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ABSTRACT

Motivation: Genome-wide association (GWA) studies have proven
to be a successful approach for helping unravel the genetic basis of
complex genetic diseases. However, the identified associations are
not well suited for disease prediction, and only a modest portion of
the heritability can be explained for most diseases, such as Type 2
diabetes or Crohn’s disease. This may partly be due to the low power
of standard statistical approaches to detect gene–gene and gene–
environment interactions when small marginal effects are present. A
promising alternative is Random Forests, which have already been
successfully applied in candidate gene analyses. Important single
nucleotide polymorphisms are detected by permutation importance
measures. To this day, the application to GWA data was highly
cumbersome with existing implementations because of the high
computational burden.
Results: Here, we present the new freely available software
package Random Jungle (RJ), which facilitates the rapid analysis
of GWA data. The program yields valid results and computes up to
159 times faster than the fastest alternative implementation, while still
maintaining all options of other programs. Specifically, it offers the
different permutation importance measures available. It includes new
options such as the backward elimination method. We illustrate the
application of RJ to a GWA of Crohn’s disease. The most important
single nucleotide polymorphisms (SNPs) validate recent findings in
the literature and reveal potential interactions.
Availability: The RJ software package is freely available at
http://www.randomjungle.org
Contact: inke.koenig@imbs.uni-luebeck.de; ziegler@imbs.uni-
luebeck.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genome-wide association (GWA) studies have become a standard
approach for helping unravel the genetic basis of complex genetic
diseases. The recent successes are tremendous, and a series of new
loci have been identified using single marker analyses (McCarthy
et al., 2008; Samani et al., 2007; Wellcome Trust Case Control
Consortium, 2007). Unfortunately, only a small portion of the
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heritability was explained by corresponding single nucleotide
polymorphisms (SNPs) for most diseases such as Type 2 diabetes
(6%) or Crohn’s disease (20%) (Manolio et al., 2009). Furthermore,
SNPs identified by GWA studies for various diseases make poor
classifiers (Jakobsdottir et al., 2009).

For overcoming such drawbacks and recognizing the complexity
of the underlying biology, further mechanisms such as gene–gene
interaction need to be taken into account (Moore et al., 2010).
However, the discovery of gene–gene interactions using GWA
studies remains challenging with traditional statistical approaches
(Cordell, 2009; Moore et al., 2010). Given genotype data at
different loci, an exhaustive search of interactions between all loci
is the obvious way of testing interactions. Testing all two-locus
interactions is computationally feasible although time demanding
(Marchini et al., 2005). However, an exhaustive search of higher
order interactions is computationally impractical because the
number of tests increases exponentially with the order of interaction
(Cordell, 2009).

One approach to deal with such large numbers of SNPs is to
first perform univariate tests on each SNP, discard SNPs with
high P-values and apply interaction methods, e.g. within logistic
regressions, to SNP subsets afterwards (Hoh et al., 2000; Marchini
et al., 2005). Unfortunately, such approaches may result in low
power for SNP–SNP interactions with very small marginal effects.

Another concern is genetic heterogeneity, i.e. different subsets
of genes affect the same disease, and traditional statistical methods
show limitations when genetic heterogeneity is present (Province
et al., 2001).

A promising alternative is Random Forests (RFs; Breiman, 2001).
RF was applied successfully to genetic data in various studies
(Bureau et al., 2005; Chang et al., 2008; Jiang et al., 2009;
McKinney et al., 2009; Sun et al., 2007), and it is anticipated that
RF will help to detect gene–gene interactions in genome-wide data
(Moore et al., 2010). It has been shown that RF can substantially be
more efficient than standard statistical methods in ranking the true
disease-associated SNPs in order to detect SNP–SNP interaction
(Lunetta et al., 2004). The method is able to detect SNPs with
small effects and to deal with genetic heterogeneity because separate
models are automatically fit to subsets of data defined by early splits
in the tree (Lunetta et al., 2004; Province et al., 2001). In addition,
RF is able to handle SNPs that are associated in a non-linear fashion.

The RF method is a specific data mining method. In data mining,
in general, algorithms attempt to identify an unknown concept based
on randomly chosen examples of the collected data. The aim is to
find a prediction rule that correctly classifies new instances of the
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concept (Breiman, 2001). Thus, RF makes fewer assumptions about
the functional form of the model, as required by statistical tests
(McKinney et al., 2006).

