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ABSTRACT

Motivation: Promoter-driven reporter genes, notably luciferase and
green fluorescent protein, provide a tool for the generation of a
vast array of time-course data sets from living cells and organisms.
The aim of this study is to introduce a modeling framework based
on stochastic differential equations (SDEs) and ordinary differential
equations (ODEs) that addresses the problem of reconstructing
transcription time-course profiles and associated degradation rates.
The dynamical model is embedded into a Bayesian framework and
inference is performed using Markov chain Monte Carlo algorithms.
Results: We present three case studies where the methodology is
used to reconstruct unobserved transcription profiles and to estimate
associated degradation rates. We discuss advantages and limits of
fitting either SDEs ODEs and address the problem of parameter
identifiability when model variables are unobserved. We also suggest
functional forms, such as on/off switches and stimulus response
functions to model transcriptional dynamics and present results of
fitting these to experimental data.

Contact: b.f.finkenstadt@warwick.ac.uk

Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Imaging data from luciferase (LUC) and green fluorescent protein
(GFP) reporters combined with fluorescent tagging of protein can
provide very high quality data with good temporal resolution (Millar
et al., 1995; Nelson et al., 2004). In this case the actual imaging
time series is approximately proportional to the abundance of
an artificial protein. The underlying transcriptional dynamics are
unobserved and are masked by two degradation processes, namely
of reporter mRNA and reporter protein. In this study, we address
the problem of back-calculating from the observed protein activity
to the hidden transcriptional dynamics where it is of interest to
estimate the associated rates of degradation as part of the analysis.

*To whom correspondence should be addressed.
TPresent address: College of Mathematical and Information Science, Shaanxi
Normal University, Xi’an 710062, P.R. China.

We formulate a probability model based on (stochastic) differential
equations which provides the mechanistic rules for the back-
calculation. In practise heterogeneous datasets may be available
from different experiments which contain information about the
transcription process and model parameters. Data sources may be
of different quality and time resolution, as well as from single cells
or an aggregated population of cells. Longitudinal measurements
are discrete in time and can be irregularly spaced or on different
time scales for different variables. Other realistic shortcomings of
the data are that time-course measurements may not correspond
to the same biological sample, or data on different variables may
not be matched in time which would be preferable for fitting a
multivariate dynamical model. As the quality and quantity of such
datasets supports more or less complex modeling approaches, we
consider both stochastic differential equations (SDEs) and ordinary
differential equations (ODEs) with measurement noise. Information
on rate constants may be incorporated through prior distributions
in a Bayesian approach. We first describe the models and the
statistical methods used for its inference. Then, we present three
case studies each with the aim of reconstructing transcription and
inferring any identifiable degradation rates from reporter gene data
using available heterogeneous sources of data. These case studies
serve to demonstrate the adaption of the methodology to different
experimental scenarios.

2 MODELS AND INFERENCE

It is now well understood that, because of the stochastic nature
of reaction events and the presence of internal noise due to the
fluctuations in the molecular environment of the cell, regulatory
and signalling systems are intrinsically stochastic. To develop a
stochastic model one can attempt to model the individual stochastic
events involved, such as binding of the transcription factors,
the assembly and initiation of the polymerase and transcription.
Although an exact simulation algorithm of the corresponding
stochastic processes is provided by Gillespie (1977, 1992) such
models are too detailed for there to be any hope of fitting to current
data with its limitations. SDEs provide a good approximation of
molecular population systems when one can assume that there is a
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macroscopic time scale for which (i) the event rates can be regarded
as constant and (ii) there are many events of each type. An example
of formulating and fitting an autoregulatory feedback system with
transcriptional delay as a system of SDEs can be found in Heron
et al. (2007). However, if the data are too sparsely sampled in time
to reveal information about the volatility process, or if measurements
are not realizations of the same continuous stochastic process in a
cell, then the assumption of SDEs can be problematic in estimation.
Simpler modeling approaches based on ODEs to represent the
mean process with an additional stochastic error may provide a
useful vehicle for estimation purposes at least in systems that have
relatively regular and stable dynamics. The formulation of ODEs to
model the dynamics of molecular population processes has become
a widespread tool in systems biology [see, for example, systems
studied in Goldbeter (2002), Jensen et al. (2003) and (Locke et al.,
20054, b)], and early statistically less rigorous attempts in obtaining
kinetic parameters from GFP reporter data can be found in Ronen
et al. (2002) and Kalir and Alon (2004).

