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ABSTRACT

Motivation: In a nucleotide or amino acid sequence, not all sites
evolve at the same rate, due to differing selective constraints at
each site. Currently in computational molecular evolution, models
incorporating rate heterogeneity always share two assumptions.
First, the rate of evolution at each site is assumed to be independent
of every other site. Second, the values of these rates are assumed to
be drawn from a known prior distribution. Although often assumed
to be small, the actual effect of these assumptions has not been
previously quantified in the literature.
Results: Herein we describe an algorithm to simultaneously infer the
set of n−1 relative rates that parameterize the likelihood of an n-site
alignment. Unlike previous work (a) these relative rates are completely
identifiable and distinct from the branch-length parameters, and (b) a
far more general class of rate priors can be used, and their effects
quantified. Although described in a Bayesian framework, we discuss
a future maximum likelihood extension.
Conclusions: Using both synthetic data and alignments from the
Myc, Max and p53 protein families, we find that inferring relative
rather than absolute rates has several advantages. First, both
empirical likelihoods and Bayes factors show strong preference for
the relative-rate model, with a mean �lnP = −0.458 per alignment
site. Second, the computed likelihoods and Bayes factors were
essentially independent of the relative-rate prior, indicating that
good estimates of the posterior rate distribution are not required
a priori. Third, a novel finding is that rates can be accurately inferred
even when up to ≈4 substitutions per site have occurred. Thus
biologically relevant putative hypervariable sites can be identified as
easily as conserved sites. Lastly, our model treats rates and tree
branch-lengths as completely identifiable, allowing for the first time
coherent simultaneous inference of branch-lengths and site-specific
evolutionary rates.
Availability: Source code for the utility described is available under
a BSD-style license at http://www.fernandes.org/txp/article/9/site-
specific-relative-evolutionary-rates.
Contact: andrew@fernandes.org
Supplementary information: Supplementary data is available at
Bioinformatics online.
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1 BACKGROUND
In a nucleotide or amino acid sequence, the rate of evolution at
a given site is expected to vary according to the specific selective
constraints at that site. Thus we expect a priori that not all sites evolve
at the same rate (Corbin and Uzzell, 1970). Sites that are under
strong selective constraints should be relatively highly conserved,
while sites under lesser selective pressure should be more variable.
In essence, the observed evolutionary rate corresponds to the level
of purifying selection at that site (Kimura, 1983). We know that, in a
phylogenetic analysis, not accounting for this rate heterogeneity can
yield misleading results (Felsenstein, 2001; Yang, 1994, 1996; Yang
and Kumar, 1996). Therefore, correctly modeling rate heterogeneity
is important both for correct phylogenetic reconstruction and the
discrimination of conserved from non-conserved sites.

Traditionally, given data D consisting of a fixed n-site alignment
and tree topology, the likelihood of observing D given rates r =
[r1,r2,...,rn] and branch-lengths t =[t1,t2,...,tm] is

P
(
D|r,t)=

n∏
i=1

Pi
(
rit

)
, (1)

where Pi denotes the likelihood of site i. In this model the likelihood
of each site is independent of every other site. Furthermore, the set
of rates r and branch-lengths t are not completely identifiable for

any dataset because Pi
(
rit

)=Pi

(
ri s−1 ·st

)
for any s>0. In other

words, halving the rates and doubling the branch-lengths yields the
same likelihood.

One of the first attempts to use one rate per site to estimate
the overall likelihood was made by Swofford et al. (1996),
using maximum likelihood, in the DNArates program. However,
Felsenstein (2001, 2004) subsequently cautioned that the ‘one rate-
parameter per site’ model may lead to an ill-conditioned maximum
likelihood model since the number of model parameters increases
linearly with the number of alignment sites.