A grown tree in a forest is often graphically represented by an
upside down tree. Multiple paths lead through the tree from the root
to different leaves via various nodes. Each node corresponds to a
specific predictor variable. Thus, a path is a sequence of predictor
variables (for details, see Section 2.1 and König et al., 2008). Such a
predictor variable sequence includes potential interactions between
them in terms of hierarchical dependencies (Cordell, 2009; Moore
et al., 2010). Thus, the RF method allows for interactions between
SNPs.

RF yields a classification result and a measure of the importance
for each variable. Variable importance (VI) quantifies the impact of
a SNP in predicting the response and may reflect a causal effect. In
turn, it can be used to select the relevant SNPs from a GWA study
(Ziegler et al., 2007).

Although appealing, RF has rarely been applied on the genome-
wide level. In analogy to standard statistical approaches, this is due to
the computational intensity and memory requirements (Zhang et al.,
2009; Ziegler et al., 2007). The original RF implementation, termed
RF in Fortran, by Breiman and Cutler (2004) designed to analyze
low-dimensional data, i.e. a low number of SNPs, with a large
number of observations, e.g. 100 SNPs and 10 000 observations.
It has been successfully used, e.g. by Bureau et al. (2005) in a
candidate gene case–control study involving 42 SNPs. However, it is
computationally and memory inefficient so that not more than 10 000
of SNPs can be analyzed on a standard machine within reasonable
time and memory usage (Ziegler et al., 2007). Furthermore, the
code is not user-friendly because the program has to be modified
and compiled anew, whenever a new dataset is used.

An alternative implementation is the randomForest package for
the programming language R (R Development Core Team, 2009) by
Liaw and Wiener (2002). It is user-friendly, and it has been often
used in applications (Ziegler et al., 2007). The source code of the
package randomForest consists of R, C and Fortran source code.
Elementary subroutines were left in Fortran code. However, the same
computational and memory limitations apply as to RF in Fortran.

One approach to overcome the memory issue is to split up the
GWA data into small chunks, which are subsequently analyzed
separately (Jiang et al., 2009; Schwarz et al., 2007). The results
of all processed chunks are finally combined. Through this, main
effects are detected, but one may fail to discover some important
interaction effects due to data separation. Thus, these approaches do
not overcome the restrictions in detecting complex interactions.

An alternative has recently been presented by Zhang et al. (2009).
In their package Willows, they compress the GWA data internally
and subsequently apply RF. However, it is slow for large values of
the mtry parameter (see Section 2) as recommended for datasets with
many noise variables such as GWA study data (Breiman and Cutler,
2004; Liaw and Wiener, 2002). Tuning mtry for optimizing the
performance of the forest is also strongly recommended (Breiman
and Cutler, 2004), which can hardly be done with Willows. Using
this program can be computationally intensive, thus time demanding.

Here, a novel software package called Random Jungle (RJ) is
presented, which has been specifically tailored for the large-scale
analysis of GWA studies. This computational and memory efficient
implementation of RF is able to analyze hundreds and thousands of
samples and SNPs.

In the following, we first briefly introduce the RF methodology,
including the growing procedure and essential features. Next, we
describe the estimation of various VI measures. Specifically, we
show differences between importance scores of randomForest and
RF in Fortran. After these theoretical considerations, we describe the
RJ software and demonstrate its superior computational performance
when compared with other implementations. Finally, we illustrate
its use with data from a GWA study on Crohn’s disease.

2 METHODS

2.1 Random forests
RFs is an ensemble consisting in multiple classification and regression trees
(CART) that are grown using a bootstrap sample of given data and without
pruning. In general, an ensemble is a group of classifiers in which the
classifier is only required to perform slightly better than random guessing
or coin flipping. This property is fulfilled by many base classifiers, such as
CART (Breiman, 1996; Schapire, 1990). With a CART as base classifier,
a sample is classified by taking the majority vote over all tree classifiers
in a forest (Breiman, 2001). RF has been shown to provide good accuracy,
robustness to noise, internal estimation of error, stable classifiers and VI
(Breiman, 2001; Breiman and Cutler, 2004; Meng et al., 2009). The RF
procedure takes the following steps (Breiman, 2001):

(1) Consider a dataset X , termed training data, consisting of one response
variable and many predictor variables from N samples. The total count
of predictor variables is M, with M being substantially larger than N .

