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Abstract

Data on protein-protein interactions are increasing exponentially. Recent technological advances

enable the systematic characterization of protein-protein interaction networks across multiple spe-

cies. An arising challenge is to organize the accumulating network data into models of cellular

machinery. Analysis of proteins taking part in such models can assist in understanding protein

function and the dynamics governing inner-cellular processes.

During the past six years several studies focused on finding signaling pathways and protein

complexes in protein-protein interaction networks. One of the main challenges these methods face,

is the high rate of false positives characterizing the protein-protein interaction data.

As in other biological domains, a comparative approach provides a powerful basis for addres-

sing this challenge. The comparative approach aims to improve the accuracy of protein pathway

and complex detection by searching for conserved subnetworks across multiple protein-protein

interaction networks. This calls for better understanding of protein-protein interaction network

evolution. Two types of processes are considered when studying the evolution of these networks:

link dynamicsandgene duplication. The first, models changes in the protein’s interaction set due to

gene mutation, and the second explains the creation of new proteins through a corresponding gene

duplication event. To date, none of the existing methods for finding conserved protein subnetworks

uses a probabilistic model that takes evolutionary properties of the network into account.

Here we developNetworkBLAST-E, a new probabilistic approach for identifying protein comple-

xes that are conserved across two species. NetworkBLAST-E describes the evolution of conserved

protein complexes from a complex in an ancestral species through link dynamics and gene dupli-

cation events. Pairs of extant complexes are scored by their fit to the protein complex model

vs. the likelihood that they arise at random. The algorithm we design can be divided into three

separate stages. First, the protein-protein interaction and homology data are organized into data

models. Second, a search heuristic, which is based on a probabilistic scoring model is executed

in order to find potential conserved protein complexes. Finally, a statistical significance filtering

stage pinpoints putatively true complexes. These complexes are validated in several ways based on

their correspondence to a set of known complexes and based on the functional coherency of their

member proteins.
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We apply NetworkBLAST-E to search for conserved protein complexes within the protein-

protein interaction networks of yeast, fly and human, which are the largest networks in public

databases to date. Overall, we detect 1,737 significantly conserved, putatively true, protein com-

plexes that match well known complexes in yeast and are coherent in their functional annotations

in yeast, fly and human. In comparison to two previous approaches for protein complex detection

NetworkBLAST-E displays higher levels of specificity and sensitivity.

A paper that introduces NetworkBLAST-E together with initial results of applying it to the

protein-protein interaction networks of yeast and fly was accepted to ECCB 2006 and will be

published in Bioinformatics [22].
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Chapter 1

Introduction

Understanding inner-cellular processes is a critical step in biological and medical research. Proteins

take a major part in driving these processes, and through analysis of protein-protein interactions

(PPI), researchers can learn much on these processes’ dynamics. Recent developments enable wide

scale, systematic, characterization of PPI data. Procedures such as yeast two-hybrid [24, 17] and

protein co-immunoprecipitation [30] are routinely employed nowadays to generate large-scale PPI

networks for human and most model species [19, 23, 25, 39, 49, 52].

An important challenge is to organize the accumulating network data into models of cellular

machinery. During the past few years several studies published algorithmic approaches for finding

such models [28, 29, 35, 44, 48]. None, however, combine a probabilistic model together with an

evolution based scheme.

While PPI detection methods are constantly improving, the data still suffers from high rates

of false positives and negatives [16]. As in other biological domains (e.g. biological sequence

analysis), a comparative approach provides a powerful basis for addressing this challenge. This

approach aims to improve the accuracy of the protein complex search through a comparison among

several PPI networks. The idea is that functional network regions are expected to be conserved in

evolution. Thus, we expect similar protein complexes to exist in matching regions of PPI networks

of different species. Using protein sequence homology, one can match corresponding subnetworks

from two or more species and try to find conserved protein subnetworks.

The comparison between several networks calls for better understanding of PPI network evolu-

tion. Two types of processes have been invoked to explain the evolution of PPI networks [13, 54]:

1



CHAPTER 1. INTRODUCTION 2

link dynamics and gene duplication. The first consists of sequence mutations in a gene that result in

modifications of the interface between interacting proteins. Consequently, the corresponding pro-

tein may gain new connections (attachment) or lose (detachment) some of the existing connections

to other proteins. The second consists of gene duplication, followed by either silencing of one of

the duplicated genes or by functional divergence of the duplicates. The corresponding events in

the network are the addition of a protein with the same set of interactions as the original protein,

followed by the divergence of their links.

Previous approaches to the problem of identifying protein complexes within PPI networks have

shown the utility of comparative analysis. Specifically, Sharan et al. [42, 44] introduced Network-

BLAST, an algorithm that compares PPI networks from multiple species to pinpoint network regions

that are conserved in evolution, and have shown that these regions match well known protein com-

plexes in yeast. They used a probabilistic model that scored complexes by their fit to a specific

protein complex model vs. the likelihood that they arose at random. However, their scoring scheme

treated the networks being compared as independent of one another, and did not take into account

the correspondence in interaction patterns between them. Another approach by Koyuturk et al. [29]

called MaWish, applied an evolution based scoring scheme, which takes into account duplica-

tion and link turnover events. However, the scoring procedure was empirical with no underlying

probabilistic model.

Both approaches mentioned above are quite similar. The main difference between them is the

scoring model they use in order to calculate the probability that a candidate subnetwork is a true

protein complex. They both use the comparative approach and a basic search scheme, which can

be divided into three stages:

• Preprocessing:PPI data and protein homology data is processed and the required networks

are constructed.

• Search Heuristic: A greedy search heuristic runs over the networks, scores candidate protein

complexes using the specially designed scoring model, and outputs high scoring subnetworks.

• Post processing:The output of the previous stage undergoes a statistical filtering process in

order to produce a set of significant, non-redundant subnetworks.

In this thesis we adopt the comparative approach and the basic search scheme described above,

to developNetworkBLAST-E, a method for detecting conserved protein complexes. Our focus

is only on the scoring model, which takes candidate protein subnetworks and tries to asses the
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probability they form true conserved protein complexes. We develop a probabilistic model for

protein complexes that are conserved across two species, which describes the evolution of conserved

protein complexes from an ancestral species through link dynamics and gene duplication events.

Pairs of extant complexes are scored by their fit to two distinct models:MC , a conserved protein

complex model andMN , a null model. The conserved protein complex model assumes the two

subnetworks evolved from a single complex in the closest common ancestor of the two species.

The null model assumes that every edge in the two subnetworks appears at random, taking vertex

degrees into consideration. Finally, the score that is assigned to each pair of subnetworks is the

likelihood ratio of these subnetworks being constructed under each of the two models. Thus, our

work is the first to formulate a probabilistic model for protein complex conservation that focuses

on evolutionary principles.

After publishing our work, a new network alignment method called Graemlin was publis-

hed [18]. Graemlin, as NetworkBLAST-E, describes the evolution of conserved protein complexes

from a hypothetical complex in an ancestral species. However, there are several important diffe-

rences between the two approaches in terms of the scoring: First, Graemlin uses a probabilistic

model in order to score alignment graph edges, which scores the edges independently for each

species. In contrast, NetworkBLAST-E uses an evolution based probabilistic model in order to

treat edges in the two networks as dependant. Second, Graemlin assumes that all homologous pro-

teins across all examined species are a result of a single protein in the ancestral network, while

NetworkBLAST-E does not impose that restriction. Graemlin, unlike NetworkBLAST-E, uses pro-

gressive alignment, and thus it is much more scalable and can handle several input networks; while

NetworkBLAST-E currently handles only two networks at a time.

An additional issue addressed in this work is the implementation of validation methods for

putative conserved complexes. Two references were used: (1) a set of known protein complexes in

yeast; and (2) a database of functional annotations of proteins. Several specificity and sensitivity

measures are implemented to evaluate the goodness of a set of conserved complexes with respect

to these references.

We apply our model to search for conserved protein complexes within the PPI networks of

yeast, fly and human. Since the model compares two networks at a time, each of the possible

pairs of networks is analyzed separately. Overall, NetworkBLAST-E detects 1,737 significantly

conserved subnetworks. More than three-quarters of them were functionally enriched in all three

species, serving to validate the biological significance of our findings. When compared to known
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complexes in yeast, more than two-thirds significantly matched a known complex, covering more

than one fifth of the known complexes. Overall, in comparison to the NetworkBLAST and MaWish,

NetworkBLAST-E displays higher levels of specificity, sensitivity and functional enrichment in

protein complex detection.

The thesis is organized as follows: Chapter 2 gives general biological and computational back-

ground relevant to the issues addressed in this work. Chapter 3 presents the main problem, the basic

search scheme and a detailed description of two previous protein subnetwork scoring models. The

problems in each of the previous methods are highlighted and serve as the basis for the development

of the new method. Chapter 4 describes NetworkBLAST-E our new method for conserved protein

complex detection. It includes details on both the probabilistic scoring model and the search and fil-

tering heuristics. Chapter 5 presents the results of applying NetworkBLAST-E to the PPI networks

of yeast, fly and human. It also presents a comparison of NetworkBLAST-E’s performance to those

of two previous approaches. Finally, Chapter 6 gives a brief summary of the thesis and raises open

problems for further research.



Chapter 2

Biological and Computational Background

This chapter gives biological background on protein-protein interaction networks, their discovery

and evolution. A PPI network represents the physical interactions among proteins of a single species.

In this network each node represents a protein and each edge represents an interaction between two

proteins. An illustration of the yeast PPI network is given in Figure 2.1.