To regularize the likelihood calculation (1), Uzzell and Corbin
(1971), followed by Nei et al. (1976), assumed that rather than
being fixed, each rate was drawn from a known prior distribution.
Each rate was further assumed independent of every other rate. The
likelihood of each site could then be integrated independently over
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all possible rates. More formally, they calculated

P
(
D|r,t)=

n∏
i=1

[∫
R

+ f
(
ri

)
Pi

(
rit

)
dri

]
, (2)

where f
(
ri

)
denotes the density of the rate prior and R+ denotes

the non-negative reals. The unit mean gamma distribution was
historically used for f because it often yields analytically tractable
models. For calculations that are less amenable to analytic results,
the discrete gamma approximation, first popularized by Yang (1994),
has become the de facto standard rate prior in molecular evolution.

Unfortunately, the assumptions inherent in (2) result in two
undesirable, yet unavoidable, consequences. First, enforcing a unit
mean constraint on the prior f does not constrain the posterior
rates in any useful manner, as can be seen in sample calculations
from recent versions of phyml (Guindon and Gascuel, 2003) or
mrbayes (Ronquist and Huelsenbeck, 2003). Thus rates and branch
lengths remain mathematically unidentifiable in this model. The
rate4site program by Pupko et al. (2002) takes the re-normalization
approach suggested by Meyer and von Haeseler (2003) whereby
rates and branch lengths are estimated by alternately inferring rates
given the lengths, then the lengths given the rates. At each step,
the rates are re-normalized to have a unit mean. The consequences
of inferring rates (and phylogeny) without rigorously dealing with
rate/time non-identifiability has not been quantified or formally
investigated. A more detailed discussion of this issue can be found
in the Supplementary Material.

The second undesirable consequence inherent in (2) is that the
actual distribution f must be either specified or estimated. Most
frequently, a unit-mean gamma distribution is assumed, and the
shape parameter α of that distribution is estimated. Several attempts
at addressing the shortcomings of the unit-mean gamma rate prior
have been undertaken, most notably with Gu et al. (1995) who
augmented the gamma distribution with an estimated proportion of
invariant sites (where ri =0). Mayrose et al. (2005a) advocated using
a mixture of gamma distributions, while Pond and Frost (2005) used
more general parameterized distributions.

Again, the consequences of inferring rates (and phylogeny) under
the influence of these priors is not known. For instance, we may
compare a model using one gamma prior with another using a
two-gamma mixture. If the two-gamma mixture does not yield a
significantly better model, we may erroneously conclude that the
single-gamma model is a ‘good’ approximation of the ‘true’ set of
rates. In fact, this observation only supports the conclusion that under
the class of n-gamma mixture priors, n=1 is sufficient. For instance,
since all gamma distributions have exponentially decreasing tails,
this class of priors does not include models with heavy tails. To
properly assess the effect of the prior, the class of rate priors should
ideally be as large (in some sense) as possible.

In order to quantify the impact of (2) on rate inference, we inferred
site-specific rates for both synthetic data and alignments from the
Myc, Max and p53 protein families. Specifically, we infer rates r =
[r1,r2,...,rn] under the constraint that

1

n

n∑
i=1

ri =1. (3)

Computationally, (3) is much more stringent than the constraint
that the distribution f in (2) have unit mean. The constraint lets

us model the n rates via n−1 relative-rate parameters. Relative
rates are advantageous compared to absolute rates because relative
rates are completely identifiable from branch lengths in likelihood
calculations. This advantage comes at a price, however, in that it
becomes non-trivial to integrate likelihoods over the space of all
rates, subject to constraint (3).

As written, constraint (3) implies that rates are modeled as fixed-
effects, and not the random-effects model more commonly assumed
by traditional maximum likelihood models. If a random-effects is
preferred, (3) could be re-written to imply that

∑
i ri ∼M(µ) for

some distribution M with mean rate µ. In doing so, however, we
lose identifiability between rates and branch-lengths, and drastically
reduce stability and convergence rate of our algorithm (data not
shown).

