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ABSTRACT

Motivation: The ability of cells to complete mitosis with high fidelity

relies on elaborate checkpoint mechanisms.We study S- andM-phase

checkpoint responses in silico in the budding yeast with a stochastic

dynamical model for the cell-cycle. We aim to provide an unbiased

functional classification of network interactions that reflect the

contribution of each link to checkpoint efficiency in the presence of

cellular fluctuations.

Results: We developed an algorithm BNetDyn to compute stochastic

dynamical trajectories for an input gene network and its structural

perturbations. User specified output measures like the mutual informa-

tion between trigger and output nodes are then evaluated on the sta-

tionary state of the Markov process. Systematic perturbations of the

yeast cell-cycle model by Li et al. classify each link according to its

effect on checkpoint efficiencies and stabilities of the main cell-cycle

phases. This points to the crosstalk in the cascades downstream of

the SBF/MBF transcription activator complexes as determinant for

checkpoint optimality; a finding that consistently reflects recent exp-

eriments. Finally our stochastic analysis emphasizes how dynamical

stability in the yeast cell-cycle network crucially relies on backward

inhibitory circuits next to forward induction.

Availability:C++ source codeandnetworkmodels canbedownloaded

at http://www.vital-it.ch/Software/

Contact: felix.naef@isrec.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The cell-cycle progression has the particularity of triggering fairly

abrupt transitions between successive phases rather than following a

smooth phase trajectory (Ingolia and Murray, 2004). The transitions

are supervised by a system of checkpoints that allow intervention at

critical cell-cycle phases according to both external and internal

alarm signals (Cobb et al., 2004). By comparing across species, it

appears that the minimal and invariable skeleton of cell-cycle oscil-

lators consists of a negative feedback circuits similar to the circa-

dian pacemakers (Barkai and Leibler, 2000). Such designs use an

activator consisting of an activated cyclin dependent kinase (Cdk)/

cyclin complex that induces its own repressor: the anaphase

promoting complex (APC) which counteracts Cdk activity through

proteolytic degradation of the cyclin (Ingolia andMurray, 2004). As

a result the activity level of Cdk/cyclin raises until the complex

is degraded and the system is reset to low Cdk/cyclin level char-

acteristic of the pre-mitotic gap phase G1. In addition, positive

feedback loops that control Cdk activity levels are mediated through

Cdc25 and Wee1. Such loops were shown to induce bistability

resulting in abrupt changes of the Cdk/cyclin activity at mitotic

entry (Pomerening et al., 2003). This simplicity together with abun-

dant genetic and biochemical data (Tyers, 2004) have made the

Saccharomyces cerevisiae cell cycle an attractive test ground for

mathematical modeling. Model of ordinary differential equations

that implement chemical kinetics studied both the quantitative and

qualitative dynamical behavior of the yeast cell-cycle network

(YCC) in wild-type and mutants (Cross, 2003; Ingolia and

Murray, 2004; Novak et al., 1998, 2001). Such models could

recapitulate observed mutant phenotypes and predict novel charac-

teristics that were validated experimentally (Cross et al., 2002).
Checkpoints were studied in Schizosaccharomyces pombe using

continuous models and bifurcation diagrams in which stable steady

states were interpreted as the different phases of the cell-cycle

(Novak and Tyson, 2003).

However, several basic hypotheses underlying chemical kinetics

are usually not satisfied in the cellular environment. In fact, in

a biological system such as the cell-cycle, a correct description

at the microscopic level should include stochastic fluctuations in

numbers of molecules, non-homogeneity of the medium (McAdams

and Arkin, 1997; van Kampen, 1992) (ref. 11 p.171-2). Therefore, a

microscopically detailed model has enough unknown parameters

and such complexity that it will tend to lose its predictive capacity.

It is not obvious why simple networks of effective chemical reac-

tions can give correct predictions; one possibility may be the

network wiring of interacting proteins is determinant in biological

systems, rather than the choice of the dynamics applied. However

this cannot hold in full generality (Guet et al., 2002; Samoilov et al.,
2005). For most biological pathways wiring diagrams are still

derived from genetic data without further quantitative microscopic

details. Consequently many successful theoretical studies focused

on the qualitative dynamical behavior of models, e.g. by studying

bifurcation diagrams (Chen et al., 2004; Novak et al., 1998, 2001).
For the YCC, an effective model that does not implement explic-

itly chemical kinetics uses a discrete description of gene activities

with a minimal number of free parameters (Li et al., 2004).�To whom correspondence should be addressed.
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This approach applies a deterministic, discrete time dynamics in