2.1 High Throughput Protein-Protein Interaction Assays

During the past decade new technological advances enable the systematic characterization of

protein-protein interaction networks. The two main methods are yeast two-hybrid (Y2H) [17, 24]

and protein co-immunoprecipitation (coIP) [30]. Given two proteins,p0 andp1, the Y2H technique

tests if they interact. This is done by running an experiment that would cause a reporter gene,g,

to be expressed if the two proteins physically interact. The method relies on two protein domains

of the yeast GAL4 protein that have specific functions: a DNA-binding domain (BD), capable of

binding to a DNA sequence, and an activation domain (AD), capable of activating transcription of

the monitored gene. The transcription process of the gene can occur only when both domains are

present. Now, two proteins of interestp0 andp1 are attached to a binding and activation domains

of g, respectively. Ifp0 andp1 interact, an active transcription unit will be formed andg will be

expressed, forming a protein product that can be detected and measured (as illustrated in Figure 2.2).

The amount of the protein product can be a measure of the interaction betweenp0 andp1.

5
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Figure 2.1. Yeast protein-protein interaction network. Presented is the largest cluster of the yeast PPI

network, which contains about 78% of all yeast proteins. Figure taken from [26].

In the coIP method, abait protein,p, is marked by a tag. In contrast to the Y2H method, this

method does not test if two proteins interact, but rather detects proteins that form an assembly and

potentially interact with a specific bait protein. An antibody which recognizes the tag is used in

order to trapp, the bait protein, and precipitate it. In the precipitation process anyprey protein

which is in a physical contact or in the same complex withp is precipitated as well. Once a set of

all the interacting proteins is found, mass spectrometry is used to identify the prey proteins. See

illustration in Figure 2.2.

2.2 Protein-Protein Interaction Networks

Protein-protein interaction data has grown exponentially during the past few years. Procedures, such

as Y2H and coIP, described above, are routinely employed to generate large-scale PPI networks.

Figure 2.1 illustrate the yeast PPI network. Even though there had been major technological advances

in PPI detection, the procedures that are currently employed still suffer from high rates of false

positive interactions [53]. Deng et al. [16] estimate the reliability of the Y2H and coIP assays using

maximum likelihood estimation on the distribution of gene expression correlation coefficients. PPIs
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Figure 2.2. High Throughput Protein-Protein Interaction Assays.(a) The yeast two-hybrid system:Protein-

protein interactions are detected by measuring the expression of a reporter gene. If protein X and protein Y

interact, then their DNA-binding domain and activation domain will combine to form a functional transcrip-

tional activator, which will then proceed to transcribe the reporter gene (Figure taken from [46]).(b) The

co-immunoprecipitation assay: A process divided into four phases.a) A specific protein bait is prepared

and is attached to an affinity tag that allows the purification of the bait protein and the associated proteins.b)

The bait protein then interacts with other proteins and is purified.c) The purified protein complex is resolved,

and discrete protein bands are excited and digested into small peptide fragments.d) Peptides are identified

using mass spectrometry methods. The identity of a protein associated with a given bait is determined by

comparing its peptide fingerprint against known databases (Figure taken from [30]).
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detected by coIP [19] and Y2H [52] were shown to have false positives of 42% and 47%, respectively.

The reliability of Ito’s [25] Y2H PPI data increases as more observations for each interaction are

considered, from 83% false positives when considering interactions with a single occurrence, to

4% false positive rate when considering interactions with at least five occurrences (the restriction of

the required number of occurrences naturally decreases the amount of interactions detected by the

method). False negative rates are more complicated to estimate. A possible method is to estimate

the actual number of interactions in a network and calculate the number of missing (unknown)

interactions. According to [36] the expected number of interactions in the yeast PPI network is

around 30,000 while PPI detection methods (Y2H and coIP) detect about 20,000 interactions. Due

to the 50% false positive rate we estimate the false negative rate at 67%.

Due to the low reliability of the PPI data, edges in PPI networks represent noisy observations

on the actual interactions. Several authors have suggested methods for evaluating the reliabilities of

protein-protein interactions [9, 16, 53]. A common method suggested by Bader et al. [9] and Sharan

et al. [42], assigns confidence values to protein interactions using a logistic regression model. The

probability of a true interaction between two proteins in a specific species is represented as a logistic

function of several observed random variables, such as the number of times an interaction between

the proteins was observed in a given experiment, the Pearson correlation coefficient of expression

measurements for the corresponding genes and the proteins’ small world clustering coefficient.

The PPI network of a species can reveal a lot of information regarding processes that occur

inside its cell. Special structures in these networks, such as paths or dense subnetworks, can help

analyze protein functions and inner-cellular dynamics. As more PPI networks became available,

one of the main challenges was to organize them into models of cellular machinery. There is no

specific type of structure we know of as being the most interesting. Two common approaches for

modeling interesting protein structures are: (i)signaling protein pathways, which are linear chains

of interacting proteins that can pass information across different regions of the cell, and are modeled

as paths in the PPI network [28, 40, 45, 48]. (ii)protein complexes, which are assemblies of proteins

that form some cellular machinery, and are modeled as dense protein subnetworks [18, 29, 42, 44].

A study by Steffen et al. [48] identified pathways in PPI networks by applying an exhaustive

search procedure to an unweighted interaction graph, considering all interactions equally reliable.

The scoring procedure that was used to score a potential path was based on the tendency of its genes

to have similar expression patterns. A more advanced method by Scott et al. [40] improves the

previous algorithm in two ways. First, by assigning well-founded reliability scores to PPIs, instead
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of using an unweighted interaction graph. Second, by exploiting a powerful algorithmic technique

by Alon et al. [7], called color coding, to find high-scoring paths efficiently. An additional method

by Shlomi et al. [45], called QPath, uses comparative analysis to search for conserved pathways in

several PPI networks.

Methods for finding protein complexes were also developed: Sharan et al. [42], Koyuturk et

al. [29] and Flannick et al. [18], all search for dense protein subnetworks in PPI networks. A major

challenge one encounters when searching for dense protein subnetworks is the high rates of false

positives characterizing PPI data. Even the problem of searching for dense subgraphs in a graph

when the edges are weighted by 1 and -1 is NP-hard [41]. In the PPI network case, where weights on

the edges are defined by probabilities, the search is even harder and calls for an advanced theoretical

framework.

A possible approach for dealing with this challenge, is to analyze several PPI networks simul-

taneously. PPI networks develop according to an evolutionary process, detailed in the next section.

Certain regions in PPI networks are expected to be conserved more than others during the course

of evolution. It is expected that functional subnetworks in a PPI network, such as protein comple-

xes, would be conserved in evolution. Based on this observation, looking for conserved protein

complexes in several PPI networks concurrently, can help overcome the high rates of noise, when

searching for protein complexes. In order to compare two or more PPI networks and search for

conserved complexes we must first understand the relationship between these networks. This, in

turn, calls for a deeper understanding of PPI network evolution.

2.3 Protein-Protein Interaction Network Evolution

Evolution is the change of the properties of a population over many generations. During billions of

years evolutionary processes modify existing species and, through the process of speciation, create

new ones. Modern understanding of evolution is based on the theory of natural selection, which

was presented by Charles Darwin [15].

A widely used model for representing knowledge about the evolutionary relationships between

species is thephylogenetic tree. In this tree the leaves correspond to extant species and internal nodes

correspond to ancestral species. Edge lengths correspond to time estimates. Figure 2.3 demonstrates

a rooted phylogenetic tree of life [21]. During the course of evolution, as inner-species DNA
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Figure 2.3. Presented is a schematic phylogenetic tree of living things proposed by Carl Woese. It is based

on RNA data and shows the separation of bacteria, archaea, and eukaryotes. Figure taken from [33].

sequence undergoes modifications and as new species emerge by speciation events, the PPI networks

of the corresponding species also evolve. DNA mutations modify protein interfaces, altering their

interaction patterns. Whereas, gene duplication events lead to the creation of new proteins. Species

that are closer in the phylogenetic tree are expected to have similar PPI networks and more conserved

protein complexes.

A key issue when analyzing PPI networks of multiple species is to understand and take into

account the evolutionary processes that produced these networks. Analyzing these processes is

a crucial step towards identifying expected relationship between distinct networks and modeling

conserved protein complexes.

Two types of processes have been invoked to explain the evolution of PPI networks [13, 54]:

link dynamics and gene duplication. The first consists of sequence mutations in a gene that result in

modification of the interface between interacting proteins. Consequently, the corresponding protein

may gain new connections (attachment) or lose (detachment) some of the existing connections to

other proteins. The second consists of gene duplication, followed by either silencing of one of

the duplicated genes or by functional divergence of the duplicates. The corresponding events in

the network are the addition of a protein with the same set of interactions as the original protein,
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Figure 2.4. The elementary processes of protein network evolution. The progression of time is symbolized

by arrows.a Link attachment andb link detachment occur through nucleotide substitutions in the gene

encoding an existing protein. These processes affect the connectivities of the protein whose coding sequence

undergoes mutation (shown in black) and of one of its binding partners (shown in gray). Empirical data

shows that attachment occurs preferentially towards partners of high connectivity [10].c Gene duplication

usually produces a pair of nodes (shown in black) with initially identical binding partners (shown in gray).

Empirical data suggests duplications occur at a much lower rate than link dynamics and that redundant links

are lost subsequently (often in an asymmetric fashion), which affects the connectivity of the duplicate pair

and of all its binding partners [13, 54, 55, 56]. Figure taken from [13].
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followed by the divergence of their links. See schematic demonstration in Figure 2.4. Berg et

al. [13] estimated the empirical rates of link dynamics and gene duplication in the yeast protein

network, finding the former to be at least one order of magnitude higher than the latter. Based

on this observation, they proposed a model for the evolution of protein networks in which link

dynamics are the major evolutionary forces shaping the topology of the network, while slower gene

duplication processes mainly affect its size.