2 RESULTS AND DISCUSSION
A Markov Chain Monte Carlo (MCMC) approach was used to
integrate (1) under constraint (3) over all possible relative rates. Both
simulated and real data were used to compare our relative-rate model
with the best unit-mean gamma, independent-rate model.ABayesian
framework was adopted for three reasons. First, previous works
suggested that empirical Bayesian methods were significantly better
than likelihood methods when inferring site-specific rates (Mayrose
et al., 2004). Second, unlike the independent-rate assumption,
constraint (3) precludes the use of simplifying numeric approaches
such as Gaussian quadrature (Fernandes and Atchley, 2006) to
integrate over all possible rates. Lastly, since the relative-rate model
is not nested in the absolute-rate model, comparing their model
fits via likelihood is not trivial. Instead, Bayes factors (Kass and
Raftery, 1995), which are implicitly correct for differences in
parameter dimension, are used for comparison. Throughout, we
have assumed without loss of generality that branch lengths are
fixed while inferring rates. Since rates and branch lengths are
completely independent in our model, it is implicit that lengths could
be simultaneously inferred in parallel with rates.

2.1 Rate priors
Our method is based on Bayesian techniques and thus requires
specification of a relative-rate prior distribution; we assume
implicitly that parameters must have well-defined posterior sampling
distributions. As we will discuss, this prior is markedly different
than those used for absolute-rate models. Furthermore, a rate prior
is also required for maximum likelihood inference. To see why,
recall that as long as a site is not completely conserved, Pi

(
rit

)
approaches a positive, non-zero constant as rit →∞. Thus if f (ri)
in (2) was constant, the integral of their product would be infinite.
In fact, the likelihood Pi

(
rit

)
is, in general, not a density with

respect to ri. Therefore, even in a maximum likelihood setting a
rate prior is required to regularize the likelihood function. Non-
integrable likelihood functions can sometimes be regularized with
straightforward methods, such as in the case of Gaussian mixture
models (Wasserman, 2000). Unfortunately, under the independent-
rates assumption, such regularizations are not possible. Furthermore,
it is difficult to quantify the precise effect that a family of priors will
have on the final inference. For more discussion of this topic, see
the Supplementary Material.
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Often the required regularization constraint is ‘hidden’ within a
method. For example, a well known early study by Kelly and Rice
(1996) describes a purportedly ‘priorless’ rate inference procedure.
In reality, their posterior rate distribution is estimated by using the
moment generating function, which in itself is estimated through the
eigen values of the infinitesimal rate (mutation) matrix. However,
since the rate matrix itself is constrained to have have a unit-
mean rate, the moments of their posterior rate distribution are
automatically implicitly constrained, analogously to constraint (3).

Although seemingly a subtle change, the constraint (3) changes
the situation significantly. Rather than integrating over the infinite

domain r ∈R
n+

(the n-dimensional orthant of non-negative reals),
we now integrate over the finite domain r ∈S

n, the (n−1)-
dimensional unit simplex. Examples of familiar, low-dimensional
simplexes are shown in Supplementary Figure A1. The non-
informative, and in this case maximum entropy, prior f (ri)=1
becomes perfectly admissible. Such a simple prior may not be the
optimal choice, however; there is tremendous literature describing
the selecting priors based on systematic and formal rules (Berger,
2006; Kass and Wasserman, 1996). Denoting θi =ri/n, as the

scaled relative rate, then P
(
θ
)=(

θ1θ2 ···θn
)−δ , δ∈[0,1) are the

most common priors over the domain S
n. δ=1/2 yields Jeffreys’

prior (Jeffreys, 1946), while δ→1 yields Jaynes’ invariant Haar-
measure prior (Jaynes, 1968; Syversveen, 1998). Unfortunately,
both of these priors are based on examination of the multinomial
likelihood function and are not appropriate for inferring rates. For
instance, they imply that ri →n is just as probable as ri →0, even
though it is biologically assumed that very high mutation rates
(hundreds of times the mean rate) are quite unlikely. In fact, we
found that all formulaic recipes for the construction of objective
priors (Berger, 2006; Bernardo and Ramon, 1998; Bernardo and
Smith, 1994; Kass and Wasserman, 1996) failed when applied to
phylogenetic likelihoods since these likelihoods (a) are not densities
with respect to r, assuming independence or (b) have variance
increasing linearly with n, assuming relative rates.