Here, we consider the following dynamic model as the
mechanistic backbone for the reconstruction of transcription profiles
from reporter protein data

dM /dt=t(t)—yM(t), dP/dt=aM((t)—3SpP(t), (1
where M denotes the abundance of mRNA molecules and P denotes
the abundance of the corresponding protein. The first equation
describes the dynamics of mRNA molecules where transcription
is given by a non-negative function 7(#). The second equation states
that the protein is synthesized at a rate proportional to the abundance
of mRNA. The mRNA and the protein are degraded (or leave their
molecular compartment otherwise) at time scales with mean 1/6,,
and 1/6p, respectively. The aim is to infer the transcription function
7(¢) and possibly other rate constants of the system given time-series
data proportional to one or both variables of the system. Suppose
that we measure M, P proportionally to their population size, sy M (t)
for the mRNA and sp P(¢) for the reporter protein. Reparameterizing
(1) gives a scaled model which is identical to (1) with scaled terms
for o and 7 (see Supplementary Material). However, degradation
rates are not affected by scaling. Let Y = {y,-}iT=1 = {M(ti),P(ti)}iT=1
denote experimental time-series data observed at discrete time
points. In order to obtain a likelihood function that incorporates the
mechanistic rules in (1) we consider two approaches. One is the SDE
approach where (1) is formulated as an appropriate system of SDEs.
This approach is rigorously modeling the volatility of the stochastic
dynamics of the kinetic processes provided that the assumptions
of the SDE approximation itself are valid. It is very challenging
to incorporate additional measurement error unless its variance is
known or assumed. The second is the mean ODE approach where
we assume that a solution path to (1) represents the mean of a
stochastic process whilst the modeler makes assumptions about the
probability distribution of the residual process. This approach is
less exact than the SDE approach in modeling the volatility of the
underlying stochastic interaction between molecules. On the other
hand, it naturally deals with measurement error and might also be
useful for fitting to datasets which do not comply with the SDE
assumption, for example, if data points are averages over replicates,
come from different samples and/or represent a population of cells.
We now introduce the two approaches and their likelihood derivation
in more detail.

SDE approach: here, M and P are random variables of molecular
population sizes and the rates of increase and decrease in model
(1) are event probabilities of birth and death processes at the
individual molecular level. One can derive the following Itd SDEs
(see Supplementary Material)

AM = ¢ (1,0)dt + o (£,0)d Wiy
dP = ¢p(t,0)dt+op(t,0)dWp, )

where &y (t,0)=1(t) =8, M(t), ¢p(t,0)=aM(t)—5pP(t), and
o (D) =3y, () +8uM )2, 0p() =5 > @M (1) +6pP(1)) /2
are drift and volatility functions, respectively, and Wjy; and Wp are
independent Wiener processes.! Here and throughout the article,
0 is used to denote a vector of model parameters. If M and P are
indirect measurements of molecular populations in the sense that
they are proportional to molecular abundance with factors syz,sp
then these factors arise as additional parameters in the volatility
functions and their estimation will be extremely useful allowing
us to calibrate the model to the population level. Given data Y the
likelihood function for the diffusion process is
T-1
Lspe®; Y)= [ [ f(yis1lyi:0) 3)
i=1

where f(y;y1ly;;0) denotes the transition density of y;; | given
yi, that is the joint probability distribution of M(#;;1) and P(#;11)
given present values, under parameter vector 6. The exact transition
density function for solutions of SDEs is rarely available in
analytical form and usually approximations have to be considered.
If the time-step At; =t;41 —t; is small then a good approximation
is given by assuming that, conditional on past values,

(*) Increments y(t;41)—Yy(#;) are bivariate normal with mean
vector ¢(t;)At; and variance matrix X(#;)At; where ¢(t;)=
(&n (1), 5p (1), E(t7)=diag(oy (1), op(17)) are the drift and
volatility functions as defined above.

Thus, for sufficiently small sampling intervals A¢; the likelihood
function can be approximated by a product of the form
T-1
Lspe(0:Y)= [ [ @ (ti4 )=y £ () Ali, Tt ALY (4)
i=1
where ®(x;u,X) denotes the bivariate normal density function
with mean vector p and variance matrix X. Justifications for this
approximation are given in Kloeden and Platen (1999).

