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ABSTRACT

Motivation: Sensitivity analysis provides key measures that aid in

unraveling the design principles responsible for the robust perfor-

mance of biological networks. Suchmetrics allow researchers to inves-

tigate comprehensively model performance, to develop more realistic

models, and to design informative experiments. However, sensitivity

analysis of oscillatory systems focuses on period and amplitude

characteristics, while biologically relevant effects on phase are

neglected.

Results: Here, we introduce a novel set of phase-based sensitivity

metrics for performance: period, phase, corrected phase and relative

phase. Both state- and phase-based tools are applied to free-running

Drosophila melanogaster and Mus musculus circadian models. Each

metric produces unique sensitivity values used to rank parameters

from least to most sensitive. Similarities among the resulting rank

distributions strongly suggest a conservation of sensitivity with respect

to parameter function and type. A consistent result, for instance, is

that model performance of biological oscillators is more sensitive

to global parameters than local (i.e. circadian specific) parameters.

Discrepancies among these distributions highlight the individual met-

rics’ definition of performance as specific parametric sensitivity values

depend on the defined metric, or output.

Availability: An implementation of the algorithm in MATLAB

(Mathworks, Inc.) is available from the authors.

Contact: frank.doyle@icb.ucsb.edu

Supplementary information: Supplementary Data are available at

Bioinformatics online.

1 INTRODUCTION

Oscillatory processes are omnipresent in nature, comprising the cell

cycle, neuron firing, ecological cycles and others; they govern many

organisms’ behaviors. A well-studied example of a biological oscil-

lator is the circadian clock. The term circa- (about) diem (a day)

describes a biological event that repeats approximately every 24 h.

Circadian rhythms are observed at all cellular levels since oscilla-

tions in enzymes and hormones affect cell function, cell division

and cell growth (Edery, 2000). They serve to impose internal align-

ments between different biochemical and physiological oscillations.

Their ability to anticipate environmental changes enables organisms

to organize their physiology and behavior such that they occur

at biologically advantageous times during the day (Edery,

2000): visual and mental acuity fluctuate, for instance, affecting

complex behaviors.

The concept of robustness relates to how a system maintains

desired performance or functionality, despite internal or environ-

mental perturbations (Stelling et al., 2004b). For oscillatory sys-

tems, specific functions include amplitude, period or phase (the

relative timing with respect to a reference) (Fig. 1). The combina-

tion of robustness and sensitivity allows biological systems to

adapt to their environments. For instance, jet lag occurs as a result

of robust circadian properties that maintain the synchrony between

biological clocks and their previous environment. Jet lag dimin-

ishes, however, due to the system’s sensitivity toward light cues;

a change in light pattern resets the circadian phase. The ability to

maintain robust performance (i.e. circadian rhythms) in the face of

perturbations and uncertainty (e.g. a displacement in longitudinal

location), is a long-recognized and critical property of living

systems.

Local robustness can be assessed through sensitivity analysis

(Stelling et al., 2004b; Ma and Iglesias, 2002), by measuring the

degree to which parametric perturbations dictate specific output

dynamics. To date, performance metrics have only been formulated

as a function of state, period or amplitude behavior. However, phase

is a unique property of many biological oscillators because these

oscillators are able to synchronize (or entrain) their phase to that of

a forcing signal (e.g. light cues), while amplitude or period need not

be affected (Pittendrigh and Daan, 1976a). Therefore, phase-based

sensitivity analysis may provide a more discerning assessment of

the system as it capitalizes on one of the more prominent features

in biology, phase resetting (Winfree, 2001).

Although most methodologies of sensitivity analysis investigate

a system’s state (Varma et al., 1999), phase has been analyzed as

a key performance attribute in few studies. Kramer et al. use

isochrons (collections of points that evolve to the same position

on the limit cycle) to measures phase advances/delays with respect

to parametric perturbation (Kramer et al., 1984), reflecting infor-

mation contained in existing phase response curves (Daan and

Pittendrigh, 1976; Winfree, 2001). Similarly, Rand et al. make

use of infinitesimal response curves to investigate phase dynamics

as a function of independent finite length parametric perturbations

(Rand et al., 2004). In each case, the respective output, or perfor-

mance measure, is coupled: by quantifying phase as a single

independent measure, the methods fail to isolate it from period

dynamics. Parametric perturbations, however, often influence�To whom correspondence should be addressed.
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amplitude, period and phase simultaneously (Fig. 1), which requires

new phase-based performance metrics.

