next two sections we will describe two
simple methods to implement the cluster assumption that do not suffer from these issues.

4 Theneighborhood mismatch kernel

In most current learning applications for prediction of protein properties, such as predic-
tion of three-state secondary structure, neural nets are trained on probabilistic profiles of
a sequence window — a matrix of position-specific emission and gap probabilities —
learned from a PSI-BLAST alignment rather than an encoding of the sequence itself. In this
way, each input sequence is represented probabilistically by its “neighborhood” in a large
sequence database, where PSI-BLAST neighbors are sequences that are closely related
through evolution. We wish to transfer the notion of profiles to our mismatch representa-
tion of protein sequences.

We use a standard sequence similarity measure like BLAST or PSI-BLAST to define a
neighborhood Nbd(x) for each input sequence z as the set of sequences x’ with similarity
score to x below a fixed E-value threshold, together with z itself. Now given a fixed original
feature representation, we represent = by the average of the feature vectors for members of
its neighborhood: ®,,,4(z) = M foerd(a;) ®,riq(2"). The neighborhood kernel
is then defined by:

1
K’I’Lbd x) y) T TR RN TN TV T2 KOTi ml’ y/) .
() = Nbd () [Nbd(y)] x,ENbd(g,erd(y) o

We will see in the experimental results that this simple neighborhood-averaging technique,
used in a semi-supervised setting with the mismatch kernel, dramatically improves classi-
fication performance.

To see how the neighborhood approach fits with the cluster assumption, consider a set of
points in feature space that form a “cluster” or dense region of the data set, and consider
the region R formed by the union of the convex hulls of the neighborhood point sets. If the
dissimilarity measure is a true distance, the neighborhood averaged vector ®,,;,4(z) stays
inside the convex hull of the vectors in its neighborhood, all the neighborhood vectors stay
within region R. In general, the cluster contracts inside R under the averaging operation.
Thus, under the new representation, different clusters can become better separated from
each other.



5 Thebagged mismatch kernel

There exist a number of clustering techniques that are much more efficient than the methods
mentioned in Section 3. For example, the classical k-means algorithm is O(rkmd), where
m is the number of data points, d is their dimensionality, and r is the number of iterations
required. Empirically, this running time grows sublinearly with k&, m and d. In practice, it
is computationally efficient even to run k-means multiple times, which can be useful since
k-means can converge to local minima. We therefore consider the following method:

1. Run k-means n times, giving p = 1, ..., n cluster assignments ¢, (x;) for each i.

2. Build a bagged-clustering representation based upon the fraction of times that x;
and z; are in the same cluster:
>plep(@i) = cp(a;)]

Kbag(xi,xj) = " . (1)

3. Take the product between the original and bagged kernel:
K(wi,2j) = Korig(xi, ;) - Kpag(wi, 7;)

Because k-means gives different solutions on each run, step (1) will give different results;
for other clustering algorithms one could sub-sample the data instead. Step (2) is a valid
kernel because it is the inner product in an nk-dimensional space ®(z;) = ([c,(z:) = ¢] :
p=1,...,n,qg = 1,...,k), and products of kernels as in step (3) are also valid kernels.
The intuition behind the approach is that the original kernel is rescaled by the “probability”
that two points are in the same cluster, hence encoding the cluster assumption. To estimate
the kernel on a test sequence x in a semi-supervised setting, one can assign x to the nearest
cluster in each of the bagged runs to compute Ky, (2, z;). We apply the bagged kernel
method with K, as the mismatch kernel and K3, built using PSI-BLAST.

6 Experiments

We measure the recognition performance of cluster kernels methods by testing their ability
to classify protein domains into superfamilies in the Structural Classification of Proteins
(SCOP) [15]. We use the same 54 target families and the same test and training set splits
as in the remote homology experiments in [7]. The sequences are 7329 SCOP domains
obtained from version 1.59 of the database after purging with astral.stanford.edu so that no
pair of sequences share more than 95% identity. Compared to [7], we reduce the number
of available labeled training patterns by roughly a third. Data set sequences that were
neither in the training nor test sets for experiments from [7] are included as unlabeled
data. All methods are evaluated using the receiver operating characteristic (ROC) score
and the ROC-50, which is the ROC score computed only up to the first 50 false positives.
More details concerning the experimental setup can be found at htt p: / / wwwi. cs.
col unbi a. edu/ conpbi o/ svm pai rw se.

In all experiments, we use an SVM classifier with a small soft margin parameter, set as
in [7] . The SVM computations are performed using the freely available Spider Mat-
lab machine learning package available at ht t p: / / ww. kyb. t uebi ngen. npg. de/
bs/ peopl e/ spi der. More information concerning the experiments, including data
and source code scripts, can be found at ht t p: / / www. kyb. t uebi ngen. npg. de/
bs/ peopl e/ west on/ sem prot.

Semi-supervised setting. Our first experiment shows that the neighborhood mismatch
kernel makes better use of unlabeled data than the baseline method of “pulling in ho-
mologs” prior to training the SVM classifier, that is, simply finding close homologs of
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Figure 1: Comparison of protein representations and classifiers using unlabeled data.
The mismatch kernel is used to represent proteins, with close homologs being pulled in
from the unlabeled set with PSI-BLAST. Building a neighborhood with the neighborhood
mismatch kernel improves over the baseline of pulling in homologs.

BLAST PSI-BLAST
} ROC-50 ROC ‘ ROC-50 ROC
mismatch kernel 0.416 0.870 0.416 0.870
mismatch kernel + homologs 0.480 0.900 0.550 0.910
neighborhood mismatch kernel 0.639 0.922 0.699 0.923

Table 1: Mean ROC-50 and ROC scores over 54 target families for semi-supervised exper-
iments, using BLAST and PSI-BLAST.

the positive training examples in the unlabeled set and adding them to the positive training
set for the SVM. Homologs come from the unlabeled set (not the test set), and “neigh-
bors” for the neighborhood kernel come from the training plus unlabeled data. We com-
pare the methods using the mismatch kernel representation with &k = 5 and m = 1, as
used in [6]. Homologs are chosen via PSI-BLAST as having a pairwise score (E-value)
with any of the positive training samples less than 0.05, the default parameter setting [1].
The neighborhood mismatch kernel uses the same threshold to choose neighborhoods.
For the neighborhood kernel, we normalize before and after the averaging operation via
K;; «— K;j/\/K;K;;. The results are given in Figure 1 and Table 1. The former plots
the number of families achieving a given ROC-50 score, and a strongly performing method
thus produces a curve close to the top right of the plot. A signed rank test shows that the
neighborhood mismatch kernel yields significant improvement over adding homologs (p-
value 3.9e-05). Note that the PSI-BLAST scores in these experiments are built using the
whole database of 7329 sequences (that is, test sequences in a given experiment are also
available to the PSI-BLAST algorithm), so these results are slightly optimistic. However,
the comparison of methods in a truly inductive setting using BLAST shows the same im-
provement of the neighborhood mismatch kernel over adding homologs (p-value 8.4e-05).
Adding homologs to the (much larger) negative training set in addition to pulling in the pos-
itive homologs gives poorer performance than only adding the positive homologs (results
not shown).

Transductive setting. In the following experiments, we consider a transductive setting,
in which the test points are given to the methods in advance as unlabeled data, giving
slightly improved results over the last section. Although this setting is unrealistic for a
real protein classification system, it more easily enables comparison with random walk
and spectral clustering kernels, which do not easily work in another setting. In Figure 2
(left), we again show the mismatch kernel compared with pulling in homologs and the
neighborhood kernel. This time we also compare with the bagged mismatch kernel using
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Figure 2: Comparison of protein representations and classifiers using unlabeled data
in a transductive setting. Neighborhood and bagged mismatch kernels outperform pulling
in close homologs (left) and equal or outperform previous semi-supervised methods (right).

| ROC50 ROC | | ROC-50 ROC
mismatch kernel 0.416 0.875 | PSI-BLAST kernel 0.533 0.866
mismatch kernel + homologs 0.625 0.924 | PSI-BLAST+homologs kernel 0.585 0.873
neighborhood mismatch kernel 0.704 0.917 | spectral clustering kernel 0.581 0.861
bagged mismatch kernel (k = 100) | 0.719 0.943 | random walk kernel 0.691 0.915
bagged mismatch kernel (k = 400) | 0.671 0.935 | transductive SVM 0.637 0.874

Table 2: Mean ROC-50 and ROC scores over 54 target families for transductive experi-
ments.

bagged k-means with £ = 100 and n = 100 runs, which gave the best results. We found
the method quite insensitive to k. The result for £ = 400 is also given in Table 2.

We then compare these methods to using random walk and spectral clustering kernels.
Both methods do not work well for the mismatch kernel (see online supplement), perhaps
because the feature vectors are so orthogonal. However, for a PSI-BLAST representation
via empirical kernel map, the random walk outperforms pulling in homologs. We take the
empirical map with ®(x) = (exp(—Ad(z1,z)),...,exp(=\(d(zm,x))), where d(z,y)
are PSI-BLAST E-values and A\ = ﬁ, which improves over a linear map. We report
results for the best parameter choices, ¢t = 2 for the random walk and & = 200 for spectral
clustering. We found the latter quite brittle with respect to the parameter choice; results
for other parameters can be found on the supplemental web site. For pulling in close
homologs, we take the empirical kernel map only for points in the training set and the
chosen close homologs. Finally, we also run transductive SVMs. The results are given
in Table 2 and Figure 2 (right). A signed rank test (with adjusted p-value cut-off of 0.05)
finds no significant difference between the neighborhood kernel, the bagged kernel (k =
100), and the random walk kernel in this transductive setting. Thus the new techniques are
comparable with random walk, but are feasible to calculate on full scale problems.

7 Discussion

Two of the most important issues in protein classication are representation of sequences
and handling unlabeled data. Two developments in recent kernel methods research, string
kernels and cluster kernels, address these issues separately. We have described two kernels
— the neighborhood mismatch kernel and the bagged mismatch kernel — that combine



both approaches and yield state-of-the-art performance in protein classification. Practical
use of semi-supervised protein classification techniques requires computational efficiency.
Many cluster kernels require diagonalization of the full labeled plus unlabeled data kernel
matrix. The neighborhood and bagged kernel approaches, used with an efficient string ker-
nel, are fast and scalable cluster kernels for sequence data. Moreover, these techniques can
be applied to any problem with a meaningful local similarity measure or distance function.

Future work will deal with additional challenges of protein classification: addressing the
full multi-class problem, which potentially involves thousands of classes; handling very
small classes with few homologs; and dealing with missing classes, for which no labeled
examples exist.
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