(2) A bootstrap sample X∗ consisting of N samples is drawn with
replacement from the original training data X. On average, one-third
of all samples are left out due to the bootstrapping process. These
samples are called ‘out-of-bag’ (OOB) data X\X∗.

(3) A CART t is grown using the bootstrap dataset X∗. The CART is
constructed by recursively splitting data into distinct subsets, so that
one parent node leads to two child nodes. For splitting data, an
appropriate split rule has to be selected so that the subsets of each
child node are purer than the subset of corresponding parent node.
The goodness of the split is defined to be the decrease in impurity
as follows: �i= iparent −(pleft · ileft +pright · iright). The proportion of
samples in left and right nodes is given by pleft and pright, respectively.
The measure of impurity iparent, ileft and iright of parent node, left and
right child node is determined by the Gini index, i.e. i=1−�jp(j)2,
where is the proportion of samples that are labeled with class j in
that node. At each node, a random subset of all predictor variables
is chosen without replacement to determine the best split. The size
of the subset is given by the parameter mtry. Although different
variables might be selected at each node to be tested, the number
mtry is held constant during the procedure, and the default setting is

mtry=
⌈√

M
⌉

, where �·� denotes the next larger integer.

(4) The tree t is grown to its largest extent, and no pruning proceeds. The
final nodes are called terminal nodes.

(5) Steps 1 to 4 are repeated to grow a specific number of trees, and, for
classification, the majority vote over all trees in the resulting forest is
used.

(6) Finally, the OOB error fraction is calculated by classifying each
sample of the OOB. Each observation is predicted by the trees for
which it is an OOB observation. The prediction accuracy of the
classifier is estimated by subtracting the OOB error fraction from its
maximum, which is one. The prediction accuracy estimation method
is a suitable surrogate for cross-validation (Breiman, 2001).

A special feature of RF is the calculation of proximities between samples.
For this, after a tree is grown, every subject is classified by each tree. Then,
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each pair of subjects is compared with regard to its final stopping point.
That is, if they are assigned to the same terminal node in a single tree of
the forest, the proximity between them is increased by one. The proximity
matrix is useful, e.g. for replacing missing data, imputing data, identifying
outliers and finding class representative samples called prototypes.

RF can be turned into an unsupervised learning method. To initialize
the process, the original dataset is considered as Class 1. A new synthetic
dataset of the same number of samples and predictor variables is created
and labeled as Class 2. This synthetic data is created by sampling at random
without replacement from the univariate distributions of the original data.
The original and the synthetic data are merged. The resulting artificial two-
class dataset is analyzed by RF in order to produce sample proximities as
described above. The 2D multidimensional scaling (MDS) technique (Cox
and Cox, 2001) is subsequently applied to the proximity matrix. The method
yields a 2D graphical representation of the underlying sample structure. To
identify clusters in the sample structure, the graphical representation has to
be investigated by standard clustering techniques, such as k-means clustering
(Macqueen, 1967).

A further feature is the computation of sample margins. A sample
margin is the difference of proportional votes for the correct class and
maximum proportional votes of remainder classes. Sample margins are
defined between 1 and −1. A high positive sample margin means a coherent
and correct classification.

The standard RF methodology can be extended by a flexible backward
elimination procedure. The procedure identifies small sets of variables
that can achieve good predictive performance. To select a small subset
of variables, RFs are fitted iteratively. Specifically, at each iteration step
a RF is grown and its importance (see Section 2.2) for classification is
calculated. Variables that yield small VI scores are discarded subsequently.
The elimination procedure is stopped when the number of remaining
variables falls below a specific threshold or when the OOB accuracy is
maximized (Diaz-Uriarte and Alvarez de Andres, 2006).