Mean ODE approach: suppose there is a solution path wu(#;0)=
(M(t),P(1);0) to the system in (1) from unknown initial conditions
(Mg, Pg). Then a natural probabilistic model is to assume that
Y has a joint distribution with mean function u(#;6) and a
variance function 02(r;9). The distribution function and variance
are specified according to assumptions that the modeler makes
about the residual process and measurement error. If the error
process is assumed independent then the likelihood in the mean
ODE approach is
T
Lopg(®:Y) =] Jsilut).0*).0). 8)
i=1

'The Wiener process, or Brownian motion, is a continuous time stochastic
process that has independent normally distributed increments.
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where 0 now incorporates initial conditions (Mg, Py) and g is a
suitably chosen probability distribution.

Inference: by Bayes’ theorem the posterior distribution is
T (O1Y) < LO|Y)7 (0), (6)

where L is the likelihood function, derived for either the ODE or
SDE approach, and 7 (@) are prior densities of model parameters.
Sampling from the posterior distribution is usually achieved using
Markov chain Monte Carlo (MCMC), where each element of
6 is updated by using an appropriately constructed Metropolis—
Hastings acceptance/rejection scheme based on either random walk
or independence proposals (Gamerman and Lopes, 2006). The
reason for choosing a Bayesian approach combined with a MCMC
algorithm is 2-fold: first, the Bayesian methodology is flexible
allowing for portability of inference results between different
experimental studies in a well-defined way and this is highly relevant
to studies in systems biology. Second, the probabilistic imputation
of missing data and/or unobserved variables can be implemented in
a straightforward way as part of an MCMC sampler.

Discrete data and unobserved variables: molecular time-series data
are discretely measured and it cannot be guaranteed that the sampling
interval is small enough for the approximation (*) to work well. A
remedy suggested in econometric applications of SDEs (Durham and
Gallant, 2002; Elerian et al., 2001) is to augment the observed data
by introducing a number of latent or unobserved data points, called
a bridge, in-between the measurements with the aim of creating
a virtual fine discrete time grid for which the assumption in (*) is
valid. The bridges are treated as missing or latent data. Let Y* denote
the collection of all latent data. We wish to sample from the joint
posterior (9, Y*|Y) of the parameters 6 and the latent variables Y*
given the data Y, using the fact that, by Bayes’ theorem,

(0, Y*|Y) o L(Y*,Y|0)7(0) (7

where L(Y*,Y|0) is the approximated augmented likelihood. This
is achieved by sampling in turn from the full-conditional densities
of 9|Y*,Y and Y*|0,Y (Tanner and Wong, 1987). Thus, in the
framework of an MCMC, one can generate proposal bridge
processes and accept these with an appropriately constructed
acceptance probability. In practise, we have used (Heron ez al., 2007)
a bridging method based on an independence sampler suggested by
Elerian et al. (2001) (see Supplementary Material). The treatment
of other forms of missing data, such as unobserved variables as
part of the inference algorithm is theoretically the same. In practise,
this is challenging as the dimension of the posterior density in (7)
can become very large. We present applications of bridge building
and stochastic reconstruction of unobserved processes in our case
studies. One also needs to decide upon the size of a virtual sampling
interval for which one can safely assume that (*) holds. Since there
are no analytical results we base our choice on Monte Carlo studies
of simulated systems.

3 CASE STUDIES

3.1 Case study 1: red light pulse experiment

The Arabidopsis thaliana gene Chlorophyll A/B binding Protein 2 CAB2
is regulated by light and the circadian clock (Millar and Kay, 1996). The
aim here is to estimate degradation rate of CAB2 mRNA and to reconstruct
the transcriptional dynamics of the CAB2:LUC reporter gene as a result

of a 20 min red-light induction. At subjective dawn on the 6th day of the
experiment (see Supplementary Material for a description of experiment), the
grown Arabidopsis seedlings were given a 20 min red light pulse to induce
CAB?2 expression. Samples were harvested at the indicated time points and
total RNA and total protein was extracted. Steady-state levels of LUC mRNA
were measured by quantitative PCR (Q-PCR) and an in vitro LUC assay was
used to measure LUC activity in the protein samples. Concurrently, red light-
pulsed seedlings were also imaged for LUC activity using light sensitive
cameras (Millar et al., 1995). This allows the measurement of LUC activity
within the same seedlings throughout the entire experiment, whereas the in
vitro LUC assays and Q-PCR experiments necessarily sacrificed different
samples for each time point. All data are probes from whole leaves (plots of
all time series in Supplementary Material) representing cell populations and
the activity of the clock gene can be assumed to be synchronized between
cells by the light pulse. There are three replicates of each measurement
variable sampled every half hour for a length of 7h. Matching control
replicates that have not been subject to light induction were sampled for
the same time length albeit more sparsely for the Q-PCR and in vitro assay
data.

