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Genome analysis

Comments on sequence normalization of tiling array expression
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ABSTRACT

Motivation: Methods to improve tiling array expression signals
are needed to accurately detect genome features. Royce et al.
provide statistical normalizations of tile signal based on probe
sequence content that promises improved accuracy, and should be
independently verified.

Results: Assessment of the sequence content normalization
methods identified a problem: confounding of probe sequence
content with gene structure (intron/exon) sequence content.
Normalization obscured tile signal changes at gene structure
boundaries. This and other evidence suggests that simple sequence
normalization does not improve detection of genes from tile
expression data.

Availability: http://wfleabase.org/genome-summaries/tile-expression/
tileseqnorms/

Contact: gilbertd@indiana.edu

1 INTRODUCTION

The paper of Royce et al. (2007) addresses important aspects of
artifact in tiling array signal detection: ubiquitous hybridization
that varies with probe sequence content. They back this up with
uncomplicated, usable R statistics for the methods presented.

Gene structures show changes in sequence GC content: introns
and intergene regions generally have lower GC content than exons
(Kalari et al., 2006; Mount et al., 1992). The sequence normalization
methods do not address well this structure relation, and whether
normalization affects accurate discrimination of structures. The
authors compare human RefSeq genes versus non-RefSeq regions
(control) paired for GC content. This test may not be sufficient
to disentangle non-specific signal due to greater hybridization to
GC-rich probes, from true signal of transcribed regions.

2 METHODS

We used R source code from the supplement at http://tiling. gersteinlab
.org/sequence_effects/ for this article: sequence_normalization_functions.R,
both robust least squares (RLS) with iteration, and quantilenorm, the latter
seems the better one. These methods have the value of being clear and
uncomplicated statistical approaches to adjusting tile signals for effects of
probe sequence.

Sample cases of Daphnia pulex scaffolds 1 and 17 and Drosophila
melanogaster chromosomes 2L and 4, containing 4300 and 12900 exons,
respectively, were used. Nimblegen tiling array data for Daphnia transcripts
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(J.K.Colbourne et al., manuscript in preparation) on these scaffolds includes
180000 tiles of 50 bp, overlapping every 25 bp. Affymetrix tiling data for
Drosophila transcripts (Manak et al. 2006; modENCODE transcriptome
data, unpublished data) includes 607 000 non-overlapping tiles of 36 bp. Tile
signals above median threshold before and after normalizations that overlap
exons were counted. This measures sensitivity (exons with tile expression/all
exons) and specificity [1 - (high signal tiles outside exons/all high-signal
tiles)]. Because one use of tile expression is to detect gene structures, changes
at exon/intron bounds were measured, as the difference in successive signals.
Intergene regions were not used due their lower certainty of annotation. Maps
of gene structures, tile signal and GC content were viewed, which gave a
first clue that sequence normalization was affecting clarity of gene structure
detection.

A third comparison was with overlapped tiles from Nimblegen arrays
for both species. Pairs of overlapped probes (50 bp long, overlapped 25 bp)
on were located, 589900 for Daphnia, and 946 400 for Drosophila. These
overlapped tiles were pair-wise compared for GC content and signal to
indicate if a correlation exists for sequence effects within the same exon
and intron structures.

3 RESULTS

We were able to use and reproduce a GC content effect of
probe sequence for both Daphnia (Nimblegen) and Drosophila
(Affymetrix) tile expression data. Signals normalized this way do not
differ grossly from the raw signals. However, fuzziness at detecting
gene sequence structure (exon/intron boundaries) appears to be one
result of sequence content normalization. Sequence normalization
(quantilenorm) reduced sensitivity and specificity for exon detection
by 1% for the Daphnia data, and by 2% for Drosophila data.

3.1 Normalization reduces GC content correlation

The quantile normalization and RLS methods reproduce generally
the GC content effect of probe sequence reported by Royce and
colleagues, for both species experiments. The plots in Figure 1 look
compelling: raw signal gives a higher signal for GC-rich probes.
After normalization by sequence, that effect goes away. Average
exon signal and GC values are above those of introns, and this
remains after normalizations, although correlation of GC and signals
is reduced.