2.2 Importance
An essential standard feature of RF is that the importance of each predictor
variable can be estimated. The RF approach serves two fundamentally
different VI measures, the Gini importance and the permutation importance.
The Gini importance of a predictor variable Xi is the total decrease in impurity
�I =�k�ik . The Gini importance is obtained by adding up impurity decrease
�ik of all nodes in a forest, where the corresponding predictor variable was
selected for splitting. The Gini importance has been shown to be biased
when the number of categories differs between predictor variables (Archer
and Kimes, 2008; Strobl et al., 2007). Moreover, bootstrapping observations
without a replacement yields a less biased VI (Strobl et al., 2007).

Another VI is the unscaled permutation importance, which is the mean
decrease of accuracy for a predictor variable. This VI is calculated as follows:
first, the prediction accuracy At is estimated for each tree t in forest T using
OOB samples; second, the values of corresponding predictor variable are
randomly permuted; third, prediction accuracy A∗

t is estimated using OOB
samples again; and finally, the difference in accuracy, averaged over all trees
in the forest, gives the unscaled permutation importance of the predictor
variable

d = 1

|T |
∑
t∈T

At −A∗
t . (1)

The scaled permutation importance, often called z-score, is calculated by
dividing the mean decrease of accuracy by its standard error over all trees in
the RF

z= d√
s2/|T | . (2)

The variance estimators differ between randomForest and RF in Fortran.
As a result, both programs provide different scaled permutation importance

scores. The estimator of randomForest is defined as

s2 = 1

|T |
∑
t∈T

NOOB,t(At −A∗
t )2 −d, (3)

where NOOB,t determines the number of samples in OOB of the current tree.
The variance estimator of RF in Fortran is defined as

s2 = 1

|T |
∑
t∈T

(At −A∗
t )2 −d. (4)

VI measures as described above can show a bias of correlated predictor
variables such as SNPs in linkage disequilibrium (Meng et al., 2009;
Nicodemus and Malley, 2009; Nicodemus et al., 2010; Strobl et al., 2008).
Permuting a predictor variable using the usual permutation scheme disrupts a
potential dependency structure between the permuted variable and the other
predictor variables. The disruption entails an inflation of the importance value
of the predictor variable when predictors were associated with the outcome
(Nicodemus et al., 2010; Strobl et al., 2008).

The conditional VI (CVI) is an approach to solve this problem (Strobl
et al., 2008). For preserving the dependency structure between a specific
predictor variable and other predictor variables, the predictor variable in
question is permuted only within groups of observations. Group assignment
is determined by analyzing the corresponding dependency structure as
described in detail by Strobl et al. (2008). It has been shown that the CVI
reflects the importance of predictors of correlated predictors more reliably
than usual importance measures (Strobl et al., 2008). Therefore, the CVI
should be applied to data that contain correlated predictor variables such as
SNPs in linkage disequilibrium.

3 IMPLEMENTATION

3.1 Random jungle
The novel software package RJ implements all features of the
reference implementation randomForest such as various tuning
parameters, prediction of new datasets using previously grown
forests, sample proximities and imputation. Commonly used VI
measures are implemented, such as Gini importance, permutation
importance and conditional importance measures. The features of RJ
are shown in Supplementary Table 1. RJ additionally implements the
variable backward elimination. When multiple CPU are available,
RJ is able to perform RF on multiple CPUs simultaneously using
multithreading and Message Passing Interface (MPI) parallelization.

RF in Fortran and randomForest grow ensembles of a CART, but
the RF method is not restricted to a CART. Therefore, RJ serves
a generalized framework for tree growing, which can be utilized
to extend the set of tree types. RJ also implements CART, but
several tree types such as conditional trees (Hothorn et al., 2006) are
currently under construction and will be added to RJ in the future.

RJ is written in the C++ language, and the program structure
fundamentally differs from the randomForest and RF in Fortran
implementations. A comparison of importance scores, computing
time and memory consumption across different implementations is
given in Section 3.2.

The software is freely available on www.randomjungle.org, where
a detailed documentation of RJ can be found.