which proteins assume Boolean states (‘on’ or ‘off’ activities) inter-

preted as concentration levels, phosphorylation states, or presence

in active complexes. This simplification finds some justification in

the abundance of positive feedback circuits (Brandman et al., 2005;
Pomerening et al., 2005) leading to sharp switches, as discussed

above in the case of the cyclins. In the Boolean YCC model

(Li et al., 2004), the state of each gene is updated according to

the states of its parent nodes at the previous time step, via a simple

threshold-based rule (or generalized ‘OR’ function). Despite its

simplicity this model showed distinct dynamical characteristics,

notably the presence of a super fixed point (large attractor) corre-

sponding to the G1 stationary state. In addition the dynamical

landscape indicated that trajectories from random initial conditions

to G1 tend to have short transients before ending onto a common

chain of states representing the canonical sequence through the

cycle: from G1 to S to M and back to the stationary G1 phase.

Because of the unusually large fraction (86%) of initial conditions

ending in this stationary G1 states, this model was characterized

as having a super fixed point. Although the model is deterministic,

this suggests that the system can accommodate for fluctuations that

would occur in the transition between states (error correction).

Moreover, these properties were relatively insensitive to structural

modifications in the network topology induced by link addition

or removal, indicating that robustness in dynamical behavior

followed from the specific wiring (topology) of the yeast cell-

cycle network.

Here we study in silico the efficiency of S- and M-phase

checkpoints by quantifying their ability to halt the cell-cycle in

the proper cellular states. For example we would like to know

which network links are most important in maintaining checkpoint

function in a noisy cellular environment (Elowitz et al., 2002). To
address this question, we formulate a stochastic generalization of

the network by Li et al. (2004) and quantify how perturbations

modify checkpoint responses. This provides an unbiased functional

classification of links reflecting their effect on checkpoint efficien-

cies and stabilities of the main cell-cycle phases. Finally we predict

putative interactions that enhance these properties and discuss

design principles revealed by these predictions.

2 SYSTEMS AND METHODS

2.1 Stochastic dynamical model

We consider Boolean networks where each node assumes a value 0 or

1 (on or off). A network of N nodes is represented by an N by N adjacency

matrix A, in which an activating link between node i and node j is represen-

ted by a positive entry Aij ¼ 1 and an inhibiting link by Aij ¼ �1. Self-

inhibitory and self-activating links, Aii ¼ ±1, are also possible. A network

state consists of a Boolean vector S representing the states of each node.

The full phase space contains 2N states.

In the absence of noise, the temporal evolution of the state variable is

taken as in Li et al. (2004): the state at the next time-step S(t + 1) is given in

terms of the current state S(t) by

Siðtþ 1Þ ¼ 1 if
X

j

AijSjðtÞ > 0

Siðtþ 1Þ ¼ 0 if
X

j

AijSjðtÞ < 0

Siðtþ 1Þ ¼ SiðtÞ if
X

j

AijSjðtÞ ¼ 0:

Thus nodes are updated according to a thresholded summation of

their positive and negative inputs. Moreover the state is unchanged when

the inputs sum to zero. Biochemical networks must be able to buffer

environmental and intrinsic noise sources (Elowitz et al., 2002;

McAdams and Arkin, 1997). To mimic such stochastic events in the

Boolean context we allow nodes to flip their state randomly (Shmulevich

et al., 2002) instead of following the deterministic updates (Supplementary

Fig. S1B). Other alternatives to noiseless synchronized Boolean dynamics

have considered various desynchronization schemes (Chaves et al., 2005;

Klemm and Bornholdt, 2005; Koch et al., 2005; Sanchez and Thieffry,

2003; Thomas and Kaufman, 2001) which our noise implementation also

partially simulates. Gradually increasing the noise strength changes between

a regime dominated by the deterministic dynamics and one where transitions

between states are fully random, independent of both the dynamical rules

and the network topology. To model the noise, we introduce a finite pro-

bability at each time step that a node flips its state randomly instead of

following the deterministic rule. This node flipping probability (NFP) is such

that the probability of a stochastic update at one of the N node (without

specifying which one) is N·NFP. In the presence of noise, the set of attractors
considered by Li et al. (2004) is replaced by a stationary state (example in

Supplementary Material, Fig. S1). The noise is applied to all nodes, which

guarantees uniqueness of the stationary state. Our stochastic model thus

defines a Markov process with a unique stationary state which defines a

probability distribution p(S) over the state space. In the Yeast cell-cycle

model (and in the toy model in the Supplementary Material), some nodes

(e.g. the checkpoints) are considered as triggers and are not updated during

the dynamical evolution. In that case, one stationary state is computed for

each trigger state (Fig. 2A).