3.2 Normalization reduces gene structure signals

For detecting gene structures, the overlap of high-scoring tiles with
known exons provides a measure of accuracy for normalization
results. Both species data showed a drop off in sensitivity and
specificity with normalized signal.
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Fig. 1. (A) Raw and two normalized signals, by base per probe sequence
position and (B) as a dot plot of signal strength versus GC content. Plots (A)
are as in Royce et al. (Fig. 1) of average signal per base over probe sequence
position. Bases G + C in Raw are at the top, A+ T at bottom.
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Fig. 2. Tile score statistical power at finding gene/exon boundaries. Student’s
t-statistic and logjo (probability) for raw (triangle) and quantile norm (cross)
scores measure ability to distinguish boundary at base positions away from
position 0 (gene or exon boundary £ 60 bp). The ¢-statistic is score difference
from position 0. GC content (line) shows expected spikes at boundaries
(x position 0): coding start and end, intron->exon, and exon->intron, with
increased GC% in exon regions.

Use of raw signals improves the detection of gene structures as
seen with signal changes at exon/intron boundaries. One effect of
normalization is to obscure gene structure boundaries, which are
often related to sequence changes. Figure 2 plots the statistical
power of raw and quantile norm signals to distinguish exon and gene
boundaries. The raw signal has a greater statistical discrimination
of boundaries. These effects are correlated with GC content, also
displayed. With a per-base comparison of GC and score, the major
effect is for higher score-GC correlation in intron regions. Quantile
normalization reduces this correlation, so that GC-poor introns have
a relatively higher tile score.

Using partially overlapped tiles of experiments for both species,
differences in GC content between overlapped tiles had lower
correlation with signal level. The overall correlation of GC and
signal strength is 20% in both species. For overlapped tiles this
correlation drops to 3% (Drosophila) or 15% (Daphnia). When
signal and GC content are measured at exon—intron boundaries,
overlapped tiles have a high 60% correlation for Daphnia, and
9% in Drosophila, both about three times higher than outside of
boundaries. These species differ in total GC content, and in DNA

Daphnia pulex, Nimblegen tile expression
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Fig. 3. Exon—intron signal loss examples. Genome maps show gene models,
the raw and normalized tile signals and GC content, for Daphnia and
Drosophila genes. Box (highlighted) areas where normalization has obscured
the biological signal.

methylation processing genes associated with variations in GC, so
large species differences are not unexpected.

Nornalization problems at detecting gene structures were first
evident on gene maps. RLS and quantile normalization down-
weighted exons and up-weighted introns so that the normalized
signal was strongest for introns of several genes. Figure 3 shows
examples of this for two genes. The boxed areas show cases where
detection of intron-exon boundaries by tile signal is diminished
after normalization compared with the raw tile signals. These areas
coincide with changes in GC content. The normalizations have
increased the score, and thus noise, of non-expressed introns and
intergenic regions.

4 DISCUSSION

Sequence content normalization is a useful concept for improving
tile array signal accuracy. Yet, it needs to address gene structure
effects if used in transcriptome detection experiments. Royce et al.
(2007) describe the technology and motivation for probe sequence
normalization. Gene-centric microarray studies can select probes
within a gene transcribed region in order to optimize hybridization
on arrays. This optimizing selection is not possible with genome
tiling, where probes cover the genome in short spans of different
sequence content. The results here indicate normalization of tile
array scores by sequence content obscures biological signals.

Johnson er al. (2008) find that probe GC content variation is
not a significant cause of tile array artifacts. This study used
spike-in mixtures with a blind test at several laboratories, with
different platforms and measurement algorithms, for ChIP-chip
tiling microarrays. One result is that probe GC content does not
influence rate of false positives, false negatives or true positives.
Simple tandem repeats and segmental duplications are more often
associated with false calls.

When tile expression is used to detect gene structures, there is
a dilemma because gene structures and ubiquitous hybridization
artifacts are confounded with the sequence content. There are cases
where sequence normalization improves apparent gene-structure
signal in low-GC regions. If there is a way to combine this with
gene structure sequence changes, this would be a helpful analysis.
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One possible use would be to combine sequence normalization
with gene structure modeling (e.g. generalized hidden Markov
models). Another option may be to estimate transcription fragments
without signal normalization, to best detect boundaries, then apply
sequence normalization over these fragments to reduce ubiquitous
hybridization effects.
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