
1

Interactive and Fuzzy Search: A Dynamic Way to Explore

MEDLINE

Jiannan Wang1,*, Inci Cetindil2,*, Shengyue Ji2, Chen Li2§, Xiaohui Xie2§, Guoliang Li1
and Jianhua Feng1
1
Department of Computer Science, Tsinghua University, Beijing 100084, China.

2
Department of Computer Science, University of California, Irvine, CA 92697, USA.

ABSTRACT

Motivation: The MEDLINE database, consisting of over 19 million

publication records, is the primary source of information for biomedi-

cine and health questions. Although the database itself has been

growing rapidly, the search paradigm of MEDLINE has remained

largely unchanged.

Results: Here we propose a new system for exploring the entire

MEDLINE collection, represented by two unique features: 1) interac-

tive: providing instant feedback to users’ query letter by letter, and 2)

fuzzy: allowing approximate search. We develop novel index struc-

tures and search algorithms to make such a search model possible.

We also develop incremental-update techniques to keep the data up

to date.

Availability: Interactive and fuzzy searching algorithms for exploring

MEDLINE are implemented in a system called iPubMed, freely ac-

cessible over the Web at http://ipubmed.ics.uci.edu/ and

http://tastier.cs.tsinghua.edu.cn/ipubmed/ .

Contact: chenli@ics.uci.edu or xhx@ics.uci.edu

1 INTRODUCTION

The PubMed service provided by NCBI is the most widely used

system for accessing the MEDLINE database, which contains

more than 19 million (as of April 2010) records from approxi-

mately 5,000 selected publications covering biomedicine and

health from 1950 onwards. It handles over 2 million searches per

day, has become an essential part of every biomedical scientist’s

research effort, and is increasingly employed by physicians and

patients as an indispensable tool to answer clinical questions.

PubMed uses keywords and Boolean operators to retrieve docu-

ments from MEDLINE. To perform a search, users need to first

compose a keyword query, submit it to the server, wait and finally

review the returned search results. If the returned results are too

many or not pertinent, the users need to modify or refine the query,

and resubmit it to the server. This type of try-and-see search para-

digm requires the users to have certain knowledge to choose wisely

the appropriate keywords, and often requires numerous iterations

* Contributed equally. §To whom correspondence should be addressed.

to reach the desired documents (Wildemuth and Moore, 1995;

Lewis et al., 2006), creating significant delay between the initial

query and the final results. Even though there are several systems

supporting search in the medical domain such as CiteXplore and

HubMed, all of these systems use this traditional search paradigm.

Recently PubMed has started to give automatic suggestions as

typing the query; but these suggestions are not based on the entire

dataset. The suggestions are obtained by performing prefix search

on the popular queries made by other users. For instance, if we

type “Weinberg oncogene” to search for publications written by

“Weinberg” related to “oncogene”, PubMed does not give any

suggestions while there are a lot of documents containing these

terms. In addition, PubMed cannot automatically handle approxi-

mate query search. Instead, it provides a list of candidate terms

close to the query string and relies on users to pick up the right

one, based on which it then performs exact search. This limitation

is problematic for searching biomedical literatures, for which user

queries frequently contain difficult-to-spell author names, non-

standard gene symbols, or specialized medical terms.

We propose an interactive and dynamic model of information re-

trieval and implement it to explore MEDLINE. The new model

incorporates two unique features: 1) interactive: providing instant

feedback as the query is being typed, and 2) fuzzy: allowing ap-

proximate search (Gusfield, 1997; Navarro, 2001). Under this

model, the system updates search results online invoked by every

keystroke from the users. This type of search-as-you-type para-

digm allows the users to find results “on the fly” and enables them

to dynamically modify or refine queries, removing the major bar-

rier between queries and search results. The existing PubMed sys-

tem has several similar features, such as “browsing the index of

terms”, “automatic term mapping”, and “truncating search terms”.

The main difference between these features and iPubMed's features

is that we do prefix-based search on the fly as the user types in a

query, and we allow minor errors."

The new search paradigm poses significant computational chal-

lenges, due to the requirement of high interactive speed and the

capability of relaxing keyword conditions. The total round-trip

time between the client browser and the backend server includes

© The Author (2010). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

Associate Editor: Dr. Alex Bateman

 Bioinformatics Advance Access published July 12, 2010
 at U

niversity of C
alifornia, Irvine on January 3, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://ipubmed.ics.uci.edu/
http://tastier.cs.tsinghua.edu.cn/ipubmed/
http://bioinformatics.oxfordjournals.org/

2

the network delay and data-transfer time, query-execution time on

the server, and the javascript-execution time on the client browser.

To achieve an interactive speed, this total time should not exceed

milliseconds (typically within 100ms); the query-execution time on

the server should be even shorter. This high speed is challenging to

achieve especially since we allow keywords to appear at different

places and to match approximately, both of which are not permit-

ted by the popular autocompletion method implemented in major

search engines (Bast and Weber, 2006) and more recently by

PubMed.