Assuming that molecular populations all scale differently with the Q-PCR,
in vitro and in vivo imaging data, we use (1) to describe the dynamics of
mRNA and imaged LUC protein and add a third equation

dPy,/dt=ap,M(1)—8pP\(1), ®)

which represents the protein dynamics measured by the in vitro LUC protein
assays (see Supplementary Material for full model statement). The two
protein equations are identical except for differently scaled translation rates
ap and ap,. Furthermore, a constant cp is added to the imaging data to
represent some threshold level at which the camera is able to detect a signal.
To specify a form for the transcription 7(#) consider an indicator function
L(t)=1 for the time of the red light pulse, and L(#)=0 otherwise [L(1)=0
for all control experiments]. The response of mRNA transcription to the
stimulus can then be modeled as a convolution of L(#) and d(u) which is a
probability density for the waiting time u between the pulse and the initiation
of transcription, i.e.

T(t)=ay (focd(u)L(t—u)du—b—?), 9)
0

where T represents a baseline transcription. We take d(u) to be a Gamma
density with mean pr and SD ot to be estimated. The specification in (9) is
motivated by the fact that it successfully reproduced the qualitative features
observed in the data in preliminary model simulations and because d is
flexible. Since data are from aggregated cell populations, the imaged protein
data are very smooth and successive data points of the Q-PCR and in vitro
time series come from different samples of cell populations, we choose to
fit the model using the mean ODE approach with independent error. To
ensure all variables are strictly non-negative, we used an independent Gamma
distribution for g in the likelihood (5) for each of the three variables where
parameters were specified to have mean process equal to an ODE solution and
time constant variance UA%,,J,?,U%V. Applying (5) the likelihood of replicate
r=1,2,31is

TR

7€
L@ 1Y) =] [e * I, 0] Je) .0, (10)
i=1 j=1

where y;’R is the vector of observed data points i=1, ..., TR for variables
M, P, P, for replicate r under the red light experiment, yjr’c denotes observed
data points j=1,...,TC for the corresponding control experiment and g
is a product of Gamma densities. The ODE model was fitted to each of
the replicates r=1,2,3 and to the average of the replicates where prior
distributions for all parameters were chosen to be uninformative. Results of
posterior estimates are summarized in Table 1 and the model fit can be seen
in Figure 1. The mean delay time between light induction and transcription is
about 2 h with almost all transcription happening between 0.8 h and 3.2 h after

2903



B.Finkenstadt et al.

Table 1. Case 1: posterior results for selected parameters

Parameter Average rl 2 3

% 1.542 (0.019) 1.726 (0.044) 1.417 (0.121) 3.526 (0.315)
half-life ~ 0.45h 0.4h 0.49h 0.2h

Ur 2.008 (0.011) 2.101 (0.014) 1.902 (0.045) 2.362 (0.0289)
or 0.631 (0.013)  0.692 (0.014)  0.686 (0.039) 0.723 (0.0217)
T 0.012 (0.001)  0.014 (0.001) 0.014 (0.002) 0.013 (0.002)
3p 0.305 (0.0045) 0.286 (0.0040) 0.272 (0.010) 0.365 (0.0093)
half-life  2.27h 2.42h 2.5h 1.9h

Posterior means and SDs of selected estimated parameters (See Supplementary Material
for all parameters), where the red light pulse model was fitted to average data and to
single replicate datasets denoted by r1, r2, r3. Estimated rates are per hour. Degradation
rates are translated into half-lives as follows: half-life (in hours)=In(2)/degradation rate
(per hour).

1.6
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Fig. 1. This figure shows mean ODE fit for average data (data points given by
big dots) of red light pulse experiment. LUC mRNA (top left), LUC activity
in vitro (bottom left) and imaging the luminescence from LUC protein (top
right) under two experimental conditions: with and without red light pulse.
Solid lines give the mean ODE fit using mean posterior estimates for the
parameters. The 95% credible intervals (dashed lines) are shown for the
control experiments. The reconstructed transcription profile 7(¢) is shown
in the bottom right panel (the area between dashed lines gives 95% central
values of the transcription profile for 10 000 iterations of the Markov chain).

the pulse. Convergence of the Markov chains for parameters associated with
the Gamma delay is relatively quick and precise. Chains for ays and &y are
correlated and convergence for these is slower. The half life of LUC mRNA
is estimated to be around 0.5 h with some small variation between replicates.
In contrast, the chains for §;, converged quickly due to the abundance and
smoothness of the imaging data. Protein half life was estimated to be around
2-2.5h. Although the control data do not seem very dynamic they are useful
in inferring the base rates of transcription and translation. If the control series
are omitted from the analysis these rates were estimated with considerably
less precision and slower convergence due to correlations.

3.2 Case study 2: a switch model for CCA1

The Circadian Clock associated 1 (CCA1) gene in A.thaliana has been
identified as one of the core genes of the circadian clock (Wang and Tobin,
1998). In this case study, we show results for the reconstruction of an

ON/OFF switching transcription profile from the following two experimental
datasets:

(1) Native mRNA Q-PCR data: Q-PCR measurements were taken at 2h
intervals over 72h on CCA1 mRNA entrained under a photoperiod
of 18 h before being released into constant light. The data used are
an average of concentrations relative to the start of two biological
replicates.

@

~

Protein imaging: high resolution imaging data for a different
experiment with identical conditions as for data (1) were sampled
at 1.5h intervals over a length of 91.5h on LUC protein activity
resulting from LUC reporter constructs fused to the CCA1 promoter.
Similar to case study 1, all data come from whole leaves and thus
represent a population of cells where the activity of the clock gene is
synchronized between cells during the exposure to dark, light cycles
during the entrainment period (see Supplementary Material for further
details of experiment). The data used are an average of concentrations
relative to the start of 20 replicates.?

No data were available for the CCAI:LUC mRNA. However, if we assume
that CCA1:LUC and CCAI mRNA have the same transcriptional dynamics,
then the available two time series are connected in a dynamic model with
three variables where LUC mRNA and LUC protein dynamics are described
by (1) and a further equation

dM, /d1 =1 (1) — Sy, Mg (1) )

is added for the native CCAI mRNA. We assume that observed variables are
proportional to M, and P populations with scaling factors sy, and sp, while
M is unobserved. To describe the oscillatory nature of the data, we consider an
ON/OFF switching function for the transcription t(¢) = ton if transcription is
active at time ¢, and 7(t) =t if transcription is inactive. This function has
the advantage of being interpretable and parsimonious. If it produces realistic
oscillations then its simple structure makes it an interesting ingredient to
models of larger networks. Let Sw=(s1,...,sg) where 51 <s2 <--- <sp are
the times at which a switching between an ON and OFF state occurs. They
are estimated as part of the MCMC algorithm where we assume that the
number of switches and the initial state are known.? To set the phase of the
clock both the data series experienced a light—dark (LD) cycle of 18 h of
L and 6h of D at the beginning of the sampling period and this seems to
generate a higher amplitude. We allow for this by setting the transcription
on-rate to p,T,, during the first 35 h (allowing also for some delayed effect of
the dark period). For purpose of estimation, the mean ODE approach will be
appropriate for similar reasons as case study 1. However, an SDE approach
is a superior theoretical model that should be considered even if data do not
(yet) strictly comply with its underlying assumptions. We use this case study
to show the application of both approaches.

SDE approach: consider a system of SDEs formulated analogously to (2).
Since M is unobserved it can be imputed stochastically as realizations of
the SDE but the cost of computation is high. Simulation studies suggested
that the more practicable way of imputing M as solution to an ODE from
an initial condition My to be estimated had no discernable impact on our
inference results here. In order to fit an SDE model to discrete data points
for M, and P, we augment the coarse grid to a virtually fine grid [for which
assumption (*) is valid] by imputing auxiliary data in the form of bridges. Let
0 =(Sw, Ton, Tof » M, - Mo, M, Sm, - . 8p, Sp) denote the vector of unknown
parameters and let M ;,‘ and P* be the auxiliary data for M, and P, respectively.

For computational precision, we amplified the mRNA concentrations by
factor 10° and the protein concentrations by 10%.

3The number of switches and initial state are fairly obvious here. The
inference algorithm can, however, be generalized to allow for an arbitrary
number of switches and where the initial state is estimated. We will describe
work on this elsewhere.

2904



Reconstruction of transcriptional dynamics

Table 2. Case 2: posterior results for selected parameters

S, Su sp
SDE 0.426 (0.0043) 154 (0.019) 0.072 (0.0057)
ODE 0.313 (0.0273) 142 (0.101) 0.075 (0.0018)

Posterior mean and standard error estimates of selected parameters of model in case
2 using the SDE and mean ODE approach. All rates are per hour. Estimates for all
parameters and switch times are provided in Supplementary Material.

Then according to (7) the posterior distribution for the unknown ©, M3, P*
is given by

(0, My, P*|My, P) L(M,, P, My . P*|0)7(9),

where we approximate L(Mg, P, MZ,‘,P* |6) with the augmented likelihood in
(4) for small sampling intervals for all observed and auxiliary data, i.e. y=
(Mg,P,M;,‘,P*). More details of the SDE inference algorithm are provided
in the Supplementary Material.

Mean ODE approach: here the likelihood is given by (5) where the
unobserved variable M is reconstructed as a solution of an ODE from an
initial condition My to be estimated. The density g was specified to be
the product of two independent normal distributions with mean equal to

the joint ODE solutions for M, and P and with variance parameters UAZ,,g

and aﬁ. We have set t,¢=0 for the off-time as initial estimations showed
that it was not different from zero.* As the variables are concentrations
relative to initial conditions the ODE solutions are assumed to start at
one. Thus, the parameter vector for the mean ODE approach is =
(SW, on, ‘L'Off, ‘SMg ,M(), 5M,Ol, (SP, U'Mg ,Up).

To ensure identifiability in both estimation approaches the prior
distribution for CCA1:LUC mRNA degradation &y, has to be informative.
We hence used a Gamma distribution with mean 1.542 and SD 0.019,
corresponding to the results in Table 1. All other priors were taken
independently uniform in an attempt to estimate all remaining parameters
only from the experimental data at hand. Posterior estimates are given in
Table 2. Figure 2 shows the transcription profiles and model fits for both
approaches. The plots suggest that the switch model is remarkably able at
reproducing the observed oscillations. The main feature of the reconstructed
profiles is that the inactive times (around 15-18 h) are at least twice as long as
the active times (around 7 h) and this produces the pronounced asymmetric
cycles in the protein and mRNA time series. The estimates also suggest that
there is a shorter but larger burst of transcription during the dark period.
Both approaches deliver similar posterior rates for degradation. Our results
for CCAI mRNA degradation are in remarkable agreement with the analysis
in Yakir et al. (2007) whose estimates correspond to 0.23 in darkness to
0.46 in light for &, . Both approaches reliably estimate the half-life of the
LUC protein to be around 9.5h. This is surprisingly long and is probably
due to a lack in provision of luciferin. The most notable difference between
the two approaches lies in the variance estimation. The SDE approach has
to deal with the estimation of the two scaling parameters, sp and s,. We
find that their identification from the experimental data is problematic as
convergence could not achieved although this did not affect convergence of
all other parameters. The two scaling parameters were thus sampled within
some chosen bounded region of parameter space. In particular, in order for the
bridge sampling to remain numerically stable for low values of the mRNA
series, the sampling of sy, had to be bounded to artificially low values.
The identifiability problem of the scaling parameters leads to problems in
realistically quantifying the volatility. The estimated intervals in Figure 2
illustrate this for the mRNA series. For the mean ODE approach variability

Fig. 2. Results of fitting SDEs (left) and ODEs (right) in case study 2.
Top panel shows the mean reconstructed transcription profile 7(#) using the
switch approximation. Middle panel shows results for M,. Bottom panel
gives results for P. Big dots are experimental data for M, (middle panel)
and P (bottom panel). The variation is shown as follows: for SDE approach
(left): solid lines in middle and bottom panel give the 5%, mean and 95%
values computed from 10 000 simulations of the SDE (using mean posterior
parameter estimates). For ODE approach (right): solid lines corresponds to
the mean ODE fit (using mean posterior parameter estimates) plus/minus
twice the mean posterior standard error.

is measured by the posterior standard error of the fit similar to a regression
and the graph shows that predictions can be made more precisely about the
protein dynamics than about the native mRNA. This is reflecting the fact
that the protein data are more aggregated and smoother time series than the
mRNA series.

3.3 Case study 3: Stochastic transcription for single
cell data

In this experiment protein activity was imaged from GH3 rat pituitary cells
stably transfected with a construct comprising a 5 kb human prolactin gene
promoter fragment linked to a destabilized EGFP reporter gene (hPRL-
d2EGFP) (see Supplementary Material for details of experiment). Images
were taken 108 times in 15 min intervals giving a total of 27 h of data for a
single cell (Fig. 3). We assume that the dynamics are described by the SDE
model in (2). Since M is not observed we cannot identify the degradation rates
(8m,8p) and a strongly informative prior density is needed. Here, we assume
that each of them have an independent Gamma distribution with mean 0.4
for 87 and 0.5 for 8p.5 The prior variance was arbitrarily chosen to be small
at 0.02 for both parameters. Since M is unobserved we can arbitrarily fix
sy =1. Given the particular form of an experiment, where transcription is
induced and afterwards comes back to its initial level, we have specified ()
as follows

boexp(— ) 1by  1<by
()= ) (12)
_ (t=b3)*
boexp(—-—7-=)+b4 t>bs,

where the parameters b; are to be estimated. Priors for parameters different
than degradation rates were intended to be uninformative. Here, we used
exponential priors with means given in Table 3. The challenge for inference
here is to integrate over a fully unobserved process M whilst sampling bridges

4We could not set Toff =0 in the SDE case for the practical problem that the
bridge building algorithm becomes numerically unstable for values of the
mRNA too close to zero.

>These rates were motivated by preliminary estimation using a small dataset
from other experiments. They are used here only to demonstrate the case as
their estimates may change if more data were available.
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Fig. 3. Left: Time series of fluorescence intensity used in case study 3. Solid
and dashed lines represent experimental and simulated data, respectively.
The variation of the SDE fit to the real data is shown by the 5% and 95%
values computed from 1000 simulations of the SDE (using mean posterior
parameter estimates). Right: Box-plot representing transcription profile in
molecules per hour inferred from experimental data presented in the top
figure. Each box represents 50% credibility interval and median of posterior
distribution of the reconstructed transcription rate at particular time point.

Table 3. Case 3: posterior inference results

Value Prior Simulation Experiment

% 0.44 I'(0.44,0.02) 0.56 (0.36-0.92 ) 0.45 (0.26-0.82 )
dp 0.52 '(0.52,0.02) 0.59 (0.38-0.89 ) 0.71 (0.45-1.09 )
o 20 Exp(100) 16.97 (6.54-78.98) 0.46 (0.14-1.51)
sp 0.2 Exp(1) 0.17 (0.09-0.3 ) 2.11 (1.24-3.56 )

Parameter values used in simulation study. Priors, posterior medians and 95% credibility
intervals inferred from both simulated and experimental data. Rates are per hour.
F(u,zrz) denotes Gamma distribution with mean p and variance o2. Full list of all
parameter estimates is provided in Supplementary Material.

to augment the discretely observed P. Let P* denote the vector of bridges
augmenting the P process and M* denote the latent M variable [we chose a
grid size of 1 min for which we assume that (*) holds]. The vector of unknown
parameters is 6 =(8y7,8p, 0, sp,bo,b1,b2,b3,bs). The posterior distribution
takes the form

7(®,M*, P*|P)ocL(M*, P*, P|®)rr(®) (13)

where we approximate L(M*,P*,P|®) with the likelihood (4) for the
augmented data case, i.e. y=(M*, P*,P). In practise, this is a challenging
sampling problem as the dimension of the posterior is very large and
traces were highly autocorrelated. Faster convergence is achieved by
reparameterizing the model (details of this and the algorithm are given in
the Supplementary Material). The algorithm was first tested on simulated
data from the SDE model with chosen parameters (Table 3). Artificial data
are simulated on a fine scale of 15/51 min and coarse data are extracted
for P at 15 min intervals. The simulated and observed time series, and the
reconstructed t(¢) are shown in Figure 3. Posterior inference results are
given in Table 3. Note that since M is not scaled the transcription profile
corresponds to molecular population sizes which here are about 150 mRNA
molecules per hour. This case study demonstrates that for high frequency
single cell data the SDE approach can be extremely powerful as it allows
estimation of absolute transcription rates in terms of molecule numbers
and since sp can be estimated it is possible to calculate back to molecular
levels of protein and translation rate. The need for precise prior information
about degradation rates is irrespective of either SDE or ODE approach. The
problem of non-identifiability of these parameters is due to not observing M
as one can infer both degradation rates in either approach if both M and P
are observed.