Therefore, we chose to investigate inferential differences resulting
from the use of two different priors based on intuitively reasonable
assumptions. First, the uniform prior P

(
ri

) ∝ 1 was selected as
an appropriate comparison for a ‘prior-less’ maximum likelihood-
type situation. Second, the unit-exponential P

(
ri

)∝exp
(−ri

)
was

selected to represent the idea that very high substitution rates are
anticipated to be unlikely. Note that the relative-rate unit-exponential
prior is not conceptually or computationally identical to assuming
f
(
ri

)=exp
(−ri

)
in (2) due to the action of constraint (3).

2.2 Simulation study
To assess the behavior of our method, we inferred the rates of
a synthetic dataset designed to mimic an experimentally ideal
situation. Our synthetic dataset was comprised of 100 sequences
of 2000 sites with no gaps. All descendants were taken to be t =1
time-units away from the ancestor, and the ancestral sequences were
drawn from the wag (Whelan and Goldman, 2001) equilibrium
density. Rates were equally log-spaced from 10−3 to just under 10,
with a mean of exactly 1. The prior was unit-exponential per site.
A box-plot of the posterior rate distributions is shown in Figure 1.
The solid sigmoidal curve denotes the site rate mean, smoothed
across adjacent sites. The dotted line denotes the original rate of
the simulation. Although not shown, virtually identical results were

Fig. 1. Synthetic data were comprised of 100 sequences of 2000 sites with
no gaps. All descendants were taken to be t =1 time-units away from the
ancestor, and the ancestral sequences were drawn from the wag equilibrium
density. Rates were equally log-spaced from 10−3 to just under 10, with
a mean of exactly 1. The prior was unit-exponential per rate. The solid
sigmoidal curve denotes the site rate mean, smoothed across adjacent sites.
The dotted line denotes the original rate of the simulation. Although not
shown, virtually identical results were attained under the uniform prior.

attained under the uniform prior, with no discernible qualitative
differences between plots.

When rates are low, few substitutions are observed, leading to
two effects on inference. First, given only 100 sequences, there is
no observed difference between, say, a rate of 10−3 and 10−2.3.
At each of these rates, it is unlikely that even one substitution has
occurred. Therefore, given a constraint that the mean rate equals one,
highly conserved sites will have their rates biased upwards. Figure 1
shows that significant departures from mean estimated rate occur
when ri�10−1.6 ≈0.025. Second, the variance of the estimated
rate becomes large as the rate decreases, again as shown in the
figure box-plots. This increased variance can be understood by using
the analogy of estimating the rate parameter of a Poisson process
when the observed event is rare. In the Poisson case, the expected
Fisher information is inversely proportional to the number of events
observed, which by assumption is small. Hence, the variance of the
estimated rate of a conserved position will be large.

For rates between ≈10−1.6 and ≈100.60 ≈4.0 the mean inferred
rate is almost completely coincident with the actual rate. We found
the magnitude of the upper bound rate (4.0) surprising, since it
implied that evolutionary rates could be accurately inferred even
when, on average, four substitution events occurred between every
observed sequence in the test data. Prior experience with other
biological datasets led us to expect that such a high substitution
rate would be indistinguishable from complete randomization(
ri →∞)

. Figure 1 shows that for the correct dataset there is
considerable discernible difference between high substitution rates
and randomization. We hypothesize that most substitution events
given by amino acid evolution models substitute amino acids
primarily within the same ‘similarity’ class; aliphatic, aromatic,
charged and so on. Since estimating rates considers substitution
both within and between amino acid similarity classes, with enough
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Table 1. Comparison of model fit likelihoods and posterior probabilities for the independent- and relative-rate models

Dataset MAX MYC p53 p53R Synth
sites 380 79 1137 718 2000

sequences 23 45 64 15 100

prior exp(−ri) uniform exp(−ri) uniform exp(−ri) uniform exp(−ri) uniform exp(−ri) uniform