3.2 Comparison of importance values
A simulation study was set up for comparing importance score
ranks of RJ with the reference implementation randomForest. To
this end, we used the simulated data for rheumatoid arthritis (RA)
that were provided for the Genetic Analysis Workshop (GAW) 15
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(Miller et al., 2007). Several loci contribute to the susceptibility,
and nine major gene effects (Locus A–H and Locus DR) and three
key covariate effects (smoking, age and sex) were simulated. The
first replicate of the genome-wide SNP dataset, RA affection status
and gender was utilized for the purpose of comparison. To mimic
a case–control study, one affected sibling per affected pair for the
cases and one unaffected sibling per control family for the controls
were randomly selected. The dataset for application comprises
1500 cases and 2000 controls genotyped at 9187 SNPs. Ranks of
Gini and unscaled permutation importance scores were investigated
by applying RJ and randomForest to a subset of the GAW15
data. The subset comprised three informative predictor variables,
i.e. sex, Locus C/DR (SNP6_153) and Locus D (SNP6_162), and
three uninformative predictor variables (SNP2_394, SNP3_481,
SNP1_98) that were randomly selected out of the set of all
uninformative predictor variables (Miller et al., 2007). Each
program was applied 500 times in order to capture the variation
of importance ranks. Data was analyzed using default parameter

settings of 500 trees and mtry=
⌈√

M
⌉

=3. Finally, importance

ranks of predictor variables yielded by randomForest and RJ
were compared using boxplots. All applications were performed
on computers running the SUSE Linux operating system with a
2.33 GHz Intel dual quad-core processor (8 CPUs) and 16 GB
memory.

3.3 Performance and application to Crohn’s disease
The real dataset was used to compare the different implementations
and to find potential interactions.

The performance of RJ, randomForest, RF in Fortran and Willows
was compared in terms of computing time and memory consumption
of each software. RJ was run in two different modes, namely in a
single CPU mode and in a 40-CPU mode using multithreading and
MPI. All applications were performed on computers running the
SUSE Linux operating system with a 2.33 GHz Intel dual quad-core
processor (8 CPUs) and 16 GB memory. In the 40-CPU mode, five
processes were distributed among five computers. Each process was
performing on eight CPUs simultaneously using multithreading.

The real dataset is from a Crohn’s disease GWA study, which has
been described previously in detail (Duerr et al., 2006). In brief, data
of 513 Crohn’s disease affected Caucasian cases and 515 Caucasian
controls were analyzed. The samples were genotyped on the Illumina
HumanHap300 Genotyping BeadChip (317 503 SNPs). The GWA
study was funded by NIDDK IBD Genetics Consortium. Samples
were visualized using MDS plots and outlying persons were
excluded from MDS clusters by visual inspection of two experienced
experts, resulting in 1006 persons (501 cases and 505 controls). Sex
was the only covariate in the analysis in addition to the SNPs.

SNPs with a call rate <0.98 per study group, a MAF <0.05
in the cases and controls combined or a P-value <0.0001 for
deviation from Hardy–Weinberg expectations in control group
were excluded, resulting in 275 153 SNPs. The RJ software can
handle missing data, i.e. imputing internally and analyzing data
subsequently, but it is advised to impute data using standard
imputing tools (Schwarz et al., 2009). Missing genotypes were
imputed by the IMPUTE program (Marchini et al., 2007) using
default parameters. Imputation uncertainty cannot be taken into
account. Each implementation performed a RF analysis using the
default forest size of 500 trees. To optimize the performance of the

forest, the parameter mtry was tuned as recommended (Breiman and
Cutler, 2004). The RF manual recommends choosing the mtry value
that minimizes the OOB prediction error fraction. The parameter
mtry was optimized by using several candidate values based on
the formula mtry = �M/20·(1,...,19)

′ � is the number of predictor
variables which are SNPs and sex. The results are shown in
Supplementary Table 2. The minimal OOB prediction error was
obtained for mtry = 247 638.

For investigating the genetic relevance of SNPs and their
interactions, data analysis was performed by RJ using 100 000 trees
in forest. The parameter mtry was optimized for 100 000 trees by
comparing different values shown in Supplementary Table 2. The
optimal mtry was found to be 27 515. The CVI was calculated for
each SNP. For comparing results with a standard univariate method,
the 275 153 SNPs were also analyzed using the common trend test,
which tests SNPs for being associated with a disease (Ziegler and
König, 2010). The P-values and their rank were compared with
results of RJ analysis.

A network was created using the top 10 genes. The network was
generated through the use of Ingenuity PathwaysAnalysis (Ingenuity
Systems, www.ingenuity.com).