4 DISCUSSION

In this study, we suggest a dynamical model relating protein and
corresponding mRNA dynamics via transcription and translation
and suggest methods for model fitting. The applications here were
motivated by the availability of gene reporter data but the model
and methodology apply to many other scenarios where it is of
interest to link protein and mRNA dynamics. While a stochastic
model, such as (2) applies to single cell data, caution needs to be
exercised in formulating an ODE model, such as (1) for multi-cell
data. In order to reasonably assume such a joint mechanistic model
it is essential that the individual cell activities are synchronized
with respect to the gene of interest. Rate constants associated with
processes of degradation, transcription and translation arise as model
parameters and it is an important question whether these can be
identified. In addition to a functional kind of non-identifiability of
parameters in complex dynamic models as considered in Hengl e al.
(2007) here, we find that practical or statistical non-identifiability
of model parameters may result from unobserved variables. Case
study 1 demonstrates that one can estimate all rate constants in
systems of equations of the type given in (1) if all model variables—
albeit coarse—are observed over time. Inference precision increases
with the frequency at which the processes are sampled. In contrast,
Cases 2 and 3 have latent variables and model inference is only
feasible with informative prior knowledge of some parameters.
Simulation studies of the model (using artificial parameters) help
in identifying which sets of parameters need to be informed from
other experiments. In case 3, prior knowledge of both degradation
rates was needed as with M unobserved, parameters can trade-off
giving rise to protein dynamics that is virtually indistinguishable
via likelihood from the observed protein process. The specification
of the functional form for the transcription profile also plays
a role in practical identification. Even if M is observed the
parameter estimates associated with transcription and degradation
are correlated for obvious reasons. Such correlations affect precision
of estimates and convergence of the Markov chain but can be
alleviated by sampling more frequently, choosing a parsimonious
functional form for transcription, and by technical aids such as the
construction of independence samplers and reparameterization of
the model. We believe that the functional specifications for ()
suggested in our case studies are useful in conjunction with gene
transcription. A theoretical application of the switch function in
clock modeling can be found in Aase and Ruoff (2008). Although
the estimation of the switch model seems too high dimensional for
datasets with many switches, this could be overcome by assigning
probability distributions to the on- and off-times in the framework
of a Bayesian hierarchical model.

Our results demonstrate that MCMC methods for ODEs and
SDEs provide practical algorithms for reconstruction transcription
profiles whilst estimating some of the rate parameters involved.
As the real population dynamics are naturally stochastic SDEs
provide the superior theoretical model. However, the mean ODE
approach can be useful as a vehicle for estimation when the data
are not fully compatible with the SDE assumptions. Whilst they
usually describe the same model in the mean, their difference
lies in the specification of the variance. The SDE model provides
a rigid description of the volatility process which is rigorously
derived for the stochastic dynamics of the molecular processes. In
theory, it is straightforward to allow for additive measurement error
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[see Heron et al. (2007) for estimation of SDEs with measurement
error]. However, identification of an unknown measurement error
variance is difficult and—to our knowledge—is not possible when
the data are coarse and indirectly measured with unknown scaling
factors. The variance process of the mean ODE approach is not
rigorously derived and can be specified by the modeler in an
attempt to capture anything known about the residual process
and measurement error. Estimation algorithms for the mean ODE
approach are straightforward to implement although for higher
dimensional or less stable systems more difficulties may occur.
The algorithm for SDE estimation can be challenging to implement
due to bridge sampling and is computationally expensive. Case 2
shows a problem that we have also encountered in Heron er al.
(2007), namely if molecular populations are measured indirectly
then the estimation of unknown scaling parameters can be difficult
in practise. This may happen as a consequence of observing data
that are too coarse, in the sense that too little information about
the volatility process is revealed, or that are otherwise not directly
compatible with the SDE assumption. However, drawbacks of the
SDE approach are associated with the current quality, quantity and
availability of the data. Case study 3 exemplifies that SDE estimation
constitutes a very informative approach in calibrating all processes
back to the molecular population levels as the scaling parameters can
be identified. Under suitable assumptions the SDE model provides
a theoretically well-founded modeling approach for describing the
dynamics of molecular populations in a single cell. Estimation of
SDEs is well studied and feasible and is highly informative when
relatively frequent and clean (i.e. with little measurement error)
single cell data are available on all model variables.
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