Model
comparison

Max ln L -4538.804 −4538.804 −2076.357 −2076.357 −33756.110 −33756.110 −6815.064 −6815.064 −227602.474 −227602.474

ln P(M) −4396.984 −4396.533 −2029.543 −2029.312 −33133.550 −33133.818 −6588.002 −6587.548 −224230.494 −224241.380

Max ln P −4340.639 −4332.986 −2000.333 −1999.355 −33018.786 −33024.283 −6506.555 −6487.148 −224025.433 −224049.114

Min (ln P) −141.820 −142.271 −46.814 −47.045 −622.560 −622.292 −227.062 −227.516 −3371.980 −3361.094

ln P(M) CI ±1.607 ±1.318 ±0.489 ±0.680 ±2.958 ±5.619 ±3.619 ±5.268 ±4.903 ±5.084

(ln P)/Site −0.373 −0.374 −0.593 −0.596 −0.548 −0.547 −0.316 −0.317 −1.686 −1.681

The rows are described in the main text. The mean �lnP/site=−0.458 (not including the synthetic data) and strongly implies preference for the relative-rate model.

data our method appears able to accurately estimate the rate even
when multiple substitutions occur. In other words, over short times
isoleucine will frequently substitute with leucine, but over long
times a substitution to glutamine is highly informative as to the
true underlying rate. As compared with the lower range, the middle
range of substitution rates appear to have significantly less variance
associated with them.

At greater than ri ≈4.0, Figure 1 shows that the sequences do
become randomized with respect to each other, overwhelming even
inter-class substitution events. Rather than estimate an excessively
large rate, however, constraint (3) appears to bias the inferred rate
downward. Thus, the model appears to be self-limiting with respect
to high evolutionary rates without the a priori assumption of an
exponential rate prior. Note that although the variance of high-
rate parameters appears to be relatively small in the figure, the
logarithmic scaling of the ordinate implies a larger variance than
is visually evident.

2.3 Model comparison
For given fixed alignment and phylogenetic tree data D, both
Maximum Likelihood (ML) and Bayesian estimations of the
posterior rate distribution were performed. Alignments were initially
computed with T-Coffee (Notredame et al., 2000) and then refined
by inspection. Phylogenetic trees were inferred by phyml (Guindon
and Gascuel, 2003) using an optimized gamma model of rate
heterogeneity. The wag substitution matrix (Whelan and Goldman,
2001) was used throughout.

2.4 Protein families
Three proteins from two distinct families were studied to compare
our relative-rate model to the more traditional independent-rate
model. Specifically, Myc and Max, and two variants of p53
alignments were selected due to our familiarity with these families.

The Myc-Max-Mad network of basic-Helix-Loop-Helix (bHLH)
transcription factor proteins is essential for control of cell growth,
proliferation, differentiation and apoptosis. Myc is a well-established
oncogene whose deregulated expression is responsible for a wide
range of human cancers (Grandori et al., 2000; Luscher, 2001).
A comprehensive analysis of phylogeny and conservation in the
bHLH-leucine-zipper (bHLHz) domain of a diverse set of Myc and
Max homologs was performed by Atchley and Fernandes (2005) and
is utilized herein.

In contrast, p53 belongs to the β-sandwich-domain family
of DNA-binding transcription factors (Berardi et al., 1999;
Rudolph and Gergen, 2001) and is structurally independent of the

bHLHz family. A detailed phylogenetic study of the p53 family has
been presented by Fernandes and Atchley (2008). To mimic the
situation where relatively few, closely related proteins are available
for study, a subset of the p53 sequences, denoted p53R, was also
analyzed.