2.2 Input–output characteristics

To quantify input–output relationships between a set of input states x 2 X and

output states y 2 Y, we simulate the joint probability by applying a Markov

Chain Monte Carlo method to the stochastic network model. Depending on

the problem, X and Y together may not span the entire state space. In that case

p(x, y) is a marginal of p(S). For example to measure checkpoint efficiency, X

will be taken as the checkpoint states. We then compute entropies H(X) and
H(Y), conditional entropies H(X jY) and H(Y jX) and mutual information

I(X, Y) (cf. Supplementary Material).

2.3 Structural network perturbations

Two types of structural network perturbations are considered: the links

are (1) removed or (2) added from the wild-type (unperturbed) network.

Stationary states are computed for each perturbed network. To compare two

stationary distributions, typically one from the wild-type network p and the

other from a perturbation p0, we use the probability distance measure

DðX‚YÞ ¼ 1

2

X

x‚ y

j pðx‚yÞ � p0ðx‚yÞ j

which takes values in the interval [0,1]. This measure discriminates

between perturbations with behavior close to the wild-type model

(small D) from others that compromise the biological relevance of the model.

3 IMPLEMENTATION

3.1 Yeast cell-cycle model

We study the YCC model (Li et al., 2004) built around the master

cell-cycle regulator Cdc28 and its most important functional part-

ners. In the simplest version of the model, cell-cycle checkpoints are

by-passed resulting in 11 dynamical nodes some of which represent

multiple proteins. All cyclins (Cln3, Cln1,2, Clb5,6 and Clb1,2)

form complexes with Cdc28 and the latter is not explicitly part

of the model. The model recapitulates the following sequence of

events: (1) Re-entry into the cell cycle is triggered by activation
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of Cln3 (2) the SBF and MBF transcription factor complexes are

active in early S-phase followed by the Clb5,6 and Cln1,2 in late

S-phase; (3) these induce the G2 markers Clb1,2 and the trans-

cription factor complex Mcm1/SFF; (4) mitotic entry is hallmarked

by the activation of the anaphase promoting complex APC/C

through binding of Cdc20, which is later replaced by Cdh1 follow-

ing the activation of Cdc14 (anaphase marker); (5) mitotic exit

coincides with the degradation of Cdc20/14 and S/M phase cyclins

after the activation of Swi5/Sic1/Cdh1 effectors. For convenience

Cdc20 and Cdc14 are fused into a single node effectively collapsing

early M-phase events. We used the S- and M-phase checkpoints

(Fig. 1) as trigger nodes. The intra-S checkpoint slows down DNA

replication in response to DNA damage during S-phase. Biochemi-

cally the activation of the Mec1-Rad53-Cdc5 cascade slows down

the progression of replication forks (Cobb et al., 2004) and is

represented in this model by blocking G2 entry or activation of

Clb1, 2 and Mcm1 (Fig. 1A in Li et al., 2004). Owing to the fusion

of the Cdc20 and Cdc14 nodes, the spindle checkpoint (blocking

of the metaphase to anaphase transition through the inhibition of

Cdc20/APC complex via Mps1–Bub1/3–Mad1/2/3 cascade) is

merged with the DNA damage checkpoint (activation of Pds1 in

response to DNA damage during the separation of the sister chro-

matids) and effectively termed theM-phase checkpoint. The latter is

implemented by blocking Cdc14 (direct interaction) plus its main

effector the transcription factor Swi5 (Fig. 1).

As explained in the results we will study two aspects of the

cell-cycle model: (1) the checkpoint efficiency (CE) and (2) the

phase tightness (PT). For this we split the set of dynamical nodes

(all nodes except the checkpoints) into two groups: one set contains

markers for the canonical cell-cycle phases and the second consist-

ing of all remaining nodes. As markers we have chosen Clb5,6 and

the composite node Cdc20/14 which are markers of S-phase and

M-phase entry, respectively. These nodes define the following

states: (Clb5,6; Cdc20/14) ¼ (on, off) corresponds to the S/G2

phases (these two phases are very short, one state each in the

unperturbed model as defined in Li et al. (2004, Table 2); (off,

on) characterizes the late M-Phase (four last M-phase states);

(off, off) defines G1 (five states) while the (on, on) state occurs

in a single state right at M-phase entry.

3.2 Terminology

Yeast cell-cycle (YCC). SBF and MBF are transcription factors

that activate gene expression during the G1/S transition of the

cell cycle in yeast. SBF is a heterodimer of Swi4 and Swi6, and

MBF is a heterodimer of Mbpl and Swi6. APC denotes the anaphase

promoting complex.

Modeling. NFP is the node flipping probability; CE the check-

point efficiency PT the phase tightness (PT). The static S and M

checkpoint states are called triggers (T). The states of the 11

dynamic nodes are denoted (R) in Fig 2. Dynamical nodes are

grouped into state variables (SV) and other nodes (O) (cf. Fig. 3).

3.3 Simulations

BNetDyn computes entropies, conditional entropies and mutual

information for a given network (specified in the GraphViz dot

format). For this the program estimates joint probabilities p(x,y)
by generating trajectories of the Markov process. For Figure 2,

the cell-cycle was simulated for 3 · 1 000 000 time steps (3 is

the number of checkpoint states) for different values of NFP. For

Fig. 1. Yeast cell-cycle network of (Li et al., 2004). Oval nodes represent
either proteins or protein complexes (as for the cyclins Cln3, Cln1,2, Clb5,6

and Clb1,2); squared boxes represent checkpoints. Red link indicate

inhibitory interaction (for example through ubiquitination) or decay (self-

degradation); green link indicate activation, either by transcriptional

induction or by posttranscriptional activation (for example through phosphor-

ylation or complex formation). The gray path indicates the sequential activa-

tion of nodes in the original model [see Table 2 in Li et al. (2004)]: cell-cycle

reentry is characterized by activation of Cln3 (top) which then propagates

down along the G1-S-G2-M-G1 states (cf. right vertical bar) and ends in the

G1 stationary state (bottom).

Fig. 2. Stationary state of the yeast-cell network in the presence of noise and

global checkpoint responses. (A) Representation of the stationary state for

NFP¼0.0005.EachBooleanvectorS is representedby a horizontal bandwith

active nodes in gray and inactive nodes in white. The thickness of a band is

proportional to its probability in the stationary state. The S and M-phase

checkpoints are in the two first columns followed by the dynamical nodes

ordered according to the cell-cycle phases, colored bar at the bottom follows

Figure 1. The colored boxes indicate the S andM-phase markers defining the

state variables (SV). (B)Mutual information in function of NFP. The limit for

NFP!0 exists (data not shown). The spread of values for fixed NFP repre-

sents sampling errors as obtained from multiple independent runs and em-

phasizes that sampling errors are largest for small probabilities. The model

correctly predicts that the information I drops to zero at the maximal noise

NPF¼ 1/11 value (q¼ 1). In both the panels 3 · 500 000 iterationswere used.

Efficiency in the yeast cell-cycle network
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Figures 4 and 5, networks were simulated for 3 · 500 000 time steps.

BNetDyn can also generate perturbed networks and evaluate

distance probabilities D(x,y). The choice of trajectory length assures
that the conditional entropies had errors of�1%. Figure 3 illustrates

the method for producing Figures 4 and 5. The C++ program

is available at http://www.vital-it.ch/Software/ along with the

commands and input files used in this article.

3.4 Classification of network links from perturbation

phenotypes

Necessary or toxic links are identified from networks with large

D(I,SV) in the CE analysis (cutoff was set to 0.25), or large D(SV,O)
in the PT (cutoff was set to 0.28). The cutoffs were fixed from a

natural separation in the bimodal densities for D. Stabilizing links

were defined as those whose removal would make both conditional

entropies larger than the wild-type values (augmented by 1% to

take into account estimated simulation errors). Such links are iden-

tifiable from the regions (II) in Figures 4 and 5. Removal of desta-
bilizing links decreases both conditional entropies below wild-type

values minus 1%. These links correspond to regions (I) in Figures 4

and 5. All other links are neutral.

