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ABSTRACT

Prokaryotic protein–protein interactions are underrepresented in
currently available databases. Here, we describe a ‘gold standard’
dataset (MPI-LIT) focusing on microbial binary protein–protein
interactions and associated experimental evidence that we have
manually curated from 813 abstracts and full texts that were
selected from an initial set of 36 852 abstracts. The MPI-LIT dataset
comprises 1237 experimental descriptions that describe a non-
redundant set of 746 interactions of which 659 (88%) are not
reported in public databases. To estimate the curation quality, we
compared our dataset with a union of microbial interaction data
from IntAct, DIP, BIND and MINT. Among common abstracts, we
achieve a sensitivity of up to 66% for interactions and 75% for
experimental methods. Compared with these other datasets, MPI-
LIT has the lowest fraction of interaction experiments per abstract
(0.9) and the highest coverage of strains (92) and scientific articles
(813). We compared methods that evaluate functional interactions
among proteins (such as genomic context or co-expression) which
are implemented in the STRING database. Most of these methods
discriminate well between functionally relevant protein interactions
(MPI-LIT) and high-throughput data.
Availability: http://www.jcvi.org/mpidb/interaction.php?dbsource=
MPI-LIT.
Contact: raja@jcvi.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Microbes represent the vast majority of completely sequenced
genomes (Peterson et al., 2001). Recent metagenomics projects
have fortified this dominance even more with bacteria representing
about 90% of all sequences in the global ocean sampling dataset
(Yooseph et al., 2007). Clearly, an understanding of protein
function and physiology requires a detailed understanding of
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their interactions with both other proteins and small molecules.
Surprisingly, compared with eukaryotes the protein interactions
of microbial species are largely unexplored: while the microbial
interaction database (Goll et al., 2008) reports 22 000 microbial
interactions, general interaction databases such as IntAct report
on the order of 100 000 eukaryotic interactions. Although most
interactions from high-throughput studies are reported in public
databases, the majority of interactions from small-scale studies
remain hidden in the primary scientific literature. Due to the
ambiguity of free text, especially of protein names, species/strains
and experimental methods, natural language processing algorithms
are unable to reliably extract most interacting protein pairs and
associated data automatically (Leitner and Valencia, 2008). While
manual curation remains key, it poses a number of problems,
including curation inconsistency, heterogenous levels of annotation
depth and a large volume of text to be analyzed. Such manual
curation of protein–protein and genetic interactions has been carried
out for Saccharomyces cerevisiae (Reguly et al., 2006) and human
(Peri et al., 2003). Here, we report a manually curated dataset
(MPI-LIT) that we have extracted from 813 publications focusing
on microbial species. This dataset comprises 1237 experimental
descriptions (PubMed IDs and experimental methods) that link 940
proteins by 746 binary protein–protein interactions (Table 1). While
our dataset does not appear to be large, it is the largest manually
curated dataset published so far for microbial protein interactions
and thus will serve as a ‘gold standard’ dataset. It can be used
to evaluate interaction confidence assessment methods, to estimate
the confidence of high-throughput microbial interaction datasets
[e.g. generated by yeast-two-hybrid (Y2H) or complex purification
studies] and to train automatic literature mining algorithms.

2 METHODS

2.1 Literature curation strategy
Phase I: PubMed search. We started our curation effort by searching the
primary literature via PubMed, similar to previous efforts for yeast (Reguly
et al., 2006) and human (Peri et al., 2003). Using somewhat arbitrarily chosen
keywords, our PubMed search for ‘ “bacteria” OR “Escherichia coli” OR
“Salmonella” OR “Bacillus subtilis” OR “Pseudomonas” AND (interaction
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Table 1. Literature-curation strategy

Phase Target Publications Experiments Interactions Proteins

I. Literature search PubMed 36 852 – – –
II. Text analysis Protein names, 1732 2303 2289 4046

species, methods
III. Protein ID and Mapped onto
PSI-MI mapping UniProt ID’s and PSI-MI 813 1237 746 940