2.5 Bayes factors
There is no straightforward procedure to contrast maximum
likelihood and Bayesian models, but we and others have found that
Bayes factors (Kass and Raftery, 1995) can be used to construct
intuitively meaningful and statistically valid comparisons. Taking
an approach similar to MrBayes, we start with the independent
site, gamma rate-prior model MI and use Bayes factors to compare
it to our relative-rate model MR. Given model MI , data D, a set of n
independent-rate parameters r =r1,r2,...,rn, a shape parameter α,
a likelihood model P

(
D|r,α,MI

)
and prior distributions P

(
r|α,MI

)
and P(α), Bayes’ Theorem allows us to calculate

P
(
D|MI

)=
∫∫

P
(
D|r,α,MI

)·P(
r|α,MI

)·P(α)drdα

=
∫

P
(
D|α,MI

)·P(α)dα

≤
∫

P
(
D|α,MI

)·δ(
α−αmax

)
dα

=P
(
D|αmax,MI

)
,

where δ denotes Dirac’s delta function and αmax is the ML
estimate of α. Since rates are independent under MI , the first
integration is standard and straightforward. The second integration
over α acknowledges that we cannot know the ‘correct’ value of
α exactly. Following standard Bayesian theory then, we draw it
from some prior distribution P(α). Thus P

(
D|MI

)
will be maximal

only if α is known precisely a priori and can only decrease as
uncertainty about α increases. Thus, we use P

(
D|αmax,MI

)
as a

‘best case’ conservative estimate of P
(
D|MI

)
. The ratio of P

(
D|MI

)
to P

(
D|MR

)
, known as the Bayes factor, indicates the relative weight

of evidence supporting competing models HI or HR given the data.
Estimating P

(
D|MR

)
from the from the MCMC samples of

the posterior likelihood is numerically challenging (Kass and
Raftery, 1995). To estimate it, we utilized the stabilized harmonic
mean estimator (Satagopan et al., 2000) as provided by the
model_p program of BaliPhy (Redelings and Suchard, 2005;
Suchard and Redelings, 2006). Comparative results are shown in
Table 1. There, ‘Max ln L’denotes the maximum likelihood solution,
‘lnP(M)’denotes the Bayesian probability of the relative-rate model,
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‘Max ln P’ denotes the maximum probability found for the relative-
rate model during MCMC simulations and ‘Min �ln(P)’denotes the
minimum possible log-probability difference between the relative-
and absolute-rate hypotheses; in other words, the smallest possible
Bayes factor. More negative values indicate stronger support for
the relative-rate model. Confidence intervals on lnP(M) are shown,
along with the calculated �lnP/site. The latter is shown so that
comparisons can be drawn between alignments of greatly different
lengths.

For all examples studied, the minimum Bayes factor strongly
supported the relative-rate model over site independence, with log-
differences ranging from ≈47 to ≈3371. According to Jeffreys’
scale (Jeffreys, 1961; Kass and Raftery, 1995) where differences
of 2–10 are considered decisive, this represents overwhelming
evidence in support of the relative model. Using long sampling
times, the width of the lnP(M) confidence intervals were shortened
to be insignificant compared to the magnitude of the Bayes factor.
Since the magnitude of phylogenetic likelihoods tend to scale
linearly with the number of alignment sites, the �lnP/site for
each alignment was also calculated for each dataset. The values,
ranging from −0.316 to −0.596 indicate that even short alignments
of about 10 sites would overwhelmingly favor the relative-rate
model.

The next most intriguing result displayed in Table 1 is the
complete insensitivity of the model probability changes in the rate
prior. Bayes factors are known to sometimes display extraordinary
sensitivity to choice of prior (Kass and Greenhouse, 1989; Kass and
Raftery, 1995). For the relative-rate model, however, no significant
differences were detectable between the uniform and unit-
exponential relative-rate prior: all differences were less than half
the width of the model probability confidence interval. Again, we
emphasize that the unit-exponential prior of the relative-rate model
is not comparable to a unit-exponential independent-rate model.
Although posterior probabilities are not significantly different
between priors, a detailed comparison of the posterior densities
would be required to recommend either as a suitable default.

2.6 Gamma shapes
Although the posterior rate distribution for the relative-rate model
cannot be approximated by the independent gamma model, Figure 2
shows the distribution of ‘best fit’ gamma shape parameters across
MCMC samples. Black circles denote the maximum likelihood
shape parameter solution, while short horizontal bars indicate the
mean shape parameter, along with quartiles and ranges. The ML
shape parameter was always found to be outside the interquartile
range of possible shapes. In the case of p53 and the synthetic
datasets, the differences were substantial and indicate that the
relative-rate posterior is significantly different than that implied by
the independent-rate model.