2 APPROACH

Oscillatory systems exhibit a variety of characteristic output behav-

ior, some of which include period, shape and phase. We investigated

these output measures, or performance attributes, via parametric

sensitivity analysis. A Drosophila melanogaster 10-state mathe-

matical model (Leloup and Goldbeter, 1998) served to compare

sensitivity distributions between performance metrics (Fig. 2).

This moderately complex system consists of two coupled negative

feedback loops that model the transcription, translation, phospho-

rylation and effective delays associated with period and timeless

genes, and their protein counterparts (per and tim, and PER and

TIM, respectively). While the model does not account for the com-

plexity of the real network that, for instance, includes additional

positive feedback loops (Smolen et al., 2001; Cyran et al., 2003),
it has been experimentally validated (Leloup and Goldbeter, 1998)

and is widely employed as a reference model (Stelling et al., 2004b;
Gonze et al., 2002). Here, we focused on the development of phase-

based methodologies to establish new metrics for investigating

robust and sensitive properties that highlight specific network com-

ponents used in maintaining system behavior. To confirm that the

results can be generalized to other models, we included a 16-state

Mus musculus model (Leloup and Goldbeter, 2003) in our analysis.

3 METHODS

In order to generalize the application of sensitivity analysis, we treat the

circadian system as a set of nonlinear ordinary differential equations (ODEs)

such that x(t) defines the m-length state vector, r defines the n-length time-

invariant parameter vector and f (x(t), r) defines the m-length system

dynamics (see Supplementary material):

_xxðtÞ ¼ fðxðtÞ‚rÞ‚ xðtÞ 2 Rm‚ r 2 Rn

xðt0Þ ¼ x0:
ð1Þ

Sensitivity measures describe a change in output with respect to a change

in input. Since biological circuits must function under a range of different

parameters (Wagner, 2005), we regard the input as a parameter and the

output as system performance.

We investigate performance by means of characteristic oscillatory output

measures (Fig. 1) (Dunlap et al., 2004). The period of oscillation reflects

the time required for a reference point in successive waves to pass a fixed

point. The shape of an oscillatory system captures dynamic state behavior

values typically observed by analyzing perturbation effects on the limit

cycle. Shape sensitivity measures include amplitude sensitivity as it relates

perturbed state maximum/minimum values to their nominal values. Phase

dynamics are calculated via an angle (radian) or time (hour) framework. As

an angular measure, certain state dynamics are projected onto a 2D space

and investigated by means of the system’s limit cycle (Fig. 3a). While the

real-time state vector cycles around the asymptotically stable limit cycle, an

angular relationship with respect to a fixed reference vector is established.

These angular measures may define either an advance or delay of phase

relative to the nominal trajectory (Fig. 1), with a delay defined as a shifting

of the cycle to a later time.

3.1 State-based sensitivity metrics

Parametric state sensitivity is captured in an m by n matrix consisting of

individual state performance values with respect to isolated parametric per-

turbations. In the study we employ the direct method (Varma et al., 1999;

Khalil, 2002) as a means to determine exact parametric state sensitivity

measures, SijðtÞ ¼ dxiðtÞ
drj

. This approach relies on the continuity of f(x(t), r)
with respect to the parameter vector, r. Applying the chain rule results in

partial derivatives of the function with respect to states and parameters pro-

ducing an ordinary differential equation of sensitivity dynamics:

_SSðtÞ ¼ @ fðxðtÞ‚rÞ
@x

· SðtÞ þ @ fðxðtÞ‚rÞ
@r

: ð2Þ

The initial conditions for the sensitivities are zero unless they rely on system

parameters.