Microbial binary protein–protein interaction datasets

Dataset Species Experimentsa Interactions Abstracts Interactions/abstract

MPI-LIT 92 1237 746 813 0.9
MINT 63 234 170 136 1.25
DIP 32 1404 1403 109 12.8
BIND 58 1576 1564 102 15.3
IntAct 73 13 887 13 242 196 67.5
MPI-UNION 142 15 848 15 077 501 30

aExperiment is a unique combination of an interaction, an experimental method and PubMed ID describing a protein–protein interaction.

OR interact OR interacts OR bind OR binds)’, yielded 36 852 articles as of
August 14, 2006 that potentially contain microbial protein interaction data.

Phase II: Text analysis. From these abstracts, we manually extracted
the interacting protein pairs, the respective microbial species and the
experimental method. During this phase, we were able to identify 4046
protein names and 2303 experimental descriptions (Table 1).

Phase III: Protein ID and controlled vocabulary mapping. As proteins
were usually represented by their common names in the publications, we set
up an automated protein identification pipeline. We systematically screened
microbial versions of the UniProtKB/Swiss-Prot (UniProt-Cons, 2008) and
Biothesaurus (Liu et al., 2006) databases to match proteins to the latest
stable UniProt accessions based on their common names and species. Using
this pipeline, we were able to uniquely identify 1254 proteins out of 4046
proteins (31%). For the remaining 2796 proteins (69%), we could not identify
a unique UniProt ID automatically because the strain could not be uniquely
identified. For example, a UniProt search for E. coli and RecA results in
11 different UniProt entries from 10 different strains. We addressed such
cases by manually mapping the proteins to primary UniProt accessions.
Out of the 2796 unassigned proteins, we were able to uniquely identify
UniProt accessions for 1790 (44%) proteins. 1006 (25%) proteins could
not be matched at all and these proteins were removed from the final
curated dataset. Such deleted entries include non-protein entities that were
initially identified as proteins such as small-molecules or protein complexes
(‘RNApolymerase’), non-microbial proteins and misspelled common names.
Independently, we manually mapped the free-text curated experimental
methods onto experimental methods defined by the PSI-MI (Proteomics
Standards Initiative–Molecular Interactions) controlled vocabulary (Kerrien
et al., 2007a).

Interaction versus Experiment: Interactions are defined as unique pairs of
UniProt accessions. An interaction experiment is defined by an interaction,
an experimental method (PSI-MI) and a publication (PubMed ID). An
interaction can be described by more than one experiment whenever such an
interaction is reported by a different method and/or different study.

2.2 Datasets
The MPI-UNION dataset has been downloaded from the MPIDB database
(Goll et al., 2008) and is the microbial subset of IntAct, DIP, BIND and
MINT (as of December 4, 2007) (Alfarano et al., 2005; Chatr-aryamontri
et al., 2007; Kerrien et al., 2007b; Salwinski et al., 2004) filtered for
binary interactions i.e. the direct physical associations between two proteins

were experimentally characterized. The E. coli K12 STRING scores were
downloaded from the STRING database (version 7.1) (von Mering et al.,
2007). Escherichia coli K12 gene ontology (GO) annotations were collected
from the Gene Ontology Annotation (GOA) Database (as of April 1, 2008).

2.3 GO term enrichments
We used the topGO R package (Alexa et al., 2006) to detect significantly
enriched GO terms in the E. coli K12 MPI-LIT subset when compared with
all E. coli K12 genes. The classic algorithm based on gene count using the
elim method was applied to minimize the false-positive rate (Alexa et al.,
2006). The degree of over-representation is assessed with a statistical score.
Here, the score is the P-value returned by Fisher’s exact test. A GO term was
marked as significant when its P-value was smaller than 0.01.