2.4 Comparative Analysis of Networks

Having an understanding of the relationships between PPI networks of different species, we can

now design a concurrent search of conserved protein complexes in multiple species. Basically, the

use of two or more data sets makes the data more robust and helps overcome the high levels of noise

characterizing PPI data [16].

Analysis of PPI networks across multiple species is based onprotein homology. Two proteins

are said to be homologous if they share a common ancestry. Since homologous proteins will tend

to be sequence-similar a common approach for detecting them is based on comparing proteins’

amino-acid sequences, using, e.g., BLAST [8]. Homology of protein sequences can be of two

types:orthologyor paralogy. Homologous proteins across different species are orthologous if they

were separated by a speciation event. Homologous proteins within the same species are paralogous

if they were separated by a gene duplication event.

The comparative approach has become prominent in the field of PPI network analysis, during

the past few years. In their review work Sharan and Ideker [43] give a brief summery of different

uses of the comparative approach in this field. They introduce the possibility of comparing whole

subnetworks with various structures, which might be conserved across two or more PPI networks.

Conserved linear paths, for instance, may correspond to signaling pathways, and conserved connec-

ted subnetworks may indicate a conserved protein complex. Even though the problem of finding

conserved subnetworks is computationally challenging, heuristic approaches were devised for it,

like the one presented by Berg and Lassig [14].

One heuristic approach, called anetwork alignment graph, creates a merged representation of

the two networks being compared, facilitating the search for conserved subnetworks. In a network

alignment graph, the nodes represent sets of proteins, one from each species, and the edges represent
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conserved PPIs across the two species, see example in Figure 3.2. The alignment may consist of

one-to-one correspondence between proteins across the two networks; however, in general there

may be a many-to-many correspondence between proteins. This scenario can occur, for instance,

when a single protein from one species is homologous to multiple proteins from the other species.

A network alignment graph provides the required framework for searching for conserved sub-

networks, since these subnetworks will appear as subgraphs with specific structure in the graph. For

instance, conserved protein complexes might appear as subgraphs of densely connected nodes. The

heuristic was first used by Ogata et al. [35] when searching for correspondences between the reac-

tions of specific metabolic pathways and the genomic locations of the genes encoding the enzymes

catalyzing those reactions. Later on, Kelley et al. [28] applied this heuristic to study PPI networks.

They translated the problem of finding conserved pathways to that of finding high-scoring paths

in the alignment graph. Finally, a network alignment graph, can be used as a basic algorithmic

component when searching for conserved protein complexes. This method was used by previous

approaches for protein complex search, such as NetworkBLAST [42] and MaWish [29].



Chapter 3

Problem Definition and Previous Work

In this chapter we present previous approaches for finding conserved protein complexes and detail

the search scheme and score models they use. We highlight the scenarios under which these methods

fail and define the problem our new approach tries to solve.

3.1 Conserved Protein Complex Search Scheme

Detection of conserved protein complexes in two (or more) species can be divided into a five

step/module search scheme (as illustrated in Figure 3.1). The first two steps organize the data, one

generates protein-protein interaction networks based on Y2H and coIP experimental procedures

and the second generates a network alignment graph based on protein homology data, generated by

methods such as BLAST. The next two modules execute the actual complex detection algorithm, one

performs a search heuristic over the alignment graph and the second supplies a subnetwork scoring

model. The fifth module filters the results, leaving only significant and non-redundant conserved

protein subnetworks.

3.1.1 PPI Network Data Model

PPI networks are constructed for both studied species. As mentioned earlier, in these networks nodes

represent proteins and edges represent pairwise interactions. Since PPI data is very noisy [16], the

14
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Figure 3.1. Search scheme illustration. A preprocessing phase generates two PPI networks based on PPI

data (as detailed in Section 3.1.1). Then, the two networks are aligned and a network alignment graph

is constructed, based on homologous relationships between proteins from both networks. Next, a search

algorithm, which is based on a subnetwork scoring model, is executed, looking for potential protein complexes

(an high-level view of the search algorithm is given in Section 3.1.3). Finally, using several filtering strategies

(detailed in Section 3.1.4), only significant and not redundant results are considered.
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edges are weighted according to the probability that the two proteins they connect truly interact. We

use a method suggested by Sharan et. al. [42] which assigns confidence values to protein-protein

interactions using a logistic regression model.

For a given species, the probability of a true interaction between two proteins is defined as a

function of the number of times the interaction between these proteins was experimentally observed

in each of several different experiments. Indeed, it was shown previously that the number of

observations is predictive for the reliability of an interaction [16].

Specifically, givenn different experiments, letXuv = (X1
uv ...Xn

uv), whereX i
uv is the number of

observations of an interaction betweenu andv in experimenti. The probability of a true interaction

Tuv givenXuv, according to the logistic distribution, is:

P (Tuv|Xuv) =
1

1 + e−β0−
Pn

i=1 βiXi
uv

whereβ0 ... βn are the parameters of the distribution. Given training data, one can optimize the

distribution parameters so as to maximize the likelihood of the data using any gradient ascent

approach. Following [9], the training data was defined as follows: An observed interaction between

proteinx andy was considered a positive example if removing it from the network leavesx and

y at distance 2. It was considered a negative example if removing it from the network leavesx

andy at distance greater than 3. The idea is that in the former case, since there are additional

connections between the proteins the chance of the interaction being true is high. Where as in the

latter, the interaction is more likely of being a false-positive, since no other connection between the

two proteins is observed.

3.1.2 Network Alignment Graph

As discussed earlier, in order to compare between two PPI networks we construct a network ali-

gnment graph. In this graph nodes represent sets of proteins, one from each species, and the edges

represent conserved PPIs across the two species. The alignment between pairs of distinct proteins

from the two species is based on protein homology. LetP0 andP1 be the sets of proteins in the

PPI networks of species 0 and 1, respectively. For every pair of homologous proteins,u ∈ P0 and

v ∈ P1, a nodea = (u, v) is added to the alignment graph. Edges in the network alignment graph

representconserved interactions, which are pairs of observed interactions, one in each species,

between corresponding homologous proteins. More precisely, let proteinsu, v ∈ P0 andu′, v′ ∈ P1
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Figure 3.2. Toy example of a network alignment. Network 1 and 2 illustrate PPI networks of two species.

Each node represents a protein, solid lines represent PPI and dotted horizontal lines represent homology

relationships between proteins from the two species. The alignment graph for the two networks appears on

the right. Nodes represent pairs of sequence-similar proteins and edges represent conserved interactions.

take part in two nodes(u, u′) and(v, v′) in the alignment graph. The two nodes in the alignment

graph ((u, u′) and(v, v′)) are linked if at least one of the pairs(u, v), (u′, v′) is observed to interact

in its PPI network and the second spans proteins of distance at most two in the corresponding PPI

network (a protein is considered to be at distance zero from itself). See toy example of this data

model in Figure 3.2.

3.1.3 Search Heuristic

The alignment graph is used as a platform for the search of conserved protein complexes across

multiple species. By construction, an induced subgraph of the alignment graph corresponds to two

species-specific sets of proteinsC0 andC1, and can be assigned a score (or weight):Score(C0, C1).

A bottom-up search is performed for heavy (high scoring) subgraphs in the alignment graph, starting

with seeds around each of the nodes. These seeds are then expanded by local search, each time

adding or deleting a node whose modification increases the weight of the current subgraph the most.

Details on the heuristic for finding seeds and the greedy expansion are given in Section 4.2.1.

A key component of the search process is the scoring module, responsible for scoring subnet-

works of the alignment graph. A good scoring module should assign high scores to subnetworks
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that represent true conserved protein complexes. In this chapter we present two previous scoring

models. The next chapter will present NetworkBLAST-E, our new, subnetwork scoring model.

3.1.4 Filtering the Results

Analyzing a large data set and looking for locally high scoring subnetworks yields many subgraphs,

some of which may not be true protein complexes. Random sets of proteins may receive locally

high scores and be considered by the search heuristic as potentially true. In order to remove these

solutions we use a statistical filtering strategy, which assigns significance levels to the results

and allows filtering the non-significant subgraphs. The statistical significance of the subgraphs is

evaluated by comparing their scores to those obtained on randomized instances of the data. Details

on the significance filtering method are given in Section 4.2.2.

Besides the statistical filtering, which discards insignificant subnetworks, the resulting set of

putatively true conserved protein complexes may overlap considerably. Several solutions may

include the same subnetwork with slight variations. Two subnetworks are said to beredundant

if their overlap exceeds a predefined threshold. We use a greedy approach to filter redundant

subnetworks, the details of which are given in Section 4.2.2.

3.2 Previous Subnetwork Scoring Models

In this section we present in detail two previous models for scoring pairs of aligned subnetworks

in two species. We also highlight their shortcomings, motivating the development of a new scoring

model. Sharan et al. [42, 44] developed NetworkBLAST, which uses a probabilistic scoring model

for scoring PPI subnetworks in several species. Their scoring scheme, however, treated the networks

being compared as independent of one another, and did not take into account the correspondence in

interaction patterns between them (see detailed discussion of this issue in Section 3.2.1). A second

method called MaWish, developed by Koyuturk et al. [29] applied an evolution based scoring

scheme, which takes into account duplication and link dynamics events. However, the scoring

procedure was empirical with no underlying probabilistic model.