Coefficients of raw state sensitivity, SðtÞ ¼ dxðtÞ
dr

, rely on multiple coupled

outputs (such as period and phase) and grow unbounded in time for para-

meters whose period sensitivities are non-zero (Larter, 1983; Tomovic and

Vukobratovic, 1972; Zak et al., 2005). The secular term is due to compu-

tation of sensitivities involving a non-uniformly valid expansion of a periodic

system (Larter, 1983). Tomovic and Vukobratovic (1972) demonstrate that
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Fig. 1. Characteristics of oscillators. A 15% parametric change in an asymp-

totically stable limit cycle oscillator forces the amplitude and period of

oscillation to either increase or decrease relative to nominal (upper panel),

and also affects the phase (lower panel). If the peak of the perturbed trajectory

leads (lags) that of the nominal, there is a phase advance (delay).

Fig. 2. The 10-state circadian model (adapted from Leloup and Goldbeter,

1998). Auto-inhibition of per and tim gene expression occurs via the nuclear

PER/TIM complex. per and tim genes are transcribed in the nucleus, after

which their mRNAs are transported into the cytosol where they undergo

protein synthesis. The newly formed PER and TIM proteins are phosphory-

lated. The doubly phosphorylated proteins form a PER/TIM complex that

enters the nucleus and closes the feedback loop.
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state sensitivity, evaluated at the constant nominal period, t, provides a spe-

cific measure corresponding to limit cycle behavior. This measure is unbi-

ased to changes in the period/frequency of oscillation. The resulting m by n

matrix is referred to as the cleaned-out or shape sensitivity measure,

ScðtÞ ¼ @xðtÞ
@r

� �
t . S

c(t) is periodic in time and describes how parametric

perturbations affect the shape of state trajectories (Larter, 1983). In its

raw form, state sensitivity for oscillatory systems may be decomposed

into a combination of shape and period sensitivity measures (Tomovic

and Vukobratovic, 1972):

SðtÞ ¼ ScðtÞ � t

t
fðxðtÞ‚rÞ dt

dr
: ð3Þ

This decomposition of raw state sensitivity highlights its linear time

growth, t
t
, while isolating period sensitivity, St ¼ dt

dr
. The decomposition

is generally accomplished by calculating state and period sensitivities, and

then solving for the cleaned-out shape sensitivity matrix.

We employ the method proposed by Zak et al. (2005) to determine

period sensitivity, St, by making use of the decomposition (Equation (3))

and evaluating state sensitivities at a large time, t1� t. At this time, the

second term on the right-hand side of Equation (3) dominates the

cleaned-out sensitivity matrix. Singular value decomposition of state

sensitivity produces S(t1) ¼ USVT, where S is an m by n diagonal

matrix of non-negative singular values, s, and matrices U and V contain

the eigenvectors of SS
T and S

T
S, respectively. Hence, period sensitivity

of any given state may be approximated by:

St � ±
s1t

k fðxðt1Þ‚rÞ kt1
v1‚ ð4Þ

where s1 is the largest singular value in S, kf (x(t1), r)k is the vector norm

of the state matrix evaluated at time t1, and v1 is the first column vector of V.

This approximation holds true at any large times t� t, when the system is

non-zero, and when the period of oscillation is sensitive to at least one

parameter (Zak et al., 2005).
Amplitude sensitivity, SL, describes how maximum state values vary due

to independent parametric perturbations. As discussed, cleaned-out sensi-

tivity defines how parametric perturbations affect the shape of state trajec-

tories at every time in the cycle; at peak concentration times this measure

relates directly to the state’s maximum concentrations. Thus, we calculated

amplitude sensitivity values from shape sensitivity by evaluating the

time-dependent measure at peak concentrations times, tpeak:

SL ¼ ScðtÞjtpeak : ð5Þ

3.2 Phase-based sensitivity metrics

In this work, we examine both standard (raw) phase, and decoupled

(corrected) phase as performance measures, in addition to examining

phase-based period and relative phase dynamics. Numerical methods

are to approximate the exact solution of phase. We extract radian-

based phase angles, �(t, r), from the system’s limit cycle (Fig. 3a)

using the cosine rule (Strang, 1988). Resulting phase dynamics reflect

the oscillator’s real-time position, or concentration, with respect to a sta-

tic reference, r:

cosð�ðt‚rÞÞ ¼ xðt‚rÞT · r
kxðt‚rÞk · krk : ð6Þ

Phase measures are recorded under varying parameter sets, � (t, ~rr)

where ~rr indicates measurements with respect to a perturbation of mag-

nitude d affecting a single parameter, rj. This perturbation changes the

nominal parameter vector from r to a perturbed parameter vector, ~rr:

~rr ¼ r þ d · ej 8 j 2 ½1‚n�: ð7Þ
The collected phase trajectories capture the oscillator’s position and map

them onto nominal time (Fig. 3b). If the perturbation strength and length

are the same, the information contained in these trajectories is analogous to

that contained in phase transition curves (Johnson, 1999).

Direct evaluation of phase trajectories (Fig. 3b) yields two types of

sensitivity measures: period and phase because the change in period

(or period sensitivity) is merely an accumulation in the change in

phase (or phase sensitivity) evaluated over an entire cycle. In the case

of period sensitivity, phase trajectories are evaluated at a 2p · L-radian

interval where the integer interval, L, is chosen arbitrarily. The difference

between the perturbed 2p · L -radian crossing time, ~kk, and the nominal

2p · L-radian crossing time, k, yields the system’s periodic performance.

A normalized time difference between perturbed and nominal phase tra-

jectories defines the system’s period sensitivity, S�t : a series of measure-

ments denoting the quantitative change in period with respect to a change

in the jth parameter,

S
�t
j ¼ 1

L
·
~kk�k

d · rj

����
�ðk‚rÞ¼�ð~kk‚ ~rrÞ¼2p · L

8 j 2 ½1‚n�‚ L 2 ½1‚1Þ: ð8Þ

In the case of strict phase sensitivity, we evaluate phase trajectories at

specific times, t ¼ tk. The radian phase difference between perturbed and

nominal trajectories describes the raw phase sensitivity, S�: a series of

measures reflecting the induced change in phase with respect to a change

in the jth parameter tk-hours after the perturbation,

 

 

 

(a) (b) (c)

Fig. 3. Time-dependent phase dynamics. (a) Illustrates how real-time phase dynamics are captured in a 2D limit cycle. Phase is the radian-based measure �(t, r)
that describes the angular relationship between the state vector, x(t, r), and some predetermined reference, r. Phase measures are recorded as a function of

time under various parameter sets. (b) Illustrates the coupling of period and phase as trajectories diverge in time. (c) Depicts a decoupled measure of phase

behavior as circadian phase dynamics are normalized with respect to their perturbation-induced periods.
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S�j ðtkÞ ¼
�ðt‚~rrÞ� �ðt‚rÞ

d · rj

����
t¼tk

8 j 2 ½1‚n�: ð9Þ

Just as state sensitivity diverges over time, phase sensitivity grows

unbounded due to the non-uniform expansion of a periodic system. To correct

for the integrated response of perturbation effects (in this case, the coupling

of period and phase), each phase trajectory is normalized with respect to the

period of the system after parametric perturbation, ~tt : dividing each time

series by ~tt decouples the system’s phase from its period. As a result, nor-

malized datasets begin and end at the same relative time points (0 and 100%

of their respective cycles). These modified datasets allow for a comparison

between nominal and perturbed phase at every point in the cycle (Fig. 3c).

This corrected phase sensitivity assumes a linear scaling of raw phase mea-

sures resulting in a time-dependent performance quantity that identifies

specific points of the cycle most susceptible to uncertainty:

S�̂�j ðtÞ ¼
�ðt/~tt‚~rrÞ � �ðt/t‚rÞ

d · rj
8 j 2 ½1‚n�: ð10Þ

Phase-based period, phase and corrected phase sensitivity analysis exam-

ine the biological network relative to a static reference. In some cases,

a relative analysis that studies relationships within the perturbed network

may be more useful. The timing effects relating transcription, translation,

phosphorylation, and transport are governed by global cellular processes.

Variation of these specific time intervals as a result of parameter manipu-

lation indicates a degree of sensitivity. Relative sensitivity, Sf, investigates

the time interval relating the hour-difference between the occurrence of

particular events; for instance, the time interval between peak mRNA

concentrations and their corresponding protein concentrations. This time

interval, f(x(t), r), is a function of the system’s state and parameter vectors.

It explores how a system’s individual components change relative to one

another due to parametric perturbation:

Sfj ¼ fðxðtÞ‚~rrÞ � fðxðtÞ‚rÞ
d · rj

8 j 2 ½1‚n�: ð11Þ

3.3 Principles of comparison

To ensure an accurate comparison of these sensitivity distributions, several

standards were applied. Time-varying metrics—state, shape, phase and

corrected phase—were observedat 6, 12, 18 and24hof their respective nominal

cycles (see Supplementary material in excel spreadsheet). Unless otherwise

noted, we present the 18 h dataset. For the Drosophila model, phase-based

analysis used the per mRNA and PER/TIM nuclear protein complex concen-

trations, respectively to capture circadian phase dynamics; for other combina-

tions of states, and for the mammalian model, we refer to the Supplementary

material. To further facilitate metric comparison, state, shape and amplitude

performancemeasures refer only to permRNAconcentrations. As a result, their

respective sensitivity distributions were biased toward per gene dynamics.

4 RESULTS

Parametric sensitivity analysis assigns absolute performance mea-

sures to each parameter. The greater the absolute sensitivity value,

the more susceptible the system is to an isolated parametric per-

turbation. Plotting these sensitivities against one another enables the

assessment of metric properties via correlation plots. Two metrics

yield strongly similar performance distributions if their sensitivity

measures (suitably normalized) align along a 45 degree line. State-

and phase-based period sensitivity metrics produced such high-

correlation (Fig. 4a), validating the accuracy of the proposed

numerical phase methods.

In an earlier publication, we introduced parameter ranking as

a means of comparing results between different networks and/or

analyses (Stelling et al., 2004b) where parameters are assigned

integer numbers, or ranks, reflecting their absolute sensitivity distri-

bution. Parameters are then plotted against one another from least to

most sensitive; those nearest the origin are least sensitive. A correla-

tion diagram of the two period sensitivity rank distributions shows

minor deviations due to the nature of parameter ranking (refer to

Supplementary material). Symmetry of theDrosophilamodel forces

similar parameters (such as per and tim transcription, vs P,T) to have
equal sensitivity values. Meanwhile, parameters with effectively

equal sensitivities are assigned unique integer ranks, causing an arti-

ficial discrepancy between the two parameters. Note that metric

assessment based on parameter ordering is not absolute, as no single

rank, state or time point captures the complete system dynamics.

4.1 Parameter classification

Sensitivity measures reveal a system’s susceptibility to changes in

a particular set of parameters, as mild perturbations may signifi-

cantly alter performance. Such findings highlight biochemical

processes that impact performance. To further explore this phenom-

enon, we grouped model parameters according to their biochemical

process—auto-inhibiting gene expression, transcription, transla-

tion, degradation, association/disassociation, phosphorylation/

dephosphorylation and transport (for details on the classification

of model parameters, see the Supplementary material of Stelling

et al., 2004b). For Drosophila, the analysis identified phosphory-

lation and dephosphorylation rates as insensitive parameters when

compared to rates of degradation, transport, translation and tran-

scription (Figs 4a–c). Parameters associated with per gene and

protein dynamics were highlighted in red, while those associated

with tim gene and protein dynamics were highlighted in green. Each

metric maintained a similar distribution: degradation and transport

were consistently more sensitive from one performance measure

to the next, while (de)phosphorylation rates were consistently less

sensitive. There exists a conservation of sensitivity throughout the

network regardless of the employed performance criterion.

Figures 4dande (upper subplots) provide amore complete descrip-

tionofparameter sensitivitywith respect to function for theflyand the

mammalian model, respectively. The color of each cell reflects the

average sensitivity rank associated with the parametric function for

each performance measure. The color bar was indexed according to

the range of output sensitivities within each plot, providing distinct

shades or measures of sensitivity. The black horizontal lines serve to

visually separate functional groups, while the vertical height of each

group reflects the abundance of parameters in a group relative to the

totalnumberofmodelparameters. InDrosophila therewere8parame-

ters associated with phosphorylation, for example, 2 associated with

transcription and only 1 associated with unspecified degradation.

Phosphorylation and dephosphorylation encompassed much of the

parameter space as they represented 16 of the 37 parameters.

4.2 Global versus local parameters

The investigated performance metrics depict classes of sensitivity

that associate with parameter function, proving a certain conser-

vation of robustness for specific biochemical processes. A similar

sensitivity distribution was found when parameters were separated

into three types: global, mixed and local (Stelling et al., 2004b).
Global parameters are involved in core cellular reactions non-

specific to the circadian rhythm; they encompass properties consis-

tent with the entirety of the cellular network. Local parameters are

primarily attributed to the circadian system; their processes and/or

Quantitative performance metrics
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elements are not shared with many other cellular circuits. Global

parameters include transcription rates, various mRNA and protein

degradation rates, and translation rates, all of which were consis-

tently found in the first (upper right) quadrant of Figures 4a–c.

Local parameters, including protein phosphorylation and dephos-

phorylation, were consistently in the lower left (less sensitive)

corner (see Stelling et al., 2004b) for details of parameter

classification). The clustering of parameter sensitivities into global

versus local groups was coherent in all sensitivity metrics. Perfor-

mance was consistently more sensitive to perturbations in global

and mixed parameters than local parameters. Figures 4d and e

(lower subplots) emphasize this conservation of sensitivity apparent

in both models by assigning a color reflective of the average sen-

sitivity ranking within each parameter type.

Our results demonstrated that every defined performancemetric was

more sensitive to perturbations involving global andmixed parameters

than it was to perturbations involving local parameters. Grouping

parametric sensitivity based on parameter type provided a more

consistent and distinct distribution of sensitivity measures among vari-

ous metrics than the grouping of sensitivity by function. This outcome

agreed with a previous study suggesting that circadian performance is

greatly affected by changes in global parameters and less susceptible to

changes in local parameters (Stelling et al., 2004a,b).

4.3 Specific performance correlations

Similarities among correlation diagrams related overall performance

to parameter function and type. Differences between correlation

diagrams related individual performance to specific biochemical

processes (Figs 4a–c). Note, that the significance of these relations

cannot be stated in a rigorous statistical sense because for each

combination of metric and parameter only one data point are

available. Experimental observations, however, support the bias

of certain outputmeasures towardparticularnetworksorbiochemical

processes. For instance, Allada et al. discussed the relevance of the

Clk gene in Drosophila (not included in our model) in maintaining

circadian functionality since its phase and amplitude perturbation

 

  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 4. Metric evaluation. (a–c) Parametric sensitivity metrics ordered from least to greatest absolute value for theDrosophilamodel: (a) state- and phase-based

period sensitivity, (b) corrected phase (decoupled angular phase trajectories) and relative phase (time interval between peak permRNA and nuclear PER/TIM

protein concentrations) sensitivity ranks and (c) amplitude-based and state-based metrics. Spearman rank correlation coefficients for these pairs of metrics are

1.00, 0.64 and 0.85, respectively. Legends describe the parameters’ particular biological processes as the shading of each data point describes their type: global

(open), mixed (gray) and local (black) parameters. Data points outlined in red reflect per gene dynamics, and those in green reflect tim gene dynamics. (d and e)

Color-coded average sensitivities (values are scaled between 10�4 and 1) among parameter function (upper subplots) and parameter type (lower subplots) for

eachmetric in the fly (d) and themammalian (e) model. See the Supplementarymaterial for alternate correlation diagrams and ranking plots. A colour version of

this figure is available as supplementary data.
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(the timing and concentration levels ofClk oscillation) did not cause
large changes in circadian periodicity (Allada et al., 2003).
Periodicity was consistently more sensitive to PER and TIM

protein degradation rates (vdP,T), and less sensitive to their auto-

inhibiting of gene expression (KIP,T) and transcription rates (vsP,T)
when compared to other metric rank distributions (see Supplemen-

tary material). Uncorrected phase rejected changes in protein

degradation rates (vdP,T) as compared to other metrics and was more

receptive to disturbances in translation (ksP,T) and PER/TIM com-

plex degradation rates (kdC,N). States were more responsive to

changes in protein degradation (KdP,T) and mRNA degradation

rates (vmP,T), and less responsive to translation rates (ks P,T) relative
to other performance measures.

Figure 4b establishes corrected phase performance as being more

susceptible to parametric changes involving transcription and auto-

inhibition rates, and less susceptible to parametric changes invol-

ving (dis)association and mixed degradation rates. The corrected

phase-based method ranked these parameters with lower order (or

sensitivity) when compared to the relative phase method. These

conclusions, however, were not apparent when comparing corrected

phase results to other metrics, or comparing them at different times.

Therefore, time-dependent metrics, such as shape and corrected

phase sensitivity may need to be evaluated over an entire cycle

to justify such generalizations.

The relative phase between peak concentrations of per mRNA

and nuclear PER/TIM protein complex appeared to be most

sensitive to mixed protein degradation (KdP,T) and protein complex

degradation rates (kdC,N); and least sensitive to TIM transcription

(vsT), timmRNAdegradation (vmT), and auto-inhibition (KIP,T) rates.

By definition, the metric was biased toward per gene dynamics.

Changes in the tim gene did not readily affect the phase function. A

change in PER or TIM protein, however, directly affected PER/TIM

association, thereby amplifying relative phase susceptibility to

protein degradation rates.

Studies by Meyer et al. (2006) support the need for relative phase
analysis: evidence supporting the disassociation of PER/TIM in the

cytoplasm and their independent travel into the nucleus highlights

a key interval of time. In any given cell, nuclear accumulation rates

were different and independent for each protein. Therefore, PER

and TIM proteins appeared to act as constituents of an intracellular

interval timer. Similarly, transcriptional regulation of wc-1 in

Neurospora was shown to be responsible for the phase of the

clock (Kaldi et al., 2006). Relative phase sensitivity analysis is

directly applicable to the analysis of such phenomena.

4.4 Similarity of performance metrics

Interpretation of greater performance based on metric similarity

may provide a top-down assessment of cellular topology as similar

performance criteria may be structurally related. We expect certain

performance criteria to be strongly correlated, and others, (such as

amplitude and relative phase) to be more distant. A dendrogram

using the Spearman rank correlation coefficient as a distance mea-

sure condenses the information captured in the correlation diagrams

(Fig. 5). For both models, we find a clear separation of raw or

corrected phase and period sensitivity, respectively (see also

Figs 4d–e), which is robust even when only subsets of parameters

are considered (see Supplementary material for details). This con-

servation of the distance across models underlines the significance

of analyzing phase sensitivity for full characterization of the

performance, which is enabled by the methods presented in this

paper. Consequently, experimental design should consider consis-

tently distant measures, such as period and phase sensitivity, for the

comprehensive characterization of biological oscillators because

closely related measures do not provide new information.

For some states, relative phase and period dynamics are very

similar. Relative phase examines the time interval between different

cellular components while period measures the time interval

between events of the same component in successive intervals.

In theory, a parametric perturbation may not change the periodicity

of the system while it may advance an event in one state and delay

an event in another. Our results, however, suggest that the relative

timing between certain states is critical for periodicity (see below

and Supplementary material). Other correlations, such as the

similarity and dissimilarity between corrected phase and phase

(fly versus mammalian, respectively), may be specific to a biological

model or due to bias/errors. Based on our analysis of other models

for Drosophila (Stelling et al., 2004b) and for mammalian circadian

clocks (unpublished data), we favor the former possibility. In prin-

ciple, such specificity is not surprising since each of the metrics is

related to a particular definition of robustness. Structural features

point to the possibility of unraveling nature’s design principles as

each biological output is not tied to a specific metric, but to the

performance of the organism.

Many biological circuits are multi-functional, but their analysis

often focuses on few functions. As we prove in this study, the

robustness of one function (or performance metric) does not imply

a robustness of other functions, though it may allow the network

to acquire greater functionality (Wagner, 2005). State-based metrics

examine how parameters affect concentration values while phase-

based metrics investigate the frequency and speed of concentrations

relative to one another as they travel about their asymptotically

stable limit cycle. Consequently, there are few instances in which

any two metrics are strongly correlated. In fact, weak correlation

among metrics is expected since each metric provides a unique

measure of performance that relies on the defined output.

These different analyses of clock functions reveal details on the

nature of the intracellular timer. For instance, inDrosophila, relative
phase of per mRNA and peak PER/TIM nuclear protein concentra-

tions is more sensitive to changes in protein degradation than to

changes in tim transcription. Interestingly, relative phase correlates

with period sensitivity for those pairs of states involved in estab-

lishing time delays (i.e. cascaded (de)phosphorylation) in the nega-

tive feedback loops required for oscillations (Supplementary Fig. 4).

This conclusion derives from a similarity analysis of three defini-

tions of relative phase: the time interval between peak PER protein

and phosphorylated PER protein concentrations, peak per mRNA

and nuclear PER/TIM protein concentrations and peak doubly phos-

phorylated PER protein and PER/TIM protein concentrations. The

investigation of relative phase between PER and TIM nuclear accu-

mulation may even better address the existence and performance of

such an intracellular timer (Meyer et al., 2006). Additionally, it may

better focus on entrainment phenomena associated with non-

parametric models through use of skeletal photoperiodism, by

examining the time interval between the onset of light and circadian

activity (Pittendrigh and Daan, 1976b).

Performance metrics may also be used to highlight bias toward

particular network functions. Two distinct perceptions of network

performance arise from enhancing the Drosophila model through

Quantitative performance metrics
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addition of genes, such as Clock. Allada et al. investigate

performance with respect to individual feedback loops: they show

that the PER/TIM protein complex loop regulates period and phase

dynamics, while the CLK/CYC protein complex loop (that is not

included in our model) regulates amplitude, but not periodicity.

5 CONCLUSION

The increasing complexity of biological models makes it difficult to

untangle the roles of different mechanisms in determining rhythmic

period, phase and amplitude (Allada et al., 2003). With molecular

detail emerging on connected oscillators, such as the cell cycle

and the circadian clock (Pregueiro et al., 2006), a quantitative

and systematic framework for the analysis of increasingly complex

mathematical models becomes mandatory. Here, we present such

a framework by introducing four unique metrics that use phase

dynamics as their measure of performance: period, phase corrected

phase and relative phase sensitivity. These metrics and their calcu-

lation are general and not confined to the models investigated in this

study; however, they rely on the existence of regular limit cycles

and monotonic phase dynamics (Fig. 3b).

State- and phase-based analysis yield metric-specific sensitivity

distributions, suggesting that robust performance is a function of

the output measure for a given metric. However, there exists a con-

servation of sensitivity among parameter function and type; this

consistency supports general theories relating performance more

to system structure than to fine-tuning of parameters (Stelling

et al., 2004b). Such findings motivate further investigation of

phase-based sensitivity to better understand the delegation of

performance to specific network components. As our methods are

generic and provide parametric sensitivity values for a variety of

performance measures, the identification of similar architectures in

different biological contexts could provide a basis to assume similar

functional properties without the need to characterize the system

experimentally (Guantes and Poyatos, 2006). Hence, through use of

performance metrics, we are able to identify critical control mecha-

nisms and to better address nature’s design principles.
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