In this paper, we show that the goal of high speed for interactive

and fuzzy search is achievable by employing novel index struc-

tures, caching techniques, and search algorithms. We implemented

these algorithms and techniques in a system called iPubMed

(stands for Interactive PubMed), which is currently able to search

the entire MEDLINE. The preliminary algorithmic aspect of this

work was presented previously in a conference proceeding (Ji et al.

2009). Here we provide a full description of the algorithms used

and deploy these techniques specifically for MEDLINE search,

incorporating additional methods such as incremental update, arti-

cle ranking, and parallel computing.

Figure 1 shows a screenshot of the system as a user typed in four

keywords – “amyo lateral rilu zacco”. The user intended to find

the publications describing the treatment of amyotrophic lateral

sclerosis with drug riluzole authored by Zoccolella. PubMed at

NCBI failed to return any publication record for this query as it

contains a misspelling of the author name and two incomplete

query keywords. By contrast, iPubMed was able to retrieve the

right publications. More importantly, because the search results are

returned in real time as query strings are being typed, users can

adaptively change queries until desired results are reached.

The iPubMed interface has several important features that make it

powerful and user friendly. It allows users to specify whether the

system should do “fuzzy” search by clicking the “On” or “Off”

links. In addition, keywords in returned results are highlighted in

the client’s browser, with different colors depending on whether it

is a fuzzy or an exact match. The system has also a pagination

feature that helps users easily navigate through the results by using

the provided links for the previous and next pages.

2 METHODS

2.1 System Architecture of iPubMed

The overall architecture of iPubMed is shown in Figure 2. The

client accepts a query through the user interface, and checks

whether the cached results are enough to answer the query. If not,

the client sends the query to the Web server. The server has several

components. The Web server has a Broker that receives a query

from a user, and sends the query to the FastCgi servers in the clus-

ter. Each FastCgi Server waits for queries from the broker, and

caches query results. The Cache component checks whether the

query can be answered using the cached results. If not, the FastCgi

server incrementally answers the query. For each query keyword,

the Fuzzy Prefix Finder computes the predicted words and the lists

of records that contain a predicted word. Next, the FastCgi server

computes the intersection of the lists to compute the predicted

records of the query and ranks the predicted records to identify the

best answers. Finally the broker collects all these local best an-

swers from the FastCgi servers, aggregates these results and

Figure 1: Screenshot of iPubmed System (http://ipubmed.ics.uci.edu/ and http://tastier.cs.tsinghua.edu.cn/ipubmed/)

Turn On / Off
Fuzzy Search

Exact match

Fuzzy match

 at U
niversity of C

alifornia, Irvine on January 3, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

3

returns the best answers to the client. The Indexer component in-

dexes the data as a trie structure with inverted lists of keywords

and creates a forward index. It keeps the data and all these struc-

tures are in memory. For data changes, we download the update

files from an NLM FTP server on a daily basis. We preprocess the

files to extract the six most commonly searched attributes: authors,

their affiliations, article title, journal name, journal issue, and

MESH

terms, and keep this data in a relational table. Then we partition the

data into several machines horizontally and keep in a data shard.

The Updater component reads the updates from the corresponding

data shard and loads it into memory. Then it incrementally updates

the index in memory.

2.2 Problem Formulation

We formalize the problem of interactive, fuzzy search on a struc-

tured table, although our method can be easily adapted to textual

documents, XML data, and relational databases. Consider a rela-

tional table T with m attributes and n records. Let A = {a1,a2,…,am}

denote the attribute set, R = {r1,r2,…,rn} denote the record set, and

W = {w1,w2,…,wp} denote the distinct word set in T. Given two

words wi and wj, wi ≤ wj denotes that wi is a prefix string of wj. An

example relational table is shown in Table 1, which has 10 records

and 4 attributes.

Each keyword in a given query is treated as a partial keyword. For

each query keyword, we first identify the words in W (called pre-

dicted words) that contain a prefix matching the query keyword

exactly or approximately (in the case of fuzzy search). Then, we

find the records in R (called predicted records) that contain at least

one of the predicted words of every query keyword. Finally, we

rank the returned records.

More precisely, the search problem is formulated as follows. Given

a query consisting of a set of prefixes Q = {p1,p2,…,pl}, we first

identify the predicted-word set of each prefix, that is, for prefix pi,

Pi = {pi′ | ∃w ∈ W, pi′ ≤ w and ed(pi′, pi) ≤ δ}, where ed(pi′, pi) is

the edit distance between two strings and δ is the edit-distance

threshold. Next we identify the predicted-record set of the query,

RQ = {r | ∃pi′ ∈ Pi & wi in r ∈ R s.t. pi′ ≤ wi, ∀i ∈ [1, l]}. