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Abstract
Motivation—Determining orthology relations among genes across multiple genomes is an
important problem in the post-genomic era. Identifying orthologous genes can not only help predict
functional annotations for newly sequenced or poorly characterized genomes, but can also help
predict new protein–protein interactions. Unfortunately, determining orthology relation through
computational methods is not straightforward due to the presence of paralogs. Traditional approaches
have relied on pairwise sequence comparisons to construct graphs, which were then partitioned into
putative clusters of orthologous groups. These methods do not attempt to preserve the non-transitivity
and hierarchic nature of the orthology relation.

Results—We propose a new method, COCO-CL, for hierarchical clustering of homology relations
and identification of orthologous groups of genes. Unlike previous approaches, which are based on
pairwise sequence comparisons, our method explores the correlation of evolutionary histories of
individual genes in a more global context. COCO-CL can be used as a semi-independent method to
delineate the orthology/paralogy relation for a refined set of homologous proteins obtained using a
less-conservative clustering approach, or as a refiner that removes putative out-paralogs from clusters
computed using a more inclusive approach. We analyze our clustering results manually, with support
from literature and functional annotations. Since our orthology determination procedure does not
employ a species tree to infer duplication events, it can be used in situations when the species tree
is unknown or uncertain.

1 INTRODUCTION
Comparative genomic approaches have been proven to be extremely valuable in functional
characterization of sequenced genomes. One important goal of such analysis is to identify
groups of homologous genes that are expected to play the same biological role across two or
more organisms. Two genes are homologous if they have descended, usually with divergence,
from a common ancestral gene. Homology relations are subdivided into two disjoint subtypes.
Two genes from two different species are said to be orthologs if they evolved directly from a
single gene in the last common ancestor (Fitch, 1970, Fitch, 2000). Genes that evolved from
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a single gene that was duplicated within a genome are called paralogs. Typically, orthologs
perform the same function, whereas paralogs within a genome often evolve to perform a new
function. Thus orthology relations can immediately be used to predict functional annotations
for newly sequenced or poorly characterized genomes (Tatusov et al., 1997). Also, recent
studies on protein–protein interaction networks show the importance of orthology relations
towards predicting new protein–protein interactions (Sharan et al., 2005; Yu et al., 2004).

Paralogs are further classified into two subtypes: in-paralogs and out-paralogs (Remm et al.,
2002; Sonnhammer and Koonin, 2002). With respect to a given speciation event, E, paralogs
that evolved by gene duplications that happened after E are called in-paralogs, whereas paralogs
that evolved by gene duplications that happened before E are called out-paralogs. This concept
of in-paralogs and out-paralogs helps distinguish recent paralogs from distant paralogs An
example illustrating this is presented as Figure 1.

Due to the existence of numerous paralogs resulting from lineage specific duplications, correct
assignment of the orthology relation is far from obvious. Consequently, gene orthology
between two organisms is not necessarily a one-to-one relation—it could be a one-to-many or
a many-to-many relation. The extension of the orthology concept to more than two genomes
is further complicated by the fact that the orthology relation, in general, is non-transitive (Fitch,
1970, Fitch, 2000). For example, B11 and B12 in Figure 1 are paralogous to each other, but
orthologous to A and C1. This potential lack of transitivity in the orthology relation indicates
that one has to be extremely careful while extending this relation to multiple organisms. On
the other hand, information that can be derived from multiple organisms is often more powerful
than that provided by pairwise genome comparisons, and identifying clusters containing
orthologous genes is of great value. In the rest of the paper, we use the terms gene and protein
interchangeably.

Sequence similarity has been the major tool used to identify orthologs between fully sequenced
genomes. For example, Chervitz et al. 1998 performed a comparative analysis of worm and
yeast genomes. In a separate study, Makalowski and Boguski (1998) analyzed 1880 unique
human-rodent sequence pairs, and reported 1212 human-rat orthologs, 1138 human-mouse
orthologs and 470 human-mouse-rat orthologs.

To extract maximum amount of information from the rapidly accumulating genome sequences,
Tatusov et al. 1997, 2000 proposed a method for clustering orthologous genes or orthologous
groups of paralogs. Since, as mentioned above, the orthology relation is not necessarily
transitive, Tatusov et al. redefined the task of identifying orthologs as a delineation of clusters
of orthologous groups (COGs). Each COG contains individual orthologous genes or
orthologous groups of paralogs from at least three phylogenetic lineages. Any two proteins
from a given COG are expected to be orthologs if they are from sufficiently different lineages.
Each COG is assumed to contain proteins that evolved from a single ancestral gene through a
series of speciation and duplication events. COGs were constructed by performing pairwise
sequence comparisons among proteins encoded in complete genomes. For each protein, the
best-hit (BeT) in each of the other genomes is detected. The (directed) BeT relation is
conceptualized with a graph. First, triangles (three-gene cliques) in this graph are identified.
The authors argue that if gene x from organism X has BeTs in organisms Y (gene y) and Z (gene
z), then it is highly unlikely that y and z are BeTs for one another unless they are bona fide
orthologs. Using this premise, orthologous groups of genes are gathered by merging adjacent
triangles in the graph.

The original COG clusters contained only prokaryotes, archaea, and three eukaryotic
organisms. The idea was subsequently extended to eukaryotic genomes [TOGA (Lee et al.,
2002), KOGs (Tatusov et al., 2003), and OrthoMCL (Li et al., 2003)]. Like the COG method,
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these new approaches rely on clustering using the BeT information. Consequently, they all
impose transitive closure on the orthology relation and collapse the species hierarchy to the
last common ancestor of all species in a given cluster. This leads to higher inclusiveness,
resulting in a set with out-paralogs (paralogs that predate the species split at the last common
ancestor) that can easily be confused with true orthologs. Figure 2 depicts a scenario where a
single gene loss in each genome could lead to highly inclusive orthologous cluster. Methods
based on pairwise sequence comparisons will not recognize such a scenario, and would thus
cluster genes 1, 2, 3 and 4 from all four genomes into a single orthologous group.

Sequence-based clustering approaches, which employ just the pairwise sequence comparisons,
are often unable to separate in-paralogs from out-paralogs, as well as correctly depict the
orthology relation between more closely related organisms in the presence of more diverse
organisms. To address this problem, Remm et al. 2002 designed INPARANOID, an algorithm
that allows for searching for orthologs and in-paralogs between two completely sequenced
organisms. Like Tatusov et al.’s, their method starts with bi-directional BeTs. Subsequently,
they use BLAST (Altschul et al., 1990) scores and a careful inclusion criterion to add putative
in-paralogs.

Li et al. 2003 extend Remm et al.’s method to multiple organisms (in the program OrthoMCL)
for identification of orthologous groups for eukaryotic genomes. The idea behind OrthoMCL
is similar to that of TOGA and COG, but compared to TOGA, several assumptions were relaxed
leading to larger clusters. Subsequently, these clusters have to be subdivided using a Monte
Carlo clustering method with some tunable parameters. Like previous approaches, OrthoMCL
relies on pairwise best-hits and does not attempt to preserve the non-transitivity and hierarchic
nature of the orthology relation.

Since orthology is defined based on phylogeny, it makes sense that phylogeny should be used
as a part of a strategy to identify orthology (Eisen and Wu, 2002). The most direct way using
phylogeny relies on computing reconciled trees (Chen et al., 2000; Dufayard et al., 2005;
Durand et al., 2005; Engelhardt et al., 2005; Goodman et al., 1979; Guigo et al., 1996; Mirkin
et al., 1995; Page and Charleston, 1997; Page, 1994; Storm and Sonnhammer, 2002; Yuan et
al., 1998; Zmasek and Eddy, 2001, 2002). Tree reconciliation methods have been used in both
directions: to infer species tree from one or more gene-trees, and to visualize the history of a
gene family within an organismal phylogeny assuming that the species tree is available. In the
latter case, subsequent improvements on these methods have led to algorithms that (under
assumption that the species tree is correct) allow the gene-tree to be uncertain, and consider
bootstrap resampled gene trees (Zmasek and Eddy, 2002) or various topologies around the
edges with low bootstrap values (Durand et al., 2005). There are cases when the species tree
is not available. In those situations, clustering remains a natural choice to delineate orthology
relation.

Since the orthology relation is inherently hierarchical, it should be depicted as an hierarchy of
clusters. In this work, we propose a hierarchical clustering algorithm called COCO-CL
(COrrelation COefficient-based CLustering). While retaining the simplicity of previous
clustering approaches, our method is guided by phylogenetic relations. Our method utilizes
evolutionary relations between genes and performs clustering based on evolutionary histories
of genes. Given a refined set of homologous proteins, obtained using a less-conservative
clustering method, our method identifies orthology/paralogy relationship between them. One
application of our method is to identify and remove putative out-paralogs, and create cluster
(s) of orthologous proteins that include proteins from all or nearly all species represented in
the input set. However, it is also possible that our method can be used to perform a deeper
hierarchical clustering leading to orthologous subclusters imposed by speciation. We provide
bootstrap scores for the obtained clusters, and confidence scores for the predicted duplication
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events. Since our orthology determination procedure does not employ a species tree
information to infer gene duplication events, it can be used when the species tree is unknown
or uncertain.

2 METHODS
2.1 Sequence and correlation analysis

Let n be the number of proteins in a given set of homologous proteins. Homologous sequences
contained in a given set were aligned using ClustalW v1.83. Similarity matrix, M, from the
multiple sequence alignment is calculated using ClustalW. Let Vi denote the vector of
evolutionary distances in the similarity matrix from protein i. A new matrix called the
‘correlation coefficient matrix’ is calculated, in which each entry rij represents the agreement
between column vectors Vi and Vj in the similarity matrix (refer to Fig. 1 in the Supplementary
material). The extent of agreement between vectors Vi and Vj in the similarity matrix is
evaluated using the Pearson’s correlation coefficient given by

where Vi(l) and Vj(l) are the evolutionary distances from protein l to proteins i and j,
respectively, and  and  are the mean of all Vi(l) and Vj(l) values, respectively. The value
of rij ranges from −1.0 to +1.0. Correlation coefficient close to 1 indicates that the evolutionary
histories of the two genes are closely related. Negative correlation coefficient indicates lack
of such correlation (relative to their evolutionary distances to other genes in the set).

2.2 Clustering
First, we replace each entry rij in the correlation coefficient matrix (ranging from −1.0 to +1.0)
by 1−rij. Next, we perform a single linkage clustering (Johnson, 1967) of the genes (connected
component) over the values in the correlation coefficient matrix. The objective here is to cluster
a given set of genes into exactly two clusters during each run of our algorithm. In each run, the
final edge (link) introduced during the clustering process, to connect the last two clusters, is
the edge (cut) across which the two clusters are defined. In other words, the last two remaining
clusters are what we are after. Let C1 and C2 be the two resulting clusters (sets of genes). Let
SC1and SC2be the number of species represented in sets C1 and C2, respectively. Let S be the
number of species common to both C1 and C2. Let split-score

A split-score of 0 indicates a speciation event, while a split-score of 1 or nearly 1 indicates a
duplication event with high possibility. In general, a split could be viewed as a putative
duplication with confidence score σ, or a putative speciation event with confidence score 1 −
σ. The higher the value of σ, the higher the confidence that the split is a duplication event.

If a split is a putative duplication event, the cluster, say C1, that contains proteins from almost
all the species is the refined set of orthologous/homologous proteins, while cluster C2 is the
set of out-paralogs with respect to the refined set. Depending on C2’s coverage of species, one
could classify it as yet another set of orthologous/homologous proteins. In the extreme case,
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when one of the clusters contains several proteins belonging to just one species and the other
cluster also contains a protein from the same species, it is theoretically possible that all these
proteins are in-paralogs that diverged significantly after the last speciation event. An interesting
example with such a possibility is discussed in Section 3 under ‘Ribonuclease H’ subsection.

One may recursively refine a set of orthologous/homologous proteins, until no more out-
paralogs can be removed or there is not enough clustering bootstrap support for further
refinement.

2.3 Estimation of statistical significance of clustering
We perform bootstrap analysis to provide percentage level of confidence on the clustering. Let
A be a multiple sequence alignment of a set of proteins that needs to be clustered, and let C1
and C2 be the two resulting clusters. From A, we generate 1000 bootstrap alignments, where
the length of each bootstrap alignment is same as that of A, with each column drawn (with
replacement) uniformly at random from A. Let A* be a bootstrap alignment, and let  and

 be the two resulting clusters on application of our clustering mechanism. For each bootstrap
alignment, we computed a clustering agreement score on how well the resulting clusters ( 
and ) agree with the original clusters (C1 and C2) obtained from A. The clustering agreement
score is given by

where |X| denotes number of proteins in set X. The value of α ranges from 0.0 to 1.0, with α =
1.0 indicating maximal agreement (C1 =  and C2 = , or C1 =  and C2 = ).

The bootstrap score for an obtained clustering (C1 and C2) is the average of the clustering
agreement scores of all 1000 bootstrap alignments. We consider a clustering split to be reliable
if and only if the bootstrap score is above a certain threshold. We chose the threshold to be
0.75. In other words, we call a split to be a putative duplication event with confidence score
σ if and only if the clustering bootstrap score is at least 0.75 (clustering bootstrap scores in the
0.7–0.8 range should be handled with caution, as we consider this range to be a twilight zone).
Thus, with each split we associate two confidence numbers: bootstrap score measuring the
confidence of the split, and split-score σ measuring the confidence that the split is a putative
duplication event separating out-paralogs (with respect to the lowest common ancestor of the
set of species in the group). Again, a split is a putative duplication with confidence score σ, or
a putative speciation event with confidence score 1−σ.

3 RESULTS
For this study, we used homologous sets of proteins from the COG database, although our
method applies equally well to any other protein classification database. We tested our
approach as a refinement of complex COGs (Tatusov et al., 1997). Based on the literature and
database search, we selected COGs that have significant number of paralogs. Since there does
not exist any database of gold standard for correctly identified (and non-trivial) orthologous
clusters, we analyze our results manually, with support from literature and functional
annotations.
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In the discussion below, we use the following naming conventions. Let C be a cluster of
homologous proteins. Then C_a, where a is either 1 or 2, refers to the a-th subcluster of C.
Consequently, C_ab refers to the b-th subcluster of C_a and so on.

3.1 DNA-directed RNA polymerases, sigma subunit
As a first test of our COCO-CL algorithm, we examined COG0568 from the COGs database,
which contains 103 proteins from 50 prokaryotic species. COG0568 is annotated as ‘DNA-
directed RNA polymerase, sigma subunit (sigma70/sigma32).’ This COG was characterized
as a complex COG by Tatusov et al. 1997 due to the presence of numerous paralogs. Figure
3b presents the phylogenetic tree of COG0568, constructed via neighbor joining from the
multiple sequence alignment using ClustalW v1.83. Application of COCO-CL algorithm on
COG0568 resulted in two main clusters, COG0568_1 and COG0568_2, with a bootstrap score
0.82 (Fig. 3). Cluster COG0568_1 contained 102 proteins from 50 species, while COG0568_2
contained the remaining protein (DR2482) belonging to Deinococcus radiodurans, which we
characterized as an outlier with split-score (confidence) 1.0. We ran our algorithm on
COG0568_1, hoping to see meaningful clusters. Interestingly, COG0568_1 was clustered into
two subclusters, COG0568_11 and COG0568_12, with a bootstrap score 0.91. Cluster
COG0568_11 contained 78 proteins from 50 species, while COG0568_12 contained the
remaining 24 proteins from 21 species, indicating a putative duplication event with confidence
score 1.0. In other words, two proteins from the same species that are in two different clusters
are putative out-paralogs.

In order to validate our clustering, we examined the functionalities of all 103 proteins in
COG0568. Our decision to designate the lone protein in COG0568_2 as an outlier is justified
by the fact that DR2482 is a hypothetical protein, whose functionality is yet to be annotated.
Furthermore, our examination revealed that proteins in COG0568_11 have functional
annotation ‘DNA-directed RNA polymerase, sigma subunit (sigma70),’ and proteins in
COG0568_12 have functional annotation ‘DNA-directed RNA polymerase, sigma subunit
(sigma32).’ This strongly suggests that our clustering correctly identified two clusters, proteins
in each of which are orthologous. Subsequent clustering of COG0568_11 resulted in
COG0568_111 (with 76 proteins from 50 species) and COG0568_112 (with just two proteins
CAC2052 and FN1317) with 0.89 bootstrap score and 1.0 confidence score. COG0568_111
splits into COG0568_1111 (75 proteins) and COG0568_1112 (with just TP1012) with 0.82
bootstrap score and 1.0 confidence score. Further clustering of COG0568_1111 resulted in
clusters with low bootstrap score of 0.25, which was not high enough to proceed any further.

3.2 Periplasmic serine proteases (ClpP class)
Next, we tested COG0616, annotated as ‘periplasmic serine proteases (ClpP class),’ which
contains 89 proteins from 51 prokaryotic and archaic species. Members of this COG are
supposed to be involved in pre-protein translocation across the membrane and subsequent
processing (Bolhuis et al., 1999). Our initial clustering resulted in two clusters: cluster
COG0616_1 containing 77 proteins from 47 species, and cluster COG0616_2 containing 12
proteins from 11 species with a clustering bootstrap score 0.97 (Fig. 4a). Our algorithm
characterizes this split as a putative duplication event with 0.64 confidence score, a prediction
supported by the evidence that unlike COG0616_1, COG0616_2 contains only hypothetical
proteins whose functions are yet to be annotated. Recursive application of our algorithm on
COG0616_1 revealed two subclusters: cluster COG0616_11 containing 65 proteins from 46
species, and COG0616_12 containing 12 proteins from 12 species with a bootstrap score 0.77
(Fig. 4b). Again, our algorithm predicted this split to be a putative duplication event with 0.92
confidence score, a decision supported by the fact that the 12 proteins in COG0616_12 are
annotated as putative/possible proteases. If evidence is presented that COG0616_12 proteins
are in fact proteases, it is quite possible that these proteins (paralogs to their counterparts in
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COG0616_11) retained their functionality after duplication. Another round of clustering on
COG0616_11 resulted in two subclusters: cluster COG0616_111 with 56 proteins from 46
species, and cluster COG0616_112 with 9 proteins (from Salmonella typhimurium and two
strains of Escheria coli). The clustering had a bootstrap score of 0.85 (Fig. 4c), and was
characterized as a duplication event with 1.0 confidence score. The 9 proteins in COG0616_112
are annotated not as proteases, but as putative capsid or putative head-tail connector proteins.
We did try to apply our algorithm on COG0616_111 with 56 proteins from 46 species, which
resulted in a clustering along the taxonomy with a low bootstrap score of 0.28. This signaled
that no further meaningful clustering is possible. Since COG0616_111 contains almost all
species from COG0616, and the subclusters separated out have high bootstrap and confidence
scores, COG0616_111 correctly refines the original COG.

3.3 Glutamyl- and glutaminyl-tRNA synthetases
To test the rigorousness of our algorithm, we ran it on COG0008, annotated as ‘glutamyl- and
glutaminyl-tRNA synthetases,’ a family of proteins known to have had horizontal gene
transfers (Siatecka et al., 1998; Brown and Doolittle, 1999; Wolf et al., 1999). This COG
contains 111 proteins from 66 species, representing all three domains of life (prokaryotes,
eukaryotes and archaea). Our clustering revealed two cleanly split clusters with 1.0 bootstrap
score: cluster COG0008_1 with 77 proteins from 52 prokaryotic and eukaryotic species, and
cluster COG0008_2 with 34 proteins from 31 species representing all three domains of life.
COCO-CL defines this split to be a putative duplication event with 0.55 confidence score.
Manually-curated Conserved Domain Database (CDD) (Marchler-Bauer et al., 2005)
classification, showing that COG0008_1 proteins are grouped under CD00808 [based on
‘descriminating Glutamyl-tRNA synthetase (GluRS) catalytic core domain’] and COG0008_2
proteins are grouped under a closely related CD00807 [based on ‘glutaminyl-tRNA synthetase
(GlnRS) and non-descriminating Glutamyl-tRNA synthetase (GluRS) catalytic core domain’],
justifies our clustering.

However, the split is a speciation event and not a duplication event as called by COCO-CL
(Fig. 5). Due to the manner in which the confidence score σ is computed by COCO-CL,
horizontal gene transfers can artificially decrease the confidence score of a speciation event.
In cases with ancient (or rampant) horizontal gene transfer(s), our method may incorrectly call
a speciation event to be a duplication event with high confidence score. That is, the extent of
horizontal transfers could influence (increase) the σ score, thereby increasing the chances of
wrongly inferring a speciation event to be a duplication event. In the case of COG0008, an
early duplication of the GluRS gene in eukaryotes gave rise to the gene for GlnRS, a copy of
which was subsequently transferred to proteobacteria (Lamour et al., 1994). This gene transfer
wrongly boosted the confidence score to just over 0.5 cutoff, which resulted in wrongly calling
the speciation event to be a duplication event. Clustering methods based on bi-directional
BLAST best-hits may get such cases correctly due to their insensitivity to horizontal gene
transfers.

On further clustering, COG0008_1 splits with a low bootstrap score of 0.48, while COG0008_2
splits across the taxonomy with a bootstrap score 1.0 (separating archaea from the rest).

3.4 Ribonuclease H
On eukaryotic KOG3752 (annotated as ‘ribonuclease H’) with 10 proteins from five organisms,
application of our algorithm resulted in two clusters with bootstrap score 0.72. The first cluster
KOG3752_1 had eight proteins from five organisms, and the second cluster KOG3752_2 had
two proteins (CE06185 and CE16374) from Caenorhabditis elegans (refer to Fig. 2 in the
Supplementary material). The low clustering bootstrap score is in the twilight zone indicating
that the split is not clear-cut, and thus cannot be fully trusted to make any reliable prediction.
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Our algorithm’s decision not to split KOG3752 is consistent with Arudchandran et al. 2002’s
argument that C.elegans has five genes encoding ribonuclease H-related proteins.

3.5 Large-scale experiments
We ran COCO-CL on all 4873 manually curated COGs (comprising a total of 1 44 320 proteins)
from the COG database. The results from one iteration of COCO-CL on the 4873 COGs are
presented in Figure 6. Data on our test results data are available at
http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/COCOCL/. We used a clustering
bootstrap threshold (α) of 0.75 to ensure that the clustering splits are high-confidence splits. A
split is predicted to be a duplication if the confidence score σ for that split is greater than 0.5
(at least 50% of the species in the smaller subcluster has paralogs in the larger subcluster). Our
results show that the more the number of genomes represented in a COG, the highly likely the
high-confidence split is a duplication. This suggests that COG-like approaches works very well
for elucidating orthologous groups of genes for smaller number of genomes (up to 15 or 20
genomes), whereas such approaches exhibit inclusiveness as the number of genomes under
consideration increases. This raises scalability issues of COG-like approaches, which can be
easily dealt on applying COCO-CL on the clusters generated by COG-like methods. Our results
show that at least 15% of the current COGs are inferred to contain putative out-paralogs. This
percentage is higher for COGs containing proteins from more genomes.

3.6 Control experiments
We performed control experiments to verify whether our algorithm can successfully isolate
(pick) a COG from a set of homologous proteins. We combined two homologous COGs—
COG0616 annotated as ‘periplasmic serine proteases (ClpP class)’ (Fig. 4b), and COG1030
annotated as ‘membrane-bound serine proteases (ClpP class)’ with 18 proteins from 16 species
—and ran our clustering algorithm on the resulting set of homologous proteins. Our algorithm
successfully separated the two COGs with bootstrap score 0.84, with just one protein
(PAE2539) from COG1030 switching to COG0616. On verification, the switch is justified as
protein PAE2539 (annotated as a hypothetical protein) correctly clusters with sub-COG
COG0616_2 (hypothetical proteins) of COG0616 (Fig. 4b).

We combined 5 homologous ORTHOMCL clusters (ORTHOMCL1008, ORTHOMCL17163,
ORTHOMCL2887, ORTHOMCL1382 and ORTHOMCL771) to obtain a super-set of 190
proteins from 55 genomes (16 bacterial genomes, 4 archaic genomes, 21 single-cellular
eukaryotes and 14 multi-cellular eukaryotes). Iterative application of COCO-CL on the
superset resulted in four well-defined subclusters, which are shown in Figure 7. The COG
database classifies this superset of proteins into two clusters: COG0442 (Prolyl-tRNA
synthetases) and COG0008 (Glutamyl-and glutaminyl-tRNA synthetases). ORTHOMCL
seems to have over-clustered ‘descriminating Glutamyl-tRNA synthetases’ into two groups:
ORTHOMCL1008 and ORTHOMCL17163. COCO-CL correctly groups the two glutamyl-
tRNA syntetases from ORTHOMCL1382 in ORTHOMCL2887. This specific example clearly
demonstrates the ability of COCO-CL to correctly cluster orthologous genes in contrast to the
overclustering exhibited by the ORTHOMCL.

Clustering results of COCO-CL on raw BLAST searches are presented in the Supplementary
material.

4 DISCUSSION AND CONCLUSION
In this work, we propose a new clustering method, COCO-CL, for hierarchical clustering of
homologous genes. COCO-CL can be used as a semi-independent method that takes as input
a refined set of homologous proteins obtained using a less-conservative clustering algorithm,
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or as a refinement of clusters produced by other more-inclusive methods. Unlike most
hierarchical clustering methods, which use evolutionary distances to cluster, COCO-CL takes
advantage of the global topology of correlation networks and explores correlation of
evolutionary histories in a more global context. Consequently, it is not easily mislead by
erroneous BLAST best-hits. Evolutionary distance between genes x and y captures only the
relationship between genes x and y, while the correlation of evolutionary histories of genes x
and y captures the relationship between x and y with respect to the set that contains them. The
clustering signal is amplified when evolutionary correlations are used instead of evolutionary
distances (refer to Figure 3 in the Supplementary material). Our idea to use correlation of
evolutionary histories of genes is motivated by works (Goh et al., 2000;Goh and Cohen,
2002;Jothi et al., 2005;Pazos and Valencia, 2001;Ramani and Marcotte, 2003) that used
evolutionary correlations to study correlated mutations and protein-protein interactions.

Since our method does not use a species tree, it can be used to infer duplication events when
the species tree is unknown or uncertain. Also, our method does not use the gene tree directly,
but it implicitly uses the evolutionary information contained in the evolutionary distance
matrix. This makes our method independent of phylogenetic tree construction methods. There
are cases where our method may fail completely. Especially, cases with rampant gene losses,
ancient horizontal gene transfer(s) or incomplete data sets due to partial genomic data.

The ribonuclease example analyzed in the previous section points out that there is a real
possibility of in-paralogs diverging so significantly that they can be confused with out-
paralogs. In the analyzed example, the incorrect split was prevented by low clustering bootstrap
value. Suppose we decide to trust the split, ignoring the low bootstrap support. Then, it would
mean that the two C.elegans proteins in KOG3752_2 are out-paralogs to the C.elegans proteins
in KOG3752_1 with 1.0 confidence score. This is in direct contrast to the argument made by
Arudchandran et al. 2002 that C.elegans has five genes encoding ribonuclease H-related
proteins (four genes encoding RNase H1 proteins, and one gene for RNase H2). The authors
provide a convincing argument that all the five C.elegans proteins are in-paralogs.

An important utility of our method is its ability to correctly separate clusters of out-paralogs
without the assumption that the species tree is known. Using our hierarchical clustering
approach, one can forcefully perform a recursive hierarchical clustering of a given set of
homologs, until each subcluster contains just one gene. This way, we can obtain a tree with
proteins at the leaves, and internal nodes labeled as putative speciation/duplication events. It
is important to observe that this tree may not necessarily be the correct gene tree. That is, we
do not provide a ‘back door’ solution to the reconciliation problem. The reason being that while
our method attempts to identify the type of event (speciation/duplication) separating two
clusters, it does not attempt to resolve the ordering of these events (refer to Fig. 4 in the
Supplementary material).

Using BLAST e-values or pairwise sequence identity scores, instead of a multiple sequence
alignment similarity matrix, resulted in not-so-well-defined clusters. In other words, the signal
was very low. Complicating the problem was lack of parameters to perform any meaningful
bootstrap analysis, i.e. we could not quantify the quality of the clustering. Moreover, since
orthology is defined based on phylogeny, using pairwise metrics may not be the best way to
identify orthology.

Even though COG-like approaches work very well for elucidating orthologous clusters from
fewer number of genomes (up to 15 or 20 genomes), they become more inclusive as the number
of genomes under consideration is high. Our results in Figure 6 show that while only 25–35%
of the high-confidence splits (α ≥ 0.75) are inferred to have out-paralogs, the percentage
increases to 40% or more as the number of genomes represented in a COG is at least 20. Thus,
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in cases where the number of genomes under consideration is high, COCO-CL can directly be
used as a refiner to refine the inclusive clusters generated by COG-like approaches.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Evolution of a gene is shown, descending to three organisms A, B and C. There are two
speciation events (inverse Y junctions), and three gene-duplication events (horizontal bars).
Two genes whose common ancestor is at a Y junction(speciation) are orthologous, e.g. A and
B11 and B21 and C2. Two genes whose common ancestor is at a horizontal bar junction
(duplication) are paralogs, e.g. B11 and B13, and B12 and C2. Genes B11, B12 and B13 are
in-paralogs to A (and C) because the speciation event 1 (speciation event 2, resp.) occurred
before the duplication events that gave rise to B11, B12 and B13. Genes B11, B12 B13 and
C1 are out-paralogs to genes B21, B22, and C2, as the initial duplication occurred before B-C
speciation.
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Fig. 2.
(a) A scenario where gene losses could lead to higher inclusiveness. COG-like methods based
on pairwise sequence comparisons will not recognize false best-hits (non-orthologous genes)
in a genome. For example, loss of gene 1 in genome 4 could trigger false best-hits to gene 2
in genome 4, which will result in higher inclusiveness when it comes to delineating an
orthologous group with gene 1’s functionality. (b) BLAST best-hits (BeTs) graph. which will
be used by the COG algorithm to cluster all the genes together. Dark edges are mutual BeTs,
and colored dotted edges are one-way BeTs. (c) Phylogenetic tree that may shed some light on
gene losses.
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Fig. 3.
COG0568 (DNA-directed RNA polymerase, sigma subunit (sigma70/sigma32)) with 103
proteins from 50 species. (a) Initial clustering on COG0568 resulted in two subclusters:
COG0568_1 with 102 proteins from 50 species, and COG0568_2 with just one protein.
Recursive clustering of COG0568_1 resulted in COG0568_11 (78 proteins from 50 species)
and COG0568_12 (24 proteins from 21 species). The darker the edge in the graph, the higher
the correlation between the two nodes that it connects. (b) Neighbor joining phylogenetic tree
of COG0568 proteins, showing our clustering results.
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Fig. 4.
COG0616 (periplasmic serine proteases) with 89 proteins from 51 species. (a) Initial clustering
on COG0616 resulted in subclusters COG0616_1 and COG0616_2 (12 hypothetical proteins
11 species). (b) Second round of clustering on COG0616_1 yielded subclusters COG0616_11
and COG0616_12 (12 proteins, annotated as ‘putative proteases’, from 12 species). (c)
Clustering COG0616_11 resulted in subclusters COG0616_111 (56 proteins, annotated as
‘periplasmic serine proteases’, from 46 species) and COG0616_112 (9 proteins, annotated as
‘putative capsid or head-tail preconnector proteins,’ from E.coli). (d) Clustering
COG0616_111 resulted in a two subclusters, split along the taxonomy, with low bootstrap
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support. (e) Neighbor joining phylogenetic tree of COG0616 proteins showing our clustering
results.
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Fig. 5.
COG0008 (glutamyl- and glutaminyl-tRNA synthetases) with 111 proteins from 66 species.
COCO-CL on COG0008 resulted in two subclusters: COG00008_1 with 77 proteins from 52
species, and COG0008_2 with 34 proteins from 31 species, with 17 species represented in both
subclusters. The clustering is correct based on Conserved Domain Database (CDD)
classification, which has clustered these proteins along similar lines based on the Glutamyl-
tRNA synthetase (GluRS)/Glutaminyl-tRNA synthetase (GlnRS) cataytic core domain.
However, COCO CL wrongly called this split as a duplication, while it is in fact a speciation.
This confusion is due to an early duplication of the GluRS gene in eukaryotes, which gave rise
to the gene for GlnRS, a copy of which was subsequently transferred to proteobacteria.
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Fig. 6.
Results from a single iteration of COCO-CL on 4873 manually curated COGs (comprising a
total of 1 44 320 proteins) from the COG database. A cluster split is inferred to be a duplication,
if and only if its clustering bootstrap threshold α ≥ 0.75, and its confidence score σ > 0.5 (at
least 50% of the species in the smaller subcluster has paralogs in the larger subcluster). The
more the number of genomes represented in a COG, the highly likely the high-confidence split
is a duplication. At least 15% of the 4873 COGs are inferred to contain putative out-paralogs.
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Fig. 7.
Five homologous ORTHOMCL clusters (ORTHOMCL1008, ORTHOMCL17163,
ORTHOMCL2887, ORTHOMCL1382, ORTHOMCL771) were combined to obtain a
superset of 190 proteins representing 55 genomes (16 bacterial, 4 archaic, 21 single-cellular
eukaryotic, and 14 multi-cellular eukaryotic genomes). Letters B, E and A refer to bacterial
eukaryotic and archaic genomes, respectively. Numbers within parentheses indicate the
number of genomes, and numbers along the edges represent the clustering bootstrap score. The
cumulative clustering results for four rounds of COCO-CL is shown. This example
demonstrates the over-clustering by the ORTHOMCL algorithm.
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