2.4 Interologs
We used the PORC (Putative ORthologous Clusters) database to
identify pairs of interacting orthologs (interologs). Compared with other
pre-computed clusters such as COGs (Cluster of Orthologous Groups),
PORCs only contain one sequence per species.

Data was downloaded from ftp://ftp.ebi.ac.uk/pub/databases/integr8/porc
(as of June 22, 2008).

3 RESULTS

3.1 Literature curation quality assessment
3.1.1 Abstract overlap Our PubMed search retrieved 36 852
abstracts of which only 203 (=0.6%) are reported in the MPI-UNION
dataset (see Section 2.2). Our PubMed search missed 299 abstracts
that are reported to contain microbial interactions in MPI-UNION.
This indicates that our query missed some relevant abstracts,
probably because of the choice of search terms (see Section 2.1)
(Fig. 1A). This might be due to the fact that the search was limited to
abstracts. Articles which describe interactions in the full text or even
supplementary information, which is true for most of the medium
and high-throughput protein-protein interaction (PPI) studies, would
have been missed. During Phases II and III of the curation process,
we were able to remove non-relevant abstracts and those for which
we could not uniquely identify the interacting proteins (Table 1).
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Fig. 1. (A) Overlap between abstracts retrieved from our initial PubMed
search and abstracts indexed in ‘MPI-UNION’ (i.e. the union of binary
interactions from IntAct, DIP, BIND and MINT). (B) The overlap
between abstracts curated for MPI-LIT and MPI-UNION describing protein
interactions. (C) Assessment of the sensitivity and false-negative rate of
interaction curation. Here, we compared the curation fidelity of overlapping
abstracts in MPI-LIT and MPI-UNION: from the 76 overlapping abstracts
(Fig. 1B) 69 Interactions were curated both by MPI-LIT and MPI-UNION
and 36 unique interactions were curated only by MPI-LIT and MPI-UNION,
respectively. (D) Assessment of the sensitivity and false-negative rate of
mapping PSI-MI methods to each interaction. We could map experimental
methods to 55 out of 69 overlapping interactions (Fig. 1C). Fifty-three of
these methods were identical in MPI-LIT and MPI-UNION.

After Phase III, 813 abstracts (Fig. 1B) describing microbial protein–
protein interactions remained. To assess the curation quality, we
compared the 76 MPI-LIT articles overlapping with MPI-UNION
(Fig. 1B).

3.1.2 Interaction curation We estimated the sensitivity of
interaction curation by comparing the number of interactions
overlapping between MPI-LIT and MPI-UNION. The MPI-LIT
curation efforts achieve a sensitivity of 66%. That is, we identified
66% of the reference MPI-UNION interactions (note that strains
were merged into species and common protein names were used for
the comparison). Vice versa, the MPI-UNION obtained the same
sensitivity when using MPI-LIT as a reference. This indicates that
independent literature curation efforts, MPI-LIT and MPI-UNION,
miss an estimated 34% of interactions (false negatives) (Fig. 1C).
A possible reason for false negatives in MPI-LIT is that the Phase
II curation was limited to abstracts. If interactions are described
in the full text and not mentioned in the abstracts, curators failed
to report the interactions. However, we curated full text for all the
online available articles in Phase III. Interestingly, both MPI-LIT
and MPI-UNION curated 36 interactions each from the common
set of 76 articles that were unique to one of the two datasets
(Fig. 1C). When we re-examined these interactions in the primary
articles, four out of the 36 unique MPI-LIT interactions (which
are not reported in MPI-UNION) turned out to be false-positives.
The estimated false-positive rate for MPI-LIT is thus 4% (based
on four false-positives out of 105 interactions, Fig. 1C). A similar

rate (4%) of manual curation errors was also reported in a previous
study (Reguly et al., 2006). Vice versa, out of the 36 unique MPI-
UNION interactions, one interaction turned out to be false. The
estimated false-positive rate for the MPI-UNION dataset is thus 1%
(i.e. one false-positive out of 105 interactions). False positives in the
MPI-LIT dataset can usually be explained by either curator typos
(2%) or wrong protein ID mapping (2%). These wrong entries were
removed from the final dataset.