4 RESULTS AND DISCUSSION

4.1 A probabilistic model recapitulates the yeast

cell-cycle

Our goal is to provide an unbiased functional classification of links

in the YCC network based on their contribution to checkpoint

efficiencies and stability of the main cell-cycle phases. We start

from the YCC model of Li et al. built around the master cell-cycle

regulator Cdc28 and add S- and M-phase checkpoints (Fig. 1, Meth-

ods). The model describes the negative feedback module Cdk/

cyclin!APCa Cdk/cyclin using a dozen of key cell-cycle

regulators providing forward induction and backward inhibition

mediated mainly by ubiquitin dependent proteolysis (Supplemen-

tary Material). In the absence of noise and checkpoints this deter-

ministic model induces a wave of activity propagating from

cell-cycle reentry at G1 to S, G2, M and ending in the stationary

G1 phase (Li et al., 2004) (Fig. 1).
One essential concern is the stability of the cell-cycle phases in

a model that implements checkpoints and stochastic fluctuations. A

useful cell-cycle model must have the property that the main cell-

cycle phases coincide with the probable states, i.e. it would be

awkward that the G1 fixed point evaporates upon dynamical

perturbations such as noise or desynchronization. To determine

Fig. 3. Scheme used to study the dynamical response to perturbations.

(A) The relationship between checkpoints (T) and state variables (SV)

measures checkpoint efficiency (CE). The correlation between SV and

the remaining nodes (O) determines a measure of phase tightness (PT)

(cf. Methods). (B) To compare CE across networks, we represent I(T, SV)

versus H(SV) so that the optimal case (a one-to-one relation) sits at the

intersection marked by ‘x’. Departure from optimality happens via two (pos-

sibly mixed) modes. The sloppy direction (orange) corresponds to relations

where several outputs coexist for the same input. The compressive direction

(blue) indicates that several inputs are mapped to the same output. The

accessible region is delimited by the dashed lines, given by the three check-

point states and four SV states. Any network in the accessible region can be

assigned a sloppiness and compression according to the coordinates defined

by the orange and blue vectors. (C) PT is represented using conditional

entropies so that the ideal network is located at the origin. The accessible

region is delimited on the x-axis by the number of state variables (2) and on the

y-axis by the number of other dynamical nodes (9).

Fig. 4. Perturbation fingerprint for the checkpoints efficiency (CE). (A) Link

removal (38 possibilities). Red (respectively green) dots indicate networks

obtained from removal of one inhibitory (respectively activating) link; the

wild-type network is in blue. Left: I(T,SV) versusH(SV). Range for I(T,SV) is

[0,1.58] and [0,2] for H(SV). The dotted lines run parallel to the sloppy and

compressive axes trough the wild-type model and delimit region (I: stabiliz-

ing links) and (II: destabilizing links). Right: I(T,SV) versus D(T,SV) shows
distance to the wild-type stationary state; y-axis is shared with the left panel.

Wild-type network has D(T,SV) ¼ 0 by definition. Links to the right of the

dashed vertical line are those whose removal generate non-biological sta-

tionary states, notice these are all inhibitory. (B) Link addition (162 possi-

bilities, 81 activating/81 inhibitory). Left: I(T,SV) versus H(SV). Range as in

A. Most perturbations move parallel to the compressive ‘blue’ axis; orange

arrow indicates the sloppiness direction. Right: I(T,SV) versus .D(T,SV); y-
axis is shared with the left panel. In contrast to A, necessary links are by and

large activating. Globally it is hard to improve the CE by perturbation; best

candidates are among added activating links (black arrows). Left panels:

dashed lines pass through the wild-type values. Right panels: dashed lines

indicates D(T,SV) ¼ 0.25 (cf. 3.4).
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relevant noise strength, we recall that the dynamical backbone

representing the canonical cell-cycle sequence is a chain of 13

Boolean states (Li et al., 2004). Hence the probability of completing

a cell cycle without random perturbation is q ¼ (1 � N·NFP)13

where N ¼ 11 is the number of nodes in the model. Fixing

NFP ¼ 0.0005 leads to q ¼ 93% and defines a regime where the

cell-cycle model dominates over the fluctuations and most cell-

cycles are completed after onset of Cln3. This choice is further

supported by simulations (Fig. 2A) showing that the most visited

Boolean states (the large horizontal bands) are G1 (Sic1 and Cdh1

active), the S-phase (SBF, MBF, Clb5,6 and Cln1,2 active) and a

state characteristic of the G2/early M phases (Mcm1, Clb1,2 and

Cdc20_14 active). In the latter state, the fact that Cdc20_Cdc14 is

active although it is repressed by the M-phase checkpoints is a

consequence of the specific update rules and the double activation

by Mcm1 and Clb1,2. We have preferred to keep the original rules

and thus have an M-phase checkpoint that effectively prevents

activation of the mitotic exit genes. To summarize, the simplest

addition of both checkpoints and noise induces a dynamical land-

scape that consistently toggles between S, M or G1 depending

on the three independent checkpoint states ‘S-checkpoint¼on,

M-checkpoint¼off’, ‘S¼off, M¼on’, ‘S¼off, M¼off’. We verified

that this behavior is robust when NFP is increased to 0.001 (the

probability for an unperturbed cell-cycle is then 85%, cf. Section

4.4). Some of the smaller bands are difficult to interpret biologically

and could describe novel biological states although it is more likely

that these reflect model incompleteness or limitations of the

modeling approach.