Simply comparing ML shapes to ‘best approximating’ relative-
rate shapes, however, fails to capture just how significantly different

the posterior rate distributions are between R
n+

and S
n. For instance,

the best linear unbiased (BLU) estimator of central tendency in R
n+

is the arithmetic mean. For S
n the geometric mean (Pawlowsky-

Glahn and Egozcue, 2002) is far more preferable. Furthermore, since
the rates in S

n are by definition non-independent, the relative-rate
posterior cannot be summarized by a scalar statistic.

Fig. 2. Boxplots show the approximate distribution of estimated shape
parameters from the MCMC integration; narrow internal lines show the mean
shape estimate. Filled circles show the estimated shape parameter for the
same system under maximum likelihood. In all cases the posterior shape
distribution appears significantly different than that found by maximum
likelihood.
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Fig. 3. The inferred distribution of rates for Max, showing the across-
sample arithmetic and geometric means, as well as the best fit unit-gamma
distribution shape parameter approximations between MCMC samples and
of the final posterior mean.

Figure 3 illustrates just how different posterior rate estimates can
be by comparing their best unit-gamma approximations. Shown
are histograms of the posterior rate distribution for the relative-
rate model taking either (a) the arithmetic or (b) geometric mean
of all MCMC samples, along with best approximating shapes. The
differences in distributions are striking, especially for the illustrated
Max and p53R datasets. Also shown are (c) the best approximating
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shapes for the maximum likelihood (independent-rate) model and
(d) the mean relative-rate shape. In other words, the histograms
show the mean rate of all MCMC samples, while the remaining
curves show the best gamma distribution between MCMC samples
(the mean of the sample shapes versus the shape of the mean rates).
These figures support the idea that under the relative-rate model, the
resultant posterior is inherently multivariate and cannot be correctly
summarized by statistics of the marginals.

3 CONCLUSIONS
Current models in molecular evolution almost universally assume
site independence to model rate heterogeneity. The unstated
assumption is that as the number of sites increases, the independence
model will become asymptotically more correct. Our results indicate
that no simple relationship exists between the independent- and
relative-rate models. The independent-rate model is conceptually
simple although it requires considerable parameterization or
foreknowledge of the rate prior and complicates branch length
inference, requiring numerous regularization assumptions. The
relative-rate model automatically encompasses a much greater class
of rate prior without parameterization, results in better model fits,
allows simultaneous branch-length inference, but is somewhat more
computationally complex.

To see that no simple relationship exists between the models,
consider the angle between the surface of S

n and the one
of its bordering n-dimensional hyperplanes. Simple geometric
arguments show that the radial angle between these subspaces is
arcsin

(√
(n−1)/n

)
. As n→∞ this angle approaches π/2, implying

that as the dimension increases, the relative-rate model becomes
orthogonal to any independent-rate model (minus one site).
Although not a formal argument, this observation suggests that
the relative-rate model cannot be easily approximated via an
independent-rate model.

Comparisons with rate4site (Pupko et al., 2002) show similar
marginal rate posteriors (data not shown). Differences are primarily
observed when the marginal mean rate is either small or large. Thus,
if it is known a priori that a given rate prior is appropriate for a given
dataset, there may be no compelling reason to use the more accurate
relative-rate model. It has been shown, however, that mixtures of
gamma distributions often provide substantial model improvements
in many situations (Mayrose et al., 2005a, b). If little is known about
the actual underlying rate distribution, then the relative-rate model
is preferable since it does not require parameter estimation.

Again, we emphasize that although the marginal distributions
computed by the independent- and relative-rate models often
appeared qualitatively similar, Figures 2 and 3 emphasize that
the intrinsic correlation present in the relative-rates model make
between-model comparisons of marginal distributions virtually
meaningless.