3.1.3 Method curation Based on 76 articles that are common
to both MPI-LIT and MPI-UNION, 69 common interactions
have been curated from these articles (Fig. 1C), ignoring strain
variations. Of these, 55 interactions were identical when strains
were considered too. Each protein interaction can have more than
one experimental method if the same interaction is reported from
more than one study or from a different experiment. We estimated
the sensitivity of experimental method annotation by comparing
the PSI-MI terms of these 55 interactions (Fig. 1D). In total, 79
experimental methods were curated for the 55 interactions of the
MPI-LIT and MPI-UNION datasets. We mapped all methods onto
the first level of the hierarchically organized PSI-MI controlled
vocabulary, i.e. biophysical, protein complementation assay, genetic
interference, post-transcriptional interference, biochemical, and
imaging techniques. For such a merged set, we estimate the average
sensitivity to be on the order of 75% for MPI-LIT using MPI-UNION
as a reference set. Although, we assume that we have missed a small
fraction of experimental descriptions, all the curated descriptions are
true positives (Supplementary Table S1).

3.2 The MPI-LIT dataset
The MPI-LIT dataset covers 1237 experimental descriptions
comprising 746 non-redundant bacterial PPIs involving 940
full-length proteins of 92 species/strains extracted from 813
articles (Supplementary Table S2). The coverage of abstracts
and species/strains is significantly higher than those compiled by
curation efforts represented in the MPI-UNION dataset (Table1).
Notably, the 746 PPIs in MPI-LIT are supported by 1237
experiments. This indicates that on average an interaction is either
confirmed by more than one experimental method and/or by
multiple publications (Table 1). Most of the interactions in MPI-
LIT are reported for E. coli (54%, all strains), B. subtilis (11%)
and Salmonella typhimurium (3%) (Supplementary Table S3a). On
average, we identified 0.9 non-redundand interactions per article,
reflecting the small-scale nature of the source articles. Within
MPI-UNION, MINT curated an average of 1.25 non-redundand
interactions per article, whereas 13, 15 and 67 were reported on
average by DIP, BIND and IntAct, respectively. This indicates
an increasing focus on interactions derived from high-throughput
experiments (Fig. 2A).

We wondered whether certain molecular functions, cellular
components and biological processes are enriched in the literature
curated dataset. To investigate this, we looked for significantly
enriched GO terms in each of the three subontologies. We did this
by comparing the frequency of GO terms of genes that are present
in the MPI-LIT subset of E. coli K12 interactions with those present
in the whole E. coli K12 genome (see Section 2). Table 2 lists the
top ten enriched GO terms for the Biological Process subontology.
A broad range of processes have been enriched, including ‘protein
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Fig. 2. (A) Number of interactions per publication in MPI-LIT, MINT, DIP, BIND and IntAct datasets. (B) Graph showing the accumulation of curated
microbial protein interaction data over time. (C) Overlapping interactions between different datasets. The MPI-UNION dataset is a microbial subset of IntAct,
DIP, BIND and MINT, filtered for binary interactions. Matrix Union is the binary protein interaction dataset predicted for E. coli complex purification data
from Arifuzzaman et al. and Butland et al. (Arifuzzaman et al., 2006; Butland et al., 2005) using the matrix model of protein interactions, i.e. assuming that
every protein interacts with every other protein in a complex.