To evaluate the stationary state in further details, for example

how the noise strength affects the property that the G1 phase is also

visited when the S-phase checkpoint is on (Fig. 2A, top third), we

first study the mutual information between the S and M checkpoint

states (henceforth denoted by T for triggers) and the remaining

11 nodes in the network (O). Since the S and M checkpoints are

taken as mutually exclusive they represent 3 states, and hence

generate an entropy H(T)¼ log2(3)� 1.58 bits. This is the maximal

possible information I(T,R) (cf. Methods, Supplemental Material).

We find that I monotonically decreases to zero, as expected

(Fig. 2B). It appears that I(T,R) never approaches its theoretical

maximum and remains below�0.5 bits. Inspection of the stationary

state for NFP ¼ 0.0005 (Fig. 2A) allows identifying several

reasons for low I. First, most of the smaller horizontal bands in

Fig. 2A decrease information as they are not obviously correlated

with checkpoint states. Second, for active S- or M-phase check-

points, the system is not fully arrested in the corresponding

phases; for example the G1 state is also frequently visited

when either checkpoint is on (Fig. 2A). This is biologically

plausible for several reasons, first we do not expect the S

checkpoint to halt cells when the cell cycle has already passed

the S-phase and entered G2. In other words, checkpoints do not

attract backwards with respect to the cell-cycle progression. A

similar scenario repeats for the M-phase checkpoint, however

with stronger efficiency since the M-phase occurs later so

that the fraction of states after the checkpoint is smaller than for

the S-phase. Also partial efficiency is a property of many check-

points and reflects variability in cellular signaling (Colman-Lerner

et al., 2005). For example adaptation in the M-phase checkpoint has

been described in Saccharomyces cerevisiae (Andreassen et al.,
2003). We find therefore reasons to tolerate partially leaky

checkpoints.

4.2 Checkpoint efficiency fingerprint reveals

minimal sloppiness in wild-type model

The above analysis emphasized two properties. The first is the

ability of the checkpoints to control cell-cycle progression and is

called checkpoint efficiency (CE); it is related to the broad band

structure in the stationary state representation (Fig. 2A). The second

termed phase tightness (PT) is related to the fine structure in the

smaller bands and reflects the susceptibility of the G1, S and M

phases to external noise. To quantify both we introduce the S and

M-phase entry markers Clb5,6 and Cdc20/14 as state variables

(SV). CE is related to the correlation between T and SV and PT

measures how tightly the SV determine the remaining nodes (O)

using conditional entropies. Our analysis scheme is outlined in

Fig. 3; the technical details for the computation of CE and PT

are given in the Methods and Supplement. Loss and gain of func-

tion mutants are implemented in silico by respectively removing

existing links or adding putative interactions from the original net-

work. Input-output relationships are then quantified as sloppy and

compressive. CE measures to which extent several outputs coexist

Fig. 5. Perturbation fingerprint for the phase tightness (PT). (A) Link re-

moval. Colors are as in Figure 4. Left: H(O j SV) versus H(SV jO). Range for
H(O j SV) is [0,9] and [0,2] for H(SV,O). Only four perturbations decrease

both conditional entropies simultaneously (region I). Right:H(O j SV) versus
D(SV,O) shows distance to thewild-type stationary state; y-axis is sharedwith
the left panel. Inhibitory links are dominant among necessary links whose

removal generate non-biological stationary states (located right of the dashed

vertical line). (B) Link addition. Left:H(O j SV) versusH(SV,O). A total of 36

added links increase both conditional entropies (region II). Range as in A.

Right: H(O j SV) versus D(SV,O); y-axis is shared with the left panel. In

contrast to A necessary links are by and large activating. Candidate links

that improve PT are among added links (arrows). Left panels: dashed lines

pass through the wild-type values. Right panels: dashed lines indicate

D(SV,O) ¼ 0.28 (cf. 3.4).
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for the same input; the second indicates whether different inputs are

mapped to the same output states.