4 RESULTS
Comparison of importance scores shows that RJ and randomForest
rank all variables in the same order. Results of Gini importance
score and permutation importance scores investigation are shown
in Supplementary Figure 1a, b and c. Both programs yield similar
scores for all importance measures.

All implementations are able to handle the real dataset, but
computing time and memory consumption differed substantially
(Fig. 1). Specifically, the randomForest and RF in Fortran analyzed
the dataset in 88.8 and 84.1 h, respectively, whereas RJ performed
the same analysis in only 0.53 h using 40 CPUs in parallel. RF
in Fortran is the fastest alternative tool. In comparison to RF in
Fortran, RJ performed 159 times faster. With RJ running in a single
CPU mode, a speed up of seven was still obtained. Willows required
1750 h for the analysis. RJ turned out to be the fastest program for
real data analysis. The computing time of all implementations is
depicted in Figure 1a.

The randomForest package and RF in Fortran consumed 9805 and
5421 MB memory, respectively (Fig. 1b). Considerably less memory
was used by Willows, which consumed 136 MB memory. RJ spent
179 MB using one CPU. When using multiple CPUs, the program
RJ distributed five processes among five computers using the MPI
mode. Each process consumed 303 MB and utilized eight CPUs
by using multithreading. RJ consumed more memory in the multi-
processor mode because helping data structures have to be provided
for every CPU.

The importance scores of the SNPs and their chromosomal
positions are depicted in Figure 2. The two highest peaks are located
on chromosomes 1 and 16, which correspond to genes IL23R and
NOD2, respectively.

A comparison of positive CVI scores and two-sided P-values
from the Cochrane–Armitage trend test is shown in Supplementary
Figure 2. The smallest P-value of all positive CVI scores is 2×10−8.
The Pearson’s correlation coefficient between scores and P-values
is 0.38, showing a moderate association between importance scores
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Fig. 1. Comparison of computing time and memory usage of several RF
implementations. Each program analyzed a simulated dataset comprising
1006 samples genotyped at 275 153 SNPs. A short bar indicates a fast
implementation of RF in comparison to other programs: (a) Comparison
of computing time of five implementations. The figure reads for example:
For analyzing data, RJ calculations took 0.53 h. (b) Comparison of memory
usage of five programs. Memory was sparsely used by Willows and RJ in
comparison to randomForest and RF in Fortran. (Asterisk indicates memory
usage of each computer node.)

Fig. 2. CVI scores of SNPs and their chromosomal position. The axis of CVI
scores was log transformed. Small and negative CVI values were omitted.

and P-values. Corresponding negative CVI scores are shown in
Supplementary Figure 3.

The 10 most important genes for the Crohn’s disease data are
displayed in Table 1. The genes were derived by evaluating the
most important SNPs that are located within genes as shown in
Supplementary Table 3. The first 10 unique genes were selected for
further investigations.

The four most important SNPs yielded the smallest P-values in
the trend test. The interleukin 23 receptor (IL23R) and nucleotide-
binding oligomerization domain containing 2 (NOD2) were found to
be the most important genes by RJ analysis. IL23R and NOD2 genes
were also identified by several GWA studies and corresponding
SNPs are known to be strongly associated with susceptibility to
Crohn’s disease (Barrett et al., 2008; Duerr et al., 2006; Rioux et al.,
2007; Wellcome Trust Case Control Consortium, 2007).

Table 1. Top 10 most important genes identified by RJ, which was performed
on Crohn’s disease GWA study data

Gene rs-Number CVI Rank of P-value Rank of
score CVI score (trend test) P-value

CEACAM4 rs5009916 5.98×10−5 22 5.67×10−3 2117
CDKAL1 rs9465994 1.30×10−4 8 3.16×10−4 158
CLSTN2 rs6439924 1.05×10−4 14 2.58×10−5 18
FBN3 rs4527136 5.01×10−5 26 4.73×10−3 1807

IL23R rs11209026 1.63×10−3 1 2.00×10−8 1
rs11465804 4.58×10−4 3 1.44×10−7 4
rs1343151 1.19×10−4 11 3.11×10−5 29
rs10889677 9.34×10−5 16 8.22×10−6 9
rs2201841 8.65×10−5 17 2.73×10−5 19

NOD2 rs2066843 5.48×10−4 2 1.44×10−7 3
rs2076756 3.65×10−4 4 3.02×10−8 2
rs9465994 1.30×10−4 8 3.16×10−4 158

PRKG1 rs766208 6.97×10−5 20 4.38×10−5 37
PTPRD rs1889820 4.76×10−5 27 1.12×10−4 71
SNX8 rs10950641 1.05×10−4 13 3.33×10−5 31
TNFSF10 rs9859259 1.12×10−4 12 1.57×10−3 661

The table displays the most important genes, rs-numbers of corresponding SNPs, CVI
scores, ranks of CVI scores, trend test P-values and the rank of the P-values.