Table 2. Top ten enriched GO terms for the Biological Process subontology

GO ID Term Genome MPI-LIT MPI-LIT P < 0.01
observed Expected

0009432 SOS response 17 14 1.99 3.50E-11
0006935 chemotaxis 22 15 2.58 6.40E-10
0065002 intracellular 11 10 1.29 4.30E-09

protein transport
0007049 cell cycle 57 24 6.68 2.00E-07
0051301 cell division 52 24 6.09 3.50E-07
0006457 protein folding 28 14 3.28 6.10E-07
00069501 response to stress 153 53 17.93 2.00E-06
0006281 DNA repair 68 28 7.97 3.70E-06
0006260 DNA replication 69 33 8.09 8.30E-06
0006352 transcription 7 7 0.82 1.60E-05

initiation

All numbers refer to proteins interacting in E. coli K12. Genome gives the total number
of genes in this category.

folding’ and ‘DNA replication’. Processes related to ‘intracellular
protein transport across a membrane’ were enriched as well. The
presence of proteins involved in most of the cellular processes
indicates that there is no strong bias towards certain functional
groups in the curated dataset. As expected, in the GO molecular
function and cellular component categories ‘protein binding’ and
‘protein complex’ were found to be highly enriched, reflecting the
protein interaction nature of the dataset. A list of all enriched terms
and highlighted GO graphs can be found in Supplementary Table
S4 (Supplementary Figure 1).

We wondered how many of MPI-LIT interactions are recovered in
high-throughput bacterial interactome studies. In fact, there is only
little overlap with existing high-throughput datasets. For example,
of the 355 E. coli K12 interactions in MPI-LIT, only 62 interactions
have been found by E. coli complex purification studies (using
predicted binary interactions based on the matrix model; Figure 2C).
Next, we used Orthology as defined by the PORC database
to predict homologous interactions (http://www.ebi.ac.uk/clustr/).
Surprisingly, only 2 out of 45 predicted interactions from MPI-LIT

Table 3. MPI-LIT interologs

MPI-LIT predicted interologs Overlapping interologs

58 (C. jejuni) 3 (Parrish et al., 2007)
56 (H. pylori) 3 (Rain et al., 2001)
52 (Synechocystis sp.) 2 (Sato et al., 2007)
45 (T. pallidum) 2 (Titz et al., 2008)

were found in a high-throughput study of Treponema pallidum
(Titz et al., 2008), 3 out of 58 in Campylobacter jejuni (Parrish
et al., 2007), 3 out of 56 in Helicobacter pylori (Rain et al., 2001)
and 2 out of 52 in Synechocystis sp. PCC6803 (Sato et al., 2007)
(Table 3). There are two possible explanations for this observation:
first, these large-scale datasets recovered only a small fraction of
all interactions in these species with a large false-negative rate. In
fact, we have shown that systematic Y2H screens using full-length
proteins probably recover no more than 20–30% of all interactions
(Rajagopala et al., 2007). Second, many interactions in bacteria may
actually not be conserved between distantly related species such as
T. pallidum and E. coli. Most likely, both factors play an important
role and each contribution remains to be determined. However, the
MPI-LIT dataset covers a relatively small number of interactions
and yet a large diversity of species, thus more data and/or curation
are needed to substantiate our findings.

3.3 Benchmarking PPI confidence estimation methods
The advance of high-throughput experimental techniques such as
Y2H assays (Fields and Song, 1989) and co-immunoprecipitation
(Arifuzzaman et al., 2006; Butland et al., 2005) screens has led to the
elucidation of large-scale protein interaction networks in different
bacterial species (Parrish et al., 2007; Rain et al., 2001; Titz et al.,
2008). Unfortunately, in high-throughput screens false positives
and false negatives are nearly inevitable. Many computational
methods have been proposed to estimate the biological relevance
or confidence of high-throughput protein interaction data (Suthram
et al., 2006; von Mering et al., 2007). Among them are methods
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database. For all methods, except for gene fusion, and co-expression, the MPI-LIT dataset scored significantly better than either of the pull-down datasets
(Mann–Whitney U-test, P < 0.05). The line in the box indicates the median value (statistics can be found in Supplementary Table S5).