When evaluating the CE for all modified networks, we find that

the sloppiness is stiff to both types of perturbations as indicated

by the nearly one-dimensional accumulation of points parallel to the

compressive direction (Fig. 4). In other words, the wild-type

network has minimal sloppiness as no networks are found in

region I in Fig. 4A and B. This suggests that evolution towards

less leaky checkpoints is difficult with the applied perturbations

and that this property is hardwired in the cell-cycle network. On

the other hand few networks, mostly the ones with added connec-

tions, are less compressive than wild type (arrow in Fig. 4B). To also

monitor which perturbations dramatically change the cell-cycle

progression we measure the similitude between the perturbed

and the wild-type stationary states using the distance function D
between two stationary states (Methods). When removing links, it

is striking that those leading to a biologically poor stationary state

are all inhibiting; on the other hand added links with that property

are mostly activating (Fig. 4, right panels). This highlights the

general principle that negative feedback systems are stabilizing

while positive feedback generates instabilities. In summary the

CE fingerprint shows that it is globally hard to improve the CE

by perturbations, nevertheless, we find a few putative link additions

that slightly decrease checkpoint leakage while preserving the

relevant stationary state (Fig. 4B, arrows).

4.3 Phase tightness is robust to link additions

The phase tightness fingerprint (Fig. 5) shares a common property

with CE: it is difficult to improve PT by removing links from

the wild-type model. Namely, there are at most four links that mar-

ginally increase PT beyond the wild-type level (region I in Fig. 5A).

Moreover, link additions are mostly neutral (Fig. 6, Supplementary

Table 2): either close to wild-type or out of regions I and II (Fig. 5B).

This indicates robustness of the model with respect to link additions.

Only a handful (fourteen) of mainly activating additions increases

PT while maintaining relevant stationary states (Fig. 5B right,

arrow). Finally added links that disrupt the biological states are

predominantly activating while necessary links are inhibitory.

4.4 Dynamical analysis provides functional

network annotation

We can now summarize the effects of perturbations on CE and

PT together. First, we find that link removal from the wild-type

model leads to poor cell-cycle models (with large D for�30% of the

38 existing links. Such links are termed necessary (defined in Meth-

ods) and are in majority (9/13) inhibitory. Among the remaining

links we distinguish neutral links that induce only weak modifica-

tions when removed, and stabilizing links as those that contribute

positively either to the CE or the PT (Fig. 6, Supplementary

Table 1). Importantly we find no link that simultaneously

destabilizes CE and PT, indicating consistency in our dynamical

quantification as it would be difficult to understand such a link from

an evolutionary perspective. Thus, considering CE and PT jointly,

we find that all wild-type links are either necessary or neutral.

Second, link additions mimicking gain of function mutations

lead to neutral phenotypes in �50% of all possibilities, while

�25% dramatically disrupt cell-cycle progression and are therefore

termed toxic (c.f. Methods). Among these the large majority

is activating reflecting the general destabilizing potential of

newly created positive feedback circuits. One single added link,

the inhibition of Cdc20_Cdc14 by Swi5, increases both the CE

and PT.

These classifications allow us to re-annotate the original model

(Fig. 7 right). First, none of the mutual activations or inhibitions

(four instances, e.g. Mcm1$ Clb1,2) are necessary, indicating that

the phenotypic relevance of these network motifs might only appear

under more dramatic perturbations. Also, we find no parallel

activating links to be necessary, e.g. the links activating Swi5 or

Sic1. Interestingly both early and late S-phase exits seem to be

crucial as indicated by the double backward inhibition from

Clb1,2 to the S-phase regulators SBF and MBF or the degradation

of Clb5,6 by Cdc20. Finally, 5 out of 13 necessary interactions

are self-degradations probably emphasizing the importance of

gauging overall activity levels in the network, particularly in the

presence of noise when nodes can auto-activate. Three links that

enhance CE or PT are found. First the inhibition of Cdc20_Cdc14

by Swi5 is the only link that contributes positively to both CE

and PT. Inspection of the stationary state for this perturbation

confirms that it is mainly the M-phase checkpoint that becomes

less leaky, as expected from the position of the link in the network.