3.1 Posterior summarization
As shown in the figures, characterizing the rate posterior is not trivial.
The Dirichlet distribution is often used as a summary distribution on
the unit simplex, and can be readily fit to the posterior (Minka, 2003).
However, Aitchison (1986) argues that the restrictive Dirichlet
covariance structure make it surprisingly unsuitable for describing
distributions on S

n. Variants of the log-normal distribution is the

preferred alternative. This alternative may hypothetically be used to
study rate-heterogeneity covariance.

3.2 Hypervariability
Since substitution rates ≤4 substitutions per unit time appear to be
resolvable if there is enough data, we postulate that hypervariability
can be meaningfully defined for sites where the posterior rate is
significantly and substantially greater than one. More investigation
into the biological relevance of these sites is needed. In particular,
preliminary observations indicate that some hypervariable sites are
identifiable as homologous sites ‘sandwiched’ between conserved
residues. However, other sites consist primarily of gaps, which
are treated somewhat like an indeterminate amino acid, in
standard likelihood calculations. Therefore, hypervariability may be
biologically relevant in some situations, but not others.

3.3 ML formulation
Although presented in a Bayesian context, a maximum likelihood
approach could be accommodated in an unconstrained optimization
framework via composition analysis (Aitchison, 1986). Specifically,
the isometric log-ratio (ILR) transformation (Egozcue et al., 2003)
can be used to construct a diffeomorphism between S

n and R
n under

the standard Euclidian metric, with Jacobian J ∝ (
θ1θ2 ···θn

)−1.
From an information-theoretic view, the ILR transformation uses
this Jacobian as the invariant Haar measure on S

n and is equivalent
to the use of Jaynes’prior (Jaynes, 1968). Thus rather than adaptively
integrating over S

n as MCMC strives to do, it should be possible
to find the most likely point θ ∈S

n via unconstrained optimization,
and hence find r =nθ .

4 METHODS
It has been suggested that MCMC sampling over S

n can be done by utilizing
Dirichlet-distributed proposals (Larget and Simon, 1999). Our experience
disagrees and shows that when n is large, sampling efficiency using Dirichlet
proposals becomes intolerably low. The efficiency becomes particularly
bad as θ ∈S

n approaches the boundary. Unfortunately, such approaches are
common as they occur for all conserved sites.

To understand why the Dirichlet sampling is inefficient, suppose we are
given the current Markov chain state as θ . A new state θ ′ is selected via

θ ′ ∼Dirichlet
(
sθ

)
, (4)

where s is a scalar scale factor. Under this parameterization, E
[
θ ′]=θ and

Var
[
θ ′] scale approximately as 1/s. As θ approaches the simplex boundary,

s must become very large to avoid inflating the sampling variance of θ ′.
A large value of s, however, implies that θ ′ −θ must be small. Small MCMC
sample differences imply long autocorrelation times, and hence intolerably
inefficient sampling.

Instead, we developed a two-step MCMC sampling procedure with much

higher sampling efficiency. If each marginal θi
iid∼�

(
1,1

)
, then θ/

∑
iθi ∼

Dirichlet
(
1,1,...,1

)
is a standard result (Devroye, 1986). Therefore, given a

current state θ , a new state θ ′ can be generated by the following procedure:

(1) For each component θi of θ , a new component θ ′
i is sampled via

MCMC such that the stationary distribution of θ ′
i is unit-exponential.

(2) A secondary MCMC step is performed using θ ′
i /

∑
iθ

′
i and the

phylogenetic likelihood function.

(3) Repeat, using n individual θi parameters to hold the ‘state’ of the n−1
relative rates.
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Thus the proposal function itself is first sampled via MCMC, and the
resulting point is used to sample the relevant posterior. The procedure
works because the acceptance or rejection of a given step is always, by
definition, independent of the previous state. Furthermore, the sum of the
state variables is statistically independent of each individual (Devroye, 1986).
The efficiency of the algorithm is quite high as the exponential scaling of the
marginals ensures that the new sample scales optimally along each dimension
of the simplex.
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