that measure the degree of co-occurrence, gene-neighborhood,
gene-fusion, co-expression, interologs, co-pathway membership, co-
citation and co-annotation of interacting proteins. Our literature
curated list of protein–protein interactions represents biologically
relevant interactions as shown by most of the publications we
curated. We wondered whether we could use the MPI-LIT dataset
to validate confidence estimation methods such as those used
by the STRING database of protein–protein associations (von
Mering et al., 2007). Most confidence scores have been pre-
computed for a variety of microbial genomes in STRING. For
each of these methods we obtained values for an E. coli K12
subset of MPI-LIT (355 interactions, 47.6% of all current MPI-
LIT interactions) and compared them with those obtained for binary
interactions derived from two E. coli high-throughput pull-down
experiments (Arifuzzaman et al., 2006; Butland et al., 2005) using
the SPOKE model (boxplots for all scores are shown in Fig. 3,
statistics can be found in Supplementary Table S5). Known protein
interactions in the STRING database have primarily been imported
from other interaction databases. Note that 88% of the MPI-LIT
interactions are not reported in these databases, so the STRING
database does not know that 88% of the MPI-LIT interactions are
biologically relevant interactions. Thus, we expected that STRING
yields a higher confidence score for MPI-LIT compared with high-
throughput interaction data (Arifuzzaman et al., 2006; Butland
et al., 2005). One-sided two sample Mann–Whitney U-tests revealed
that STRING’s gene neighbourhood, co-occurrence, experiments

and text mining methods scored MPI-LIT interactions significantly
better than either of the high-throughput pull-down datasets (Fig. 3,
Mann–Whitney U-test, P < 0.05), indicating that the STRING
methods are well suited for data quality estimation. In contrast, the
gene fusion and co-expression were not able to clearly separate
the MPI-LIT and high-throughput datasets. Overall, STRING’s
probabilistic combined score discriminates very well between MPI-
LIT and inferred interactions from high-throughput pull-down
experiments (P < 0.01 for either pull-down datasets) underlining
STRING’s usefulness for interaction confidence estimation.

4 DISCUSSION AND CONCLUSIONS
While our dataset is relatively small, it is the largest manually curated
functionally validated protein interaction dataset for microbial
proteins and thus can serve as a gold standard dataset of true
positive microbial interactions. Our curation effort attempted to
collect biologically relevant interactions as is shown by most of the
publications we curated. However, there are other ways of obtaining
gold standard datasets for protein–protein interactions. Edwards
et al. used structural data as gold standards (Edwards et al., 2002).
Unfortunately, there are not that many crystal structures available
of microbial protein complexes (439 unique 3D complexes based
on the UniProt Knowledgebase Release 13.1). Hence, structural
biology is still of limited use, although this may change with the shift
of structural genomics towards complexes. Another source of gold
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standard interactions are protein pairs that are supported by multiple
experiments (Han et al., 2004). We have integrated our literature
data with additional evidences such as 3D structures, interaction
conservation, co-purification and predicted interacting domains. The
integrated MPI-LIT dataset can be filtered for such supporting
evidences and queried at the Microbial Protein Interaction Database
at www.jcvi.org/mpidb (Goll et al., 2008).

Considering the fact that small-scale protein interaction studies
are usually believed to be of higher quality than high-throughput
data, the MPI-LIT dataset can be used as training set for PPI literature
mining algorithms, as a ‘gold standard’ dataset for PPI confidence
estimations (as shown in Section 3.3), to predict interologs for
other species and for integrative bioinformatics analysis. Given our
focus on microbial interactions, we plan to continue our curation
efforts and will initially focus on the Journal of Bacteriology
and Molecular Microbiology to increase the coverage of this
reference dataset. We also started to coordinate our literature
curation activity as an observer member of the IMEx consortium
(http://imex.sourceforge.net/index.html).
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