The two activating links SBF!MBF and Cln1,2!MBF are the

next candidates since they stabilize PT while not changing the

Fig. 6. Link classification according to functional categories. Top: Removed

links are necessary, neutral, stabilizing or destabilizing depending on their

effect onCE, PT or both. In the latter category, all links are either necessary or

neutral. More than two-thirds of the 30% necessary links are inhibitory

(Supplementary Table 1). Bottom: Added links can be toxic, neutral, stabiliz-

ing or destabilizing. Nearly all toxic links are activating (Supplementary

Table 2).
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CE within the simulations errors. Furthermore the hypothetical

induction Cln1,2!MBF reappears as contributing to both CE and

PT when the analysis starts with the original network augmented by

the inhibition of Cdc20_Cdc14 by Swi5. This inhibition can be

interpreted as a refinement of the Cdc20_Cdc14!Swi5 cascade

that brings the induction of Swi5 closer to a toggle switch. Impor-

tantly we verified that all three links are robustly predicted using the

same criteria over a range of noise strength NFP ranging from

0.0005 (this gives a probability of 93% to complete an unperturbed

cell-cycle) to 0.001 (probability for unperturbed cell-cycle is 85%).

4.5 Crosstalk in the G1/S module increases

noise tolerance

The predicted interaction between the SBF and MBF pathway

through SBF!MBF or Cln1,2!MBF is more subtle. For example

this crosstalk consistently reflects well-known and yet mechanisti-

cally elusive redundancy in the SBF and MBF targets (Bean et al.,
2005). Therefore the hypothetical links between the two cascades

induces at the modeling level what is known to occur biologically,

namely that many MBF and SBF (at the G1/S transition) targets

are shared so that both regulators must be disrupted to prevent

S-phase entry (Bean et al., 2005; Koch and Nasmyth, 1994). Our

predictions do not necessarily suggest direct interaction but could

reflect an effective influence through biochemical intermediates.

Figure 7 (right) emphasizes further design principles in this net-

work. For example, many links are doubled, e.g. Cln1,2 blocks

both Sic1 and Cdh1, which makes some pairs of nodes occupy

unusually symmetric positions in the model. Assessing symmetry

by the number of connections which are different between the

original model and a model were a pair of nodes was swapped,

we find that, SBF–MBF and Sic1–Cdh1 are the two most symmetric

pairs, both occurring in the G1/S sub-module. The high degree

of regularity in this portion of the model is emphasized (Fig. 7

left) by the ‘parallel’ SBF and MBF paths. Interestingly the

predicted crosstalk increases the symmetry at the top: the less

symmetrical part of the module; notice that the bottom (the Sic1

and Cdh1 nodes) is already highly symmetrical due to the cross

inhibitions. One possibility is that these parallel paths reflect

duplication events, possibly of pairs or triplets of nodes at once,

in the G1/S module defined here as the Cln3, SBF, MBF, Clb5,6,

Cln1,2, Sic1, Cdh1 proteins.

5 CONCLUSION/OUTLOOK

We studied checkpoint efficiencies in the yeast cell-cycle with a

tractable stochastic discrete dynamical model. By reducing the full

complexity of dynamical landscape to a few relevant variables, we

could screen a large number of in silico generated mutants. We then

tested the dynamical and structural robustness to identify fragile

links in the network, i.e. those that are necessary for proper cell-

cycle progression, as well as putative additions that enhanced the

checkpoint efficiency and phase tightness. Interestingly the number

of stabilizing links was small, suggesting that the wild-type model

has optimality properties by design. This finding may also indicate

that the cell-cycle network has been mapped to sufficient accuracy

to be amenable to the kind of analysis performed. Nevertheless we

found few putative additions suggesting that crosstalk in G1/S mod-

ule can introduce increased dynamical tightness. Our results suggest

that the YCC architecture reflects a dynamical evolutionary process

in which circuits were stabilized in some portions of the network,

notably the G1/S sub-module mainly through redundancy, while

other portions remain more fragile. Besides revealing design

principles in genetic networks we believe that such approaches

will also be valuable to suggest directions for new experimental

investigations.
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Fig. 7. Right: The thick lines show existing necessary connections, i.e. those whose removal dramatically alters the biological response. Dashed links are

hypothetical connections that enhance CE and PT. Predicted connection between the SBF andMBF branches points to crucial redundancy in the targets for these

regulators. Left: Symmetry in the G1/Smodule. This representation of all nodes in the G1/S phases and intra G1/S links emphasizes the redundancy in this sector

of the model. Symmetric coupling to and from the G2/Mmodule is also shown.With the exception of the one inhibitory connection (in pink) the nodes Sic1 and

Cdh1 could be exchangedwithoutmodifying the intraG1/S connectivity structure.Even the couplingof these nodes to theG2/Mmodulewould remain symmetric

except for the input from the Swi5.
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