Fig. 3. Six of the 10 most important genes can be combined to a potential
pathway. TNFSF10 potentially interacts with IL23R, NOD2 and PRKG1. The
NOD2 conceivably interacts with CDKAL1.

A moderate association of calsyntenin 2 (CLSTN2) (P=6×10−5)
with Crohn’s disease was reported in literature (Rioux et al., 2007).
The tumor necrosis factor superfamily member 10 (TNFSF10)
was high ranked by RJ analysis. The traditional trend test of
TNFSF10 yielded P=0.001576. TNFSF10 is involved in apoptosis
and proliferation of human colon cancer cells (Baader et al., 2005;
Saaf et al., 2007; Tang et al., 2002; Tillman et al., 2003). Colorectal
cancer and Crohn’s disease are related due to the fact that relative
risk of colorectal cancers is significantly raised in Crohn’s disease
(Canavan et al., 2006; Ekbom et al., 1990).

Five of the 10 most important genes can be linked to a potential
pathway by consulting additional genes, proteins and transcripts.
The potential pathway is shown in Figure 3. The IL23R and
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TNFSF10 potentially interact via the signal transducer and activator
of transcription 3 (STAT3; Niu et al., 2001; Parham et al., 2002).
TNFSF10 possibly interacts with PRKG1 via Sp1 transcription
factor (SP1; Sellak et al., 2002; Xu et al., 2008). TNFSF10
contingently interacts with NOD2 via nuclear factor of kappa light
polypeptide gene enhancer in B-cells 1 (NFKB1; Baetu et al.,
2001; Gutierrez et al., 2002). Finally, NOD2 conceivably interacts
with CDK5 regulatory subunit associated protein (CDKAL1) via
hepatocyte nuclear factor 4 alpha (HNF4A, Odom et al., 2004; Rioux
et al., 2007).

5 DISCUSSION
The RF method was applied to genome-wide data using RJ and
assigned a score of importance to each SNP. The resulting list of
SNPs was investigated for potential interactions.

The results of the real data analysis validate the findings of GWA
studies such as NOD2 and IL23R. Results give also evidence of
new potential interactions between genes that are associated with
Crohn’s disease. Specifically, the TNFSF10 was not found to be
strongly associated with Crohn’s disease by traditional statistical
tests. In contrast, RJ analysis detected that TNFSF10 potentially
interacts with NOD2, PRGK1 and IL23R. STAT3 is considered
to be a link between TNFSF10 and IL23R, which was shown to
be moderately associated with Crohn’s disease. The TNFSF10 is
involved in apoptosis of human colon cancer cells. TNFSF10 might
possibly explain a part of the high risk of colorectal cancers in
Crohn’s disease patients.

However, interpreting results and assessing biological plausibility
is challenging. Results may show false positives. Thus, further
investigation is needed to validate this specific causal relationship.
Furthermore, although RF has the ability to detect very small main
effects, its power to identify interactions depends on the presence of
main effects. Thus, gene–gene interaction with no marginal effects
might be left unrevealed when RF is applied.

Nevertheless, an impressive computational efficiency and
memory management of RJ allow for analyzing high-dimensional
data in an acceptable amount of time. Analyzing GWA data
comprising thousands of observations and a million SNPs seem
to be feasible with respect to time and memory consumption. The
software computes up to 159 times faster than the fastest alternative
implementation, and the program shows the same importance
ranking with respect to the reference program. RJ presents various
features such as RF growing, prediction, parameter tuning or
imputation.

In summary, RJ is a promising software package for applying RF
method to high-dimensional data such as GWA data. The application
of RF to GWA data may help to identify potential interacting SNPs
that were not found by traditional statistical approaches.
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