In the following denote byC a subnetwork of interest in the network alignment graph. Let

C0 andC1 be the two subnetworks induced byC in the PPI networks of the two species0 and1,

respectively. LetE0 andE1 denote the sets of all pairs of proteins inC0 andC1, respectively.
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Figure 3.3. NetworkBLAST example. A toy example demonstrating the scoring method of NetworkBLAST

and its shortcoming. Shown are three subnetworks:S1 in Network 1 andS2, S′
2 in Network 2. Solid lines

represent PPIs, and dotted lines represent orthologous relationships. Green solid lines indicate a conserved

interaction between two pairs of orthologous proteins and red solid lines indicate a mismatch. Labels on the

solid lines indicate the probability for a true interaction. Note that bothS2 andS′
2 are scored the same, since

they have similar density properties. So, even though the pair (B) is conserved also at the interaction level, it

is given the same total score as pair (A). NetworkBLAST cannot distinguish between the pairs(S1, S2) and

(S1, S
′
2) since each network is scored independently.

3.2.1 NetworkBLAST

The method considers the two subnetworksC0 andC1 as independent. Two models are defined,

under which each of the subnetworks could have been created: a protein complex model -MC , and

a null model -MN . Protein complexes are expected to be dense subnetworks, a property that is

formulated inMC by assuming that every edge appears with some high probabilityβ independently

of all other edges. In the null model,MN , we assume that the subnetwork was randomly selected

from the collection of all networks with the same degree sequence. In such a case, an edge between

two proteins (u, v) is assumed to appear with some probabilityruv, induced by this random model,

which depends on the degrees of bothu andv (for details on howruv is calculated see Section 4.1.2).

For a protein pair(u, v) ∈ E0 ∪ E1, let us denote byTuv the event that these two proteins

interact, and byFuv the event that they do not interact (and suppose for now that this information

is given to us). Formally, the probability that a given subnetworkCi was generated by each of the
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models is:

P (Ci|MC) =
∏

(u,v)∈Ei

βTuv(1− β)Fuv

P (Ci|MN) =
∏

(u,v)∈Ei

rTuv
uv (1− ruv)

Fuv

Using these two models, the score of a subnetworkC is given by a log-likelihood ratio:

Score(C) = log

(
P (C0|MC)

P (C0|MN)
· P (C1|MC)

P (C1|MN)

)
The model aims at distinguishing between a true significantly dense conserved protein complex

and a random protein set. The probabilistic model this method is based on allows it to include

edge probabilities and additional network properties in its score. For example, this method gives a

relatively dense subnetwork that appears in a sparse area of the network a higher score than a dense

subnetwork that appears in an area that is generally rich in interactions. However, the disadvantage

of the method lies in the fact that it treats the two networks as independent. The evolutionary

relations between the networks are not taken into account. Figure 3.3 shows a simple example for

this shortcoming. Notice that both pairs of networks (A) and (B) are given the same score, while

the subnetworks in (B) are more conserved.

3.2.2 MaWish

This method applies an evolution based scoring model, which takes into account gene duplication

and link turnover events. Every set of four proteins, two from each species (u, v ∈ P0 andu′, v′ ∈ P1)

is given a weightW (u, v, u′, v′), based on the probability that the proteins are true orthologs.

Specifically,W (u, v, u′, v′) = S(u, u′) · S(v, v′), whereS(u, u′) ∈ [0, 1] quantifies the likelihood

that proteinsu andu′ are orthologous, and is computed based on their BLAST E-values. When

calculating the score for the given subnetworkC, two sets of quadruplets are defined.M(C) -

contains all the quadruplets(u, v, u′, v′) whereu, v ∈ C0 andu′, v′ ∈ C1 for which both edges exist

((u, v) ∈ E0 and(u′, v′) ∈ E1). AndN(C) - contains all the quadruplets for which an edge exists in

one species and not in the other. In addition duplication events are treated as follows: LetD0 ∈ E0

andD1 ∈ E1 be the sets of pairs of paralogous proteins in species 0 and 1, respectively. Every

pair (u, v) ∈ Di is assigned a positive/negative duplication factord(u, v). Due to rapid functional

divergence of duplicate proteins, in case the duplication occurred before the speciation event that
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split the two examined species, the authors wish to penalize it. Otherwise, in case it occurred after

the speciation event, they wish to reward it. The authors employ sequence similarity as a means for

distinguishing between events that occurred before and after the speciation event. This is based on

the observation that sequence similarity provides a crude approximation for the age of duplication.

Finally, the score is calculated by summing over all quadruplets inM(C) andN(C). Conserved

interactions increase the score byλ · W (u, v, u′, v′) and non-conserved interactions decrease the

score byα ·W (u, v, u′, v′). Duplicate pairs of proteins(u, v) ∈ D0 ∪D1 reward/penalize the total

weight according tod(u, v). The score is formulated as follows:

Score(C) =
∑

(u,v,u′,v′)∈M(C)

λ ·W (u, v, u′, v′)−

∑
(u,v,u′,v′)∈N(C)

α ·W (u, v, u′, v′) +

∑
(u,v)∈D0

µ · d(u, v) +
∑

(u′,v′)∈D1

µ · d(u′, v′)

whereλ, α andµ are parameters of the algorithm (all have positive values).

The strength of this method is that it gives a score to both subnetworks together, taking their

topological similarity into account. This evolution based approach helps distinguish between true

conserved complexes from random matches of subnetworks in both species. However, since the

protein-protein interaction probabilities are not taken into consideration in the model, nor does the

local interaction density level around the subnetwork of interest. This method may fail to distinguish

between true protein complexes and random subnetworks. Figure 3.4 shows a simple example of

using this scoring method. The example shows where the method fails to identify the more conserved

dense subnetworks. Both pairs (A) and (B) have the same topological relationship, thus assigned

the same score. The method does not take into consideration the fact thatS2 contains proteins with

higher degrees thanS ′
2 and that the probabilities on the edges between protein inS ′

2 are higher than

those inS2, two facts that suggest that the pair (S1, S ′
2) is more likely to be a true conserved protein

complex.
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Figure 3.4. MaWish example. A toy example demonstrating MaWish disadvantages. Shown are three sub-

networks as in Figure 3.3. Black solid lines indicate the amount of neighbors each node in the PPI network

has. Note that both pairs (A) and (B) are scored the same since they share the same matches sequence, without

taking PPI probability or amount of neighbors of each protein into account.

3.3 Problem Definition

Discovery of protein complexes in general, and, dense protein subnetworks in particular, is an

important step toward understanding cellular processes. It assists in protein function prediction,

systematic analysis of cellular machinery, and additional problems at the heart of computational

biology. During the last six years, large amounts of PPI data were generated, creating larger and more

accurate PPI networks. Data is expected to keep on growing during the next few years. Advanced

tools for finding protein complexes are a fundamental requirement at the hands of scientists.

The previous section described previously known methods for this problem and pointed out

where these methods fail to identify true conserved protein complexes. As PPI data accumulates,

the challenge of pinpointing true protein complexes from random protein sets becomes increasingly

important.

The purpose of this research is to develop a new method for identifying conserved protein

complexes in two species. We do not alter the basic search scheme used by previous methods, but

rather focus on the subnetwork scoring model. Unlike previous methods, we develop a probabilistic

model that takes evolutionary properties of the networks into account. This allows us to pinpoint

pairs of subnetworks that are both dense and conserved in their interaction patters, thus enhancing

the accuracy of the predictions.



Chapter 4

The NetworkBLAST-EAlgorithm

This chapter gives a detailed description of NetworkBLAST-E, our new method for finding con-

served protein complexes. First, a description of the score model is given, followed by a detailed

description of the search algorithm. Finally, figures of merit to measure the performance of the

algorithm are introduced.

4.1 A Probabilistic Model for Conserved Protein Complexes

In this section we present a probabilistic model for protein complexes that are conserved across two

species. The model is based on specifying the pattern of interactions in an unobserved common

ancestor of the two species, and on describing the evolutionary events that have yielded the observed

subnetworks in each of the species.

We first present the model assuming that the interaction data is accurate and complete, that

is, each interaction is true and each non-interaction is also true. We then generalize the model to

account for interaction reliabilities. Our full model consists of a conserved protein complex model,

MC , and a null model,MN . Candidate conserved protein subnetworks, henceforth referred to as

clusters, are scored by their ratio of likelihoods according to each of the models. In the following

we describe these models and their underlying assumptions.

23
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4.1.1 Conserved Protein Complex Model

As suggested by [13] the evolution of a PPI network is shaped by link dynamics and gene duplication

events. For a conserved protein complex, consisting of a pair of species-specific complexes, we

assume the existence of an ancestral complex in the common ancestor of the two species under

study, from which its current forms have evolved through link dynamics and duplication events.

Let the two species under study be indexed by 0 and 1, respectively. Denote their sets of proteins

by P0 andP1. Denote the set of proteins of a common ancestor of the two species byP . Let φ(·)
be a mapping from proteins inP0 ∪ P1 to P , whereφ(x) = φ(y) for x 6= y if and only if x and

y are homologous. In other words,φ(x) is the ancestral protein from whichx originated. Ways to

computeφ are described in Section 5.1.3.

Consider a given cluster, and denote byS0, S1 andS, the sets of proteins comprising it in

species 0, species 1 and the ancestral species, respectively. Our model for the interaction pattern

of the ancestral subnetwork is based on the assumption that a protein complex induces a dense

subnetwork of protein-protein interactions. This assumption is in agreement with known complexes

and has already been used successfully in previous works [44]. Specifically, we assume that within

a complex each interaction occurs with high probabilityβ, independently of all other protein pairs

in the complex.

The interaction patterns of the extant protein sets,S0 andS1, are assumed to have evolved from

the ancestral interaction pattern. Letm be the number of protein pairs in the ancestral subnetwork

S. For each of these pairspi = (ai, bi), let Ii be the set of equivalent pairs inS0 andS1 under

φ: Ii = {(x, y) ∈ S0 : φ(x) = ai, φ(y) = bi} ∪ {(x, y) ∈ S1 : φ(x) = ai, φ(y) = bi}. We

assume that each interaction/ non-interaction relationship between the pairs of proteins inIi evolved

from pi, independently of all other events. Newly evolved interactions may attach pairs of non-

interacting proteins with probabilityPA, while detachment of a pair of interacting proteins occurs

with probabilityPD
1. Details on the wayPA andPD are calculated can be found in Section 5.1.4.

To handle duplications in extant species, we have to specify separately our assumption regarding

interactions between duplicates, since such interactions did not evolve from an ancestral protein

pair as the duplication is assumed to have happened after the speciation event. We choose to treat

such interactions in the same manner that we treat interactions in the ancestral species, and assume

1Note thatPA andPD are related: empirical evidence suggests that the overall rate of interaction attachment equals

that of interaction detachment [13].
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that they occur with probabilityβ independently of all other protein pairs. While there is also

information in the number of duplicates of a certain protein that are present in a given subnetwork,

empirical evidence suggests that such information is not correlated with complex conservation (see

Section 5.1.3). An illustration of the model is given in Figure 4.1.

We are now ready to describe the scoring function. For two proteinsx, y, let us denote by

Txy the event that these two proteins interact, and byFxy the event that they do not interact. Let

Oxy ∈ {0, 1} denote the observation on whetherx andy interact. LetOH denote the entire set of

observations on the members ofH. Let DSi
be the set of duplicate pairs inSi. The likelihood of a

set of observations according to the conserved protein complex model is:

P (OS0 , OS1|MC) =
m∏

i=1

P (OIi
|MC) ·

∏
(x,y)∈DS0

∪DS1

P (Oxy|MC)

Using the law of complete probability:

P (OIi
|MC) = P (OIi

|Taibi
)P (Taibi

|MC) +

P (OIi
|Faibi

)P (Faibi
|MC)

= βP (OIi
|Taibi

) + (1− β)P (OIi
|Faibi

)

and

P (OIi
|Taibi

) =
∏

(x,y)∈Ii

P (Oxy|Taibi
)

=
∏

(x,y)∈Ii

P
[Oxy=0]
D (1− PD)[Oxy=1]

P (OIi
|Faibi

) =
∏

(x,y)∈Ii

P
[Oxy=1]
A (1− PA)[Oxy=0]

P (Oxy|MC) = β[Oxy=1](1− β)[Oxy=0]

4.1.2 The Null Model

The null model assumes that each edge in the PPI networks of the two species is present with

probability that one would expect if the edges were randomly distributed, preserving vertex degrees.
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Formally, for a given PPI networkG = (V, E) and a given protein pair(x, y), the probability thatx

andy interact is defined as the fraction of graphs with the same degree sequence asG that contain

an edge betweenx andy. An approximation to these random interaction probabilities is decribed

in a review on networks by Newman [34] and can be computed as follows.

Given the degree sequence ofG: dv1 ... dv|V |, let us denote byGF the family of all graphs with

the same degree sequence. We can calculate the probability thatx andy interact by:

P (Txy|MN) =
1

1 +
|GF

Fxy
|

|GF
Txy

|

whereGF
Fxy

andGF
Txy

are the sub-families of all graphs in whichx andy do not interact and do

interact, respectively. An edge matrix of sizem × 2, wherem =
P|V |

i=1 dvi

2
, can be used in order to

present each of the possible graphs. The actual amount of possible graphs in each family cannot be

calculated analytically but an approximation of the ratio of the sizes can be estimated. We would like

to calculate an approximation for the number of possible options to assigndv distinct occurrences

of each vertexv ∈ V in the matrix, in the two cases:x andy interact orx andy do not interact.

Oncedx distinct occurrences ofx were already assigned in the matrix we focus on the number of

possible assignments ofdy distinct occurrences ofy.

In casex andy do not interact, there are:(m− dx) · (m− dx− 1) · · · (m− dx +1) · 2dy options,

since thedy distinct occurrences ofy can appear any where except for rows already assigned with

x. In casex andy do interact, there are:dx · dy · (m− dx) · (m− dx − 1) · · · (m− dx + 2) · 2dy−1

options, since one of the distinct occurrences ofy needs to be assigned to the same row as one of the

distinct occurrences ofx and the rest of thedy − 1 distinct occurrences ofy are assigned to random

rows, as before. In this approximation we do not analyze the amount of possible assignments of

the rest of the vertices into the edge matrix. It is impossible to analytically calculate the amount of

possible assignments that do not include self loops and parallel edges between all theses vertices.

This calculation gives us the approximated ratio:

P (Txy|MN) =
1

1 + m−dx−dy+1

dx·dy

Using this as the probability for interaction between two proteinsx andy given the null model,

we can calculateP (Oxy|MN) in a similar manner to what we did with the complex model:

P (Oxy|MN) = P (Txy|MN)[Oxy=1](1− P (Txy|MN))[Oxy=0]
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This allows us to compute:

P (OS0 , OS1|MN) =
∏

x,y∈S0

P (Oxy|MN) ·
∏

x,y∈S1

P (Oxy|MN)

4.1.3 Noisy observations

The above description assumed that interactions and non-interactions are known. In practice, we

have partial, noisy observations on protein-protein interactions. As done in [44], we tackle this

problem by generalizing our model to consider the interaction data as noisy observations. To this

end, we redefineOxy as the set of experimental observations on whetherx andy interact (rather than

denoting their status of interaction which is unknown). As before, letTxy andFxy denote thehidden

events of whetherx andy interact or not, respectively. Given the set of experimental observations

for a pair of protein (x andy), Oxy, we can calculateP (Txy|Oxy) (the probabilities of the edges of

the PPI graph) as described in Section 3.1.1.

We can now use Bayes theorem to compute the likelihood of the observations on an interaction

given some modelM as follows:

P (Oxy|M) = P (Oxy|Txy)P (Txy|M) +

P (Oxy|Fxy)P (Fxy|M)

P (Txy|M) andP (Fxy|M) are computed as described above (whereTxy (Fxy) correspond to the

eventOxy = 1 (Oxy = 0) in the previous notation).P (Oxy|Txy) andP (Oxy|Fxy) can be computed

from interaction reliabilities (P (Txy|Oxy) andP (Fxy|Oxy)) as done by [42] using Bayes theorem:

P (Oxy|Txy) =
P (Txy|Oxy)P (Oxy)

P (Txy)

whereP (Txy) is the prior probability for a true interaction between two proteins; andP (Oxy) is

the prior probability for observing an interaction between two random proteins. In practice it is not

required to calculateP (Oxy), since it cancels when computing the likelihood ratio.

A straightforward manner for calculatingP (Txy) would be to sum over the probabilities of all

the interactions in the network and divide by the number of protein pairs. However, since there are

false-negatives, and we expect the actual amount of true interactions in the network to bef times

the amount of the observed interactions. Sharan et al. [42] suggested in their work, to calculate
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P (Txy) as follows:

P (Txy) =
f ·
∑

x,y∈V P (Txy|Oxy)
|V |(|V |−1)

2

wheref compensates for false negatives. Here we chose empiricallyf = 2, based also on the

estimated total number of interactions in yeast [36].

This modification to the prior probability calls for an updated probability calculation for pairs

of proteins for which no interaction was observed. For every pair of proteinsx andy, for whichx

andy were found not to interact (Oxy = φ), we assign the updated value:

P (Txy|φ) =
(f − 1) ·

∑
(u,v)∈E P (Tuv|Ouv)

|V |(|V |−1)
2

− |E|

4.1.4 Putting It All Together

Now we can reformulate the previous equation of theConserved Complex Model:

P (OS0 , OS1|MC) =
m∏

i=1

P (OIi
|MC) ·

∏
(x,y)∈DS0

∪DS1

P (Oxy|MC)

where

P (OIi
|MC) = βP (OIi

|Taibi
) + (1− β)P (OIi

|Faibi
)

and

P (OIi
|Taibi

) =
∏

x,y∈Ii

P (Oxy|Taibi
)

=
∏

x,y∈Ii

(P (Oxy|Txy)(1− PD) + P (Oxy|Fxy)PD)

P (OIi
|Faibi

) =
∏

x,y∈Ii

(P (Oxy|Txy)PA + P (Oxy|Fxy)(1− PA))

P (Oxy|MC) = P (Oxy|Txy)β + P (Oxy|Fxy)(1− β)

And theNull Model :

P (OS0 , OS1|MN) =
∏

x,y∈S0

P (Oxy|MN) ·
∏

x,y∈S1

P (Oxy|MN)
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Figure 4.1. Illustration of the new model. Networks 1 and 2 represent two PPI networks. Solid lines represent

protein-protein interactions and dotted lines represent homologous relationships between two proteins. As

defined by our model, a hypothetical PPI network of the closest common ancestor is considered. Each edge

in the ancestor PPI network is expected to appear with probabilityβ. Marked by green and red circles

are attachments and detachment events, respectively. These occur between the ancestral network and the

observed networks with probabilityPA andPD, respectively. The light green mark indicates a duplication

event that occurred in one of the species.

where,

P (Oxy|MN) = P (Oxy|Txy)P (Txy|MN) + P (Oxy|Fxy)P (Fxy|MN)

Finally, the log-likelihood ratio score that we assign to a subgraph is:

L(OS0 , OS1) = log

(
P (OS0 , OS1|MC)

P (OS0 , OS1 |MN)

)
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4.2 Searching for Conserved Complexes

As discussed above, a common approach to the problem of identifying conserved protein complexes,

is to use an alignment graph. An overview of this approach was given in Section 3.1. We adapt this

approach for our search heuristic. This section provides details on the seed construction and greedy

search heuristics, and describes result evaluation and filtering methods.

4.2.1 Search Heuristic Details

The seeds are generated based on the following principle: For each nodei in the alignment graph

choose as a seed the heaviest connected subnetwork of size four that containsi. This is achieved

by iterating over all nodes in the alignment graph. For each node an exhaustive local search is

executed, to identify all possible connected subnetworks of size four that contain that node. Each

of the subnetworks is scored and the highest scoring subnetwork is the one that is added to the set

of seeds, with all its subnetworks of size three (that includei).

The seeds are then expanded by local search, each time adding or deleting a node whose

modification increases the weight of the current subgraph the most. At each step, the algorithm tries

to add one of the neighbors of the nodes that are already part of the cluster or remove one of the

cluster members. For each possibility the score of the resulting subnetwork is calculated using the

score model and the highest scoring subnetwork is chosen. The greedy search of the subnetwork

stops once one of the following conditions occurs:

• The subgraph’s size reaches an upper limit (15).

• Every possible change to the current subnetwork will decrease its weight.

• The best possible modification to the subnetwork will yield a non-significant score with respect

to the subnetwork’s size.

4.2.2 Filtering the Results and Significance Computation

The resulting subgraphs may overlap considerably. We use a greedy algorithm to filter them, so

that the intersection of any two subgraphs in their node sets and in their species-specific protein

sets is below a threshold (80%; computed with respect to the smaller set). The algorithm iteratively
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finds the highest scoring subgraph, adds it to an output list, and removes all the subgraphs that

(sufficiently) intersect it from consideration.

The output of the previous stage undergoes further filtering to remove non-significant findings.

The statistical significance of the subgraphs is evaluated by comparing their scores to those obtained

on randomized instances of the data. These instances are created by shuffling the edges of the two

interaction graphs while preserving vertex degrees, as well as shuffling the pairs of homologous

proteins while preserving the number of homologous partners per protein. In order to create the

degree preserving random PPI networks we use theswappingalgorithm [32] (see details in Box 1).

In order to generate randomized homology data, we use random protein name permutation. Speci-

fically, two random proteinsa andb are uniformly selected from one of the species (this procedure

is done for both examined species). Then, we switch their names in all the homologous pairs they

participate in (see Box 2 for details).

A set of several dozen randomized networks is created using the above procedures. The search

algorithm for finding clusters is executed on each of the randomized networks. The results are

clustered into groups of clusters with the same size. Only the best result (the one with the highest

score) for each cluster size and for each of the runs is recorded. For each cluster size, the score at

the 95% percentile is set as the threshold for filtering insignificant clusters. Henceforth, we call the

significant clusters,conserved clusters.

4.3 Quality Assessment

We used four measures to evaluate the biological significance of the results. The first three quantify

the similarity between a given collection of conserved clusters and a reference, putatively true, cata-

log of protein complexes. As a reference we used known yeast complexes catalogued in the MIPS

database [6] (we excluded category 550 which was obtained from high throughput experiments, and

retained only manually annotated complexes). The fourth measure assesses the functional cohe-

rency of the conserved clusters based on the gene ontology (GO) annotation [51]. These measures

are described below.

Specificity and Sensitivity.To measure the level of correspondence between conserved clusters

and true complexes, we computed statistically significant matches between the two collections and
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Box: 1 - createGeneralizedRandomGraph

Input : G

let G∗(V, E∗, w) = G(V, E, w);

/* n is set to100 as suggested in [32] */;

for i = 1 ... (n · |E∗|) do
uniformly choose two random edges(a, b), (c, d) ⊆ E∗;

if a, b, c and d are not all distinct nodesthen
continue;

end

randomly choose the switch direction p = cross/parallel;

if p is crossthen

if edges(a, d) and(b, c) are not inE∗ then
add edges(a, d) and(b, c) to E∗;

setw(a, d) = w(a, b) andw(b, c) = w(c, d);

remove edges(a, b), (c, d) from E∗;

end

else

if edges(a, c), (b, d) are not inE∗ then
add edges(a, c) and(b, d) to E∗;

setw(a, c) = w(a, b) andw(b, d) = w(c, d);

remove edges(a, b) and(c, d) from E∗;

end

end

end

return G∗;
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Box: 2 - createRandomAlignmentGraph

Input : H - the set of all homologous pairs

/* for each nodea ∈ H, let ai be the protein from speciesi that takes part ina */;

let H∗ = H ;

for i = 1 ... (100 · |H|) do
uniformly choose two nodesa, b ∈ H∗;

randomly select a speciess = 0/1;

switch all occurrences ofas in H∗ to bs, and vice versa (bs to as);

end

return H∗;

used these matches to evaluate the specificity and sensitivity of the suggested solution. Specifically,

for each conserved clusterC we found the true complexA that maximized the hypergeometric

overlap score:

HG(M, N, T, k) =

min{M,N}∑
i=k

(
N

i

)(
T −N

M − i

)
(

T

M

)
whereM = |C|, N = |A|, T is the total amount of proteins in our data set that are spanned by

MIPS andk = |C ∩ A|. In this analysis we consider only proteins that appear both in our protein

data set and in at least one MIPS complex.

Significance levels were compared with those obtained for 10,000 random sets of proteins of

the same size, and empiricalp-values were calculated for each of the conserved clusters. These

p-values were further corrected for testing multiple conserved clusters using the false discovery

rate (FDR) procedure [12].

Let C be the initial set of conserved clusters, and letC∗ ⊆ C be the subset of clusters that had

a significant match (p < 0.05; only clusters with at least one annotated protein are considered).

Thespecificityof the solution is defined as|C∗|/|C|. Let M be the set of true complexes, and let

M∗ ⊆ M be the subset of complexes with a significant match by a conserved cluster. Thesensitivity

of the solution is defined as|M∗|/|M |.
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Purity. This is an alternative measure for the specificity of the solution. A conserved cluster is

calledpureif there exists a true complex whose intersection with the cluster covers at least 75% of

the MIPS annotated proteins in the cluster. LetC be the set of all conserved clusters with at least 3

MIPS annotated proteins, and letC∗ ⊆ C be the subset of pure clusters. Thepurity of the solution

is defined as|C∗|/|C|.

Functional Enrichment. We used the GO [51] process annotation for yeast, fly and human to

evaluate the functional coherency of the conserved clusters returned by the algorithm. For each

conserved cluster and each GO term, we computed the enrichment of the term in the cluster using

a specially-designed hypergeometric score, which takes into account ontology relations between

terms. Specifically, since the GO terms are not independent but are rather connected by a directed

acyclic graph of parent-child relationship, we computed the enrichment of each term conditioned

on the enrichment of its parent term, as done in [42] (see also [20]). LetC be a conserved cluster, let

A be a GO term and letT be the union of all ofA’s parents in the GO hierarchy. The score for each

possible match between a conserved cluster and a GO term is calculated by:HG(|A|, kp, |T |, k),

wherek = |C ∩ A| andkp = |C ∩ T |.
For each conserved cluster we chose the term that yielded the highest significance level. We

compared this significance level with those obtained for 10,000 random sets of proteins of the same

size as the cluster, and derived an empiricalp-value for the cluster (in a similar manner as we did

with the comparison to MIPS). Thesep-values were further FDR corrected for multiple testing of

conserved clusters. Finally, we report the fraction of functionally enriched clusters (p < 0.05; only

clusters with at least one GO annotated protein are considered). This procedure is done separately

for each of the examined species.
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Experimental Results

We applied NetworkBLAST-E to search for conserved protein complexes in the PPI networks

of yeast (S. Cerevisiae), fly (D. Melanogaster) and human (H. Sapiens), which are the three

largest networks in public databases. In the following we describe our results and present a com-

parison to the two existing methods for conserved complex detection described in Section 3.2,

NetworkBLAST [42] and MaWish [29].

5.1 Data Description and Parameter Estimation

5.1.1 PPI and Homology Data

We downloaded protein interaction data for yeast, fly and human from the database of interacting

proteins (DIP) [3] (July 2005 download). The yeast network contained 15,147 interactions spanning

4,738 proteins. For fly, we complemented the DIP data by interactions from [47], and constructed a

network with 23,484 interactions spanning 7,165 proteins. For human, we complemented the DIP

data by interactions from [4, 39, 49], and constructed a network with 28,972 interactions spanning

7,915 proteins. We used the previously published logistic regression method [42], detailed in

Section 3.1.1, to assign reliabilities to the protein-protein interactions. The reliabilities were based

only on the experimental evidence for each interaction.

35
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We analyzed all three network pairs. The network alignment graphs were constructed over pairs

of proteins with some interaction information whose BLAST E-value≤ 10−10. We used a version

of BLAST that was downloaded from [1] with the parameters: b=0, e=1E6, f="C;S" and v=6E5.

Overall, the yeast-fly alignment graph contained 890 nodes and 1,070 edges, spanning 482 and 453

distinct proteins in yeast and fly, respectively. The yeast-human alignment graph contained 3,328

nodes and 48,100 edges, spanning 715 and 764 distinct proteins in yeast and human, respectively.

The fly-human alignment graph contained 8,308 nodes and 75,636 edges, spanning 1,245 and 869

distinct proteins in human and fly, respectively.

5.1.2 Validation Data

For validation purposes, we downloaded the MIPS complex catalog (December 2005 download).

We used complexes at level 3 or lower with at least one protein in the yeast PPI network. Overall,

there were 114 such complexes spanning 709 proteins; 68 of these complexes had at least 3 proteins

in the network. We also extracted GO process annotations for yeast, fly and human (June 2006

download). There were 4,818, 6,140 and 19,239 annotated proteins for yeast, fly and human,

respectively.

5.1.3 Protein Duplication

To determine duplicates and cluster extant proteins according to their ancestral origin, we used the

InParanoid algorithm [37]. InParanoid clusters sequence-similar proteins from two species, so that

each cluster corresponds to one ancestral protein and contains its present-day descendants and their

inparalogs, duplicate proteins created after the speciation event. We used InParanoid clustering for

yeast-fly, yeast-human and fly-human from the InParanoid public database [5]. For the yeast-fly

PPI networks there were 1,128 clusters (December 2005 download). For the yeast-human and fly-

human networks there were 889 and 1,268 clusters, respectively (June 2006 download). Note that

nodes of the alignment graph may contain pairs of proteins that do not map to the same InParanoid

cluster. The inclusion of these nodes reflects a previous observation that functional orthology does

not necessarily imply sequence orthology [42].

In order to test whether duplicate pairs of proteins are more/less likely to take part in a conserved

protein complex, we employed two statistical tests on the yeast-fly data set:
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• Let u, v ∈ P0 andu′, v′ ∈ P1 be two pairs of orthologous proteins ((u, u′) and (v, v′) are

sequence-similar). Assume that conserved interactions are more likely to take part in a conser-

ved complex compared to non-conserved ones. In order to evaluate the tendency of duplicate

pairs of proteins to take part in conserved protein complexes, we compared the ratio of duplicate

pairs of proteins taking part in conserved interactions and the ratio of duplicate pairs of proteins

out of all protein pairs. We found that the ratios are: 0.013 and 0.0034, respectively.

• We compared the ratio of duplicate pairs of proteins in true MIPS complexes and that in

random subnetworks. The total amount of duplicate pairs of proteins in known complexes was

around 1,300, where as the total amount of duplicate proteins in random clusters, which were

generated by a permutation over the proteins in the original MIPS complexes, was around

1,800. Moreover, when comparing the original MIPS complexes and the randomized ones, the

amount of complexes that had at least N (ranging from 1 to 5) duplicate pairs of proteins was

about 20% higher for the randomized subnetworks.

The statistics show a slight tendency of duplicate pairs of proteins to take part in random protein

subnetworks. However, the difference is quite small and does not seem to be a major differentiation

factor between the two types of subnetworks. Hence we chose to ignore this factor when scoring

protein subnetworks.

5.1.4 Link Dynamics

While previous studies tried to estimate the probabilitiesPA andPD of edge attachment and detach-

ment, respectively [54, 13], these computations were limited to mean estimates over the entire

PPI network, and do not directly apply to estimating the rate of these events within conserved

complexes. As explained in Section 3.1.1, we expect protein complexes to be dense subnetworks.

Our model assumes that each edge occurs with probabilityβ. We expect that during the course of

evolution the density property is maintained. Thus, the amount of edges in a conserved complex

is expected to remain more or less the same. LetdPD (dPA) be the probability that an interaction

within a conserved complex is removed (added) in an extant species, within some time unit. We

expectdPD anddPA to be correlated so that:

dPD · β = dPA · (1− β)
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Table 1. Comparison of results for differentβ values.

β # Complexes Specificity Purity Sensitivity Functional enrichment

Yeast Fly

0.9 76 76% 66% 11% 88% 63%

0.8 83 77% 70% 12% 87% 60%

0.7 89 75% 63% 13% 88% 53%

Performance measures of NetworkBLAST-E, under different values for theβ parameter,

when applied to the yeast-fly alignment graph.

Once estimatingdPD anddPA, we can calculatePD andPA using the Jukes-Cantor [27] model.

The model is based on a substitution rate matrix. In our case there are two options for each pair

of proteins - either they interact or they do not. Given an initial status of interaction between two

proteins and the substitution rates for each time unit (dPD anddPA), we can calculate the probability

for a pair of proteins to interact or not after a certain amount of timet:

Pinteract(t) = Pinteract(t− 1) · (1− dPD) + Pnot−interact(t− 1) · dPA

Pnot−interact(t) = Pinteract(t− 1) · dPD + Pnot−interact(t− 1) · (1− dPA)

wherePinteract(0) is set to 1 (0) andPnot−interact(0) is set to 0 (1), given the initial interaction

status between the two proteins: interacting (non interacting). Knowing the distance,r, of the

two examined species from their closest common ancestor, we can calculate the probability for an

attachment/detachment event to occur during the evolution process. We setPD = Pnot−interact(r),

given that the initial status was that the two proteins interacted. And setPA = Pinteract(r), given

that the initial status was that the two proteins did not interact.

This model for calculatingPD andPA allows us to estimate only a single parameter,dPD, and

infer the rest. In order to achieve the best performance we enumerated over several values ofdPD

and chose the one that gave the highest number of significantly conserved clusters when applying

the algorithm to the yeast-fly network. We attaineddPD = 7 · 10−6; similar performances were

achieved when varyingdPD from3 ·10−6 to4 ·10−5. These values fordPD setPD at values between

0.05 and 0.001, andPA between 0.2 and 0.004, respectively. The density parameter,β, was set to

0.8 as in a previous work [42]; similar results were obtained when varyingβ from 0.7 to 0.9, as

seen in Table 1.
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Table 2. High scoring yeast-fly conserved clusters.

Cluster ID Size MIPS category p-value Yeast GO process p-value Fly GO process p-value

#4 7 RNA processing 0.03 pre-mRNA splicing factor activity 0.019 RNA binding 0.0031

#214 6 Replication 0.0002 DNA clamp loader activity 0.0001 Nucleotidyl transferase activity 0.009

#222 4 Cytoskeleton 0.0097 Structural constituent of cytoskeleton 0.009 Structural constituent of cytoskeleton 0.015

#313 7 Proteasome 0.0001 Proteasome endopeptidase activity 0.0001 Endopeptidase activity 0.0044

High scoring conserved clusters identified by NetworkBLAST-E when executed on the first data set of the yest-fly networks. For each

cluster, shown are its size, best matching MIPS complex (andp-value), and most enriched GO annotations in yeast and fly (andp-values).

Specific MIPS categories of the category names mentioned above are as follows: Cytoskeleton - 140.20.20, RNA processing - 440.30.10,

Proteasome - 360.10.10 and Replication - 410.40.30.

5.2 Application to Yeast-Fly PPI Network

We applied NetworkBLAST-E to the yeast-fly network alignment graph in search for conserved

protein clusters. The algorithm identified 83 significant, non-redundant conserved clusters spanning

155 proteins in yeast and 130 proteins in fly. The sizes of the clusters ranged from 4 to 14, with an

average size of 8. Four representative, high scoring conserved clusters are detailed in Table 2 and

depicted in Figure 5.1.

We assessed the biological significance of the conserved clusters by comparing them to known

MIPS complexes and testing their functional enrichment (see Section 4.3 for a description of the

measures we used). 53 of the clusters significantly matched a MIPS complex, yielding a specificity

level of 77% and a sensitivity level of 12%. Moreover, 87% of the clusters had an enriched GO

annotation in yeast, and 60% were enriched for fly annotations. The enriched annotations in the

two species matched in the majority of the cases, as exemplified by the clusters in Table 2. Further

information on the identified clusters is given in Table 3.

5.2.1 Comparison to Extant Methods

We compared NetworkBLAST-E with two previously published methods: (1) NetworkBLAST

by Sharan et al. [42], which is based on a similar probabilistic model, but treats the two species

independently in its score; and (2) MaWish by Koyuturk et al. [29], which is based on evolutionary

principles but has no underlying probabilistic model.
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Figure 5.1. Illustration of the four high scoring conserved clusters presented in Table 2. Shown are the

alignment subgraphs corresponding to each conserved cluster. Nodes represent pairs of proteins, one from

each species. Edges represent conserved (solid) or semi-conserved (dashed; direct in one species and distance

2 in the other) interactions. Edges spanning a direct interaction in one species and the same protein in the

other species also appear solid. Colors within nodes indicate whether they participate in the best, significantly

matching MIPS complex or GO term.
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Table 3. Comparison of results for conserved complex detection.

Algorithm # Complexes % Intersection Specificity Purity Sensitivity Functional enrichment

Yeast Fly

NetworkBLAST-E 83 - 77% 70% 12% 87% 60%

NetworkBLAST [42] 85 92% 77% 60% 11% 87% 58%

MaWish [29] 73 23% 46% 63% 8% 78% 26%

Performance measures of NetworkBLAST-E, NetworkBLAST and MaWish when applied to the yeast-fly alignment graph.

The third column specifies the percent of overlapping clusters with NetworkBLAST-E’s solution (>80% overlap).

In order to allow a fair comparison we used the same PPI networks, alignment graph, search

heuristic and validation methods, thus emphasizing the scoring component of each method. Table 3

summarizes the performances of the three methods when applied to the yeast-fly network. It can be

seen that NetworkBLAST-E outperforms MaWish by a significant margin in all measured parame-

ters and that the solutions are very different (23% intersection). In comparison with NetworkBLAST,

NetworkBLAST-E has an overall similar performance, which is reflected also in the high overlap bet-

ween the two solutions (92%). Nevertheless, NetworkBLAST-E exhibits better correspondence with

the MIPS catalog, with higher sensitivity and purity levels than those attained by NetworkBLAST.

Due to the overall similarity between the solutions of NetworkBLAST-E and NetworkBLAST,

we conducted a more refined analysis of the differences between these approaches. Intuitively, if we

consider two species-specific clusters spanning matching sets of proteins, NetworkBLAST will not

distinguish between the case that the interactions sets of the two clusters identify and the case they

do not (see Figure 3.3). Thus, the key difference between the two approaches is the way they treat

conserved interactions within conserved clusters. While the scoring of NetworkBLAST depends

only on the total number of interactions within each species, our model distinguishes between a

conserved interaction and a pair of species-specific interactions with no match in the other species.

In light of the discussion above, we focused the comparison to NetworkBLAST on clusters

containing conserved interactions. We recomputed the quality measures of the two solutions when

restricting the computations to conserved clusters that contain at leastk conserved interactions,

for k = 1, 2, 3, 4. This test is motivated by empirical observations on the tendency of interaction

conservation across species [31]. The results, summarized in Table 4, demonstrate the superiority

of NetworkBLAST-E in this setting, particularly ask grows.
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Table 4. Comparison of results for conserved interactions.

Collection # Complexes Specificity Purity Sensitivity Functional Enrichment

Yeast Fly

NetworkBLAST-E,k = 1 57 70% 52% 12% 82% 67%

NetworkBLAST,k = 1 61 69% 42% 11% 80% 59%

NetworkBLAST-E,k = 2 34 77% 44% 12% 76% 85%

NetworkBLAST,k = 2 38 75% 36% 11% 76% 79%

NetworkBLAST-E,k = 3 26 92% 50% 12% 73% 88%

NetworkBLAST,k = 3 24 82% 47% 11% 67% 83%

NetworkBLAST-E,k = 4 12 90% 50% 11% 67% 92%

NetworkBLAST,k = 4 9 71% 25% 10% 44% 78%

Performance measures of NetworkBLAST-E and NetworkBLAST, with respect to conserved clusters containing

at leastk conserved interactions, fork = 1, 2, 3, 4. Columns are as in Table 3.

Moreover, we also applied the two algorithms to a conservedcoreof the network data, obtained

by considering only proteins that participate in nodes of the alignment graph that are involved in

a conserved interaction. Overall, NetworkBLAST-E’s performance is similar to NetworkBLAST’s

(see Table 5). For comparison purpose, we also detail the performance of MaWish on this data.

Evidently, it is less aligned with the MIPS complex data, although displaying high functional

enrichment levels.

5.3 Application to Yeast-Human and Fly-Human PPI Networks

Next, we applied NetworkBLAST-E to the yeast-human and fly-human alignment graphs, in search

for conserved protein subnetworks. For the yeast-human alignment graph NetworkBLAST-E iden-

tified 535 significant, non-redundant conserved clusters spanning 337 proteins in the yeast PPI

network and 373 proteins in the human PPI network. The sizes of the conserved clusters detected

by the method ranged from 4 to 15, with an average size of 10. When comparing the conserved
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Table 5. Comparison of results on a conserved core.

Algorithm # Complexes Specificity Purity Sensitivity Functional enrichment

Yeast Fly

NetworkBLAST-E 59 74% 61% 11% 81% 36%

NetworkBLAST 65 77% 51% 11% 82% 32%

MaWish 39 58% 54% 6% 84% 42%

Performance measures of NetworkBLAST-E, NetworkBLAST and MaWish with respect to the

conserved core of the yeast-fly alignment graph. Columns are as in Table 3.

clusters with known yeast complexes catalogued in the MIPS database, 150 of the clusters signifi-

cantly matched a MIPS complex, yielding a specificity level of 61% and a sensitivity level of 32%.

Moreover, 86% of the conserved clusters had an enriched GO annotation in yeast, and 87% were

enriched for human GO annotations.

When applied to the fly-human alignment graph, NetworkBLAST-E identified 1,119 significant,

non-redundant conserved clusters spanning 450 proteins in the human PPI network and 235 proteins

in the fly PPI network. The sizes of the conserved clusters detected by the method ranged from 4

to 15, with an average size of 14. The results could not be compared with the MIPS complex data,

since it is relevant only for yeast. Thus, specificity, sensitivity and purity measures could not be

calculated. The functional enrichment of the results was calculated by a comparison with the GO

database. 89% of the conserved clusters had an enriched GO annotation in human, and 88% were

enriched for fly GO annotations.

Table 6. Comparison of results for the yeast-human alignment graph.

Algorithm # Complexes Specificity Purity Sensitivity Functional enrichment

Yeast Human

NetworkBLAST-E 535 61% 46% 32% 86% 87%

NetworkBLAST 523 58% 41% 33% 89% 89%

MaWish 46 58% 40% 12% 80% 85%

Performance measures of NetworkBLAST-E, NetworkBLAST and MaWish when applied to the yeast-

human network. Columns are as in Table 3.
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Table 7. Comparison of results for the fly-human alignment graph.

Algorithm # Complexes Functional enrichment

Fly Human

NetworkBLAST-E 1,119 88% 89%

NetworkBLAST 1,087 83% 92%

MaWish 214 85% 92%

Performance measures of NetworkBLAST-E, NetworkBLAST and

MaWish when applied to the fly-human network. Columns are as in

Table 3, MIPS based measures are not applicable for the fly-human

data.

For comparison purposes we applied NetworkBLAST and MaWish to both pairs of networks,

as detailed in Section 5.2.1. Table 6 and Table 7 summarize the results for applying all three

methods to the yeast-human and fly-human networks, respectively. The overall performance of

NetworkBLAST-E is very similar to NetworkBLAST, and better than MaWish in most measures.

Moreover, NetworkBLAST-E finds 5- to 10-fold more significant conserved clusters than MaWish.
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Conclusions

In this thesis we presented a new method, NetworkBLAST-E, for protein complex detection in PPI

networks. Our main contribution is a probabilistic model for the detection of conserved complexes

across two species based on the evolutionary processes shaping their networks. Our model has

relatively few parameters related to the density of protein complexes, and the determination of

link dynamics and gene duplications rates. We applied our approach to study the conservation

between the PPI networks of yeast, fly and human. We successfully identified putatively conserved

complexes that matched well known complexes in yeast and displayed functional coherency in

all three species. Moreover, we have shown that our model aligns with the biological data better

than the previous approaches. We expect our model to be more advantageous when comparing

evolutionary-closer PPI networks as such become available. In the following we describe open

problems and directions for future research.

6.1 Data Integration

A possible approach to overcome the high rates of false negative interactions in current networks

is to integrate other data sources [38]. Genetic interaction (GI) data and gene expression data

can be used in order to enrich the current networks. We expect that using additional data will

yield more conserved interactions and will allow our algorithm to give more accurate results. The

main challenge is to integrate the additional data into the protein-protein interaction probability

45
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calculation. This can be achieved by, e.g., adding additional features to the logistic regression

calculation of interaction probabilities.

6.2 Protein Subnetwork Model

The current work focused on finding protein complexes, modeled by dense protein subnetworks.

It might be interesting to examine other models for protein subnetworks. Paths, for instance, are

known to be important structures in PPI networks. Studies like, Kelley et al. [28] and Shlomi et

al. [45] concentrate on path finding. Embedding the new evolution based model into these studies

may improve their results. Additional models, other than paths, such as trees or other structured

subnetworks might be interesting as well. The current scoring model can be modified quite easily

to support searching for different subnetwork model types.

6.3 Mapping Proteins to Their Closest Common Ancestor

A very important issue addressed in this work, is the mapping of proteins from the two studied

species to a protein in the closest common ancestor. One way to look at this mapping is as a clustering

of homologous proteins into sets of proteins that originated from an ancestral protein. We used the

InParanoid database of protein clusters as our mapping. The way this mapping is performed has a

major effect on the results of our method. Before choosing InParanoid we tried two other methods

for creating such a clustering:

• Single linkage:In this approach every connected subgraph in the graph of homologous proteins

was mapped to a single hypothetical protein in the ancestral species. In this graph, nodes

represent proteins from both species and edges link homologous proteins from either different

species or the same species.

• CAST: CAST is a clustering algorithm designed for clustering gene expression patterns [11].

We adapted this algorithm for clustering homologous proteins. The algorithm supports an

affinity parameter, controlling the tightness of the clusters; we tried various values, ranging

from 0.1 to 0.7 for this parameter.
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InParanoid showed much better performance than the two other approaches and was chosen as our

clustering strategy. It might be interesting to check into other clustering approaches and see if they

can improve the results. The COG database [50] (can be downloaded form [2]), for instance, can

be taken as a candidate clustering.

6.4 Extension to More than Two Species

Sharan et al. [42] demonstrate in their work that the comparative approach can handle more than two

species. In the current work we limited ourselves to two species, due to computational limitations,

even though using three or more species is expected to improve the results. The key computational

challenge lies in controlling the number of alignment graph nodes, which grows in a multiplicative

manner with each network added.

In order to avoid this problem, one would have to improve the heuristics for constructing and

scanning the alignment graph. Ideas such as progressive network alignment, as done in [18], should

be also examined and may be helpful. Adapting the score model to such an approach may be

non-trivial, due to the dependency calculation of edge weights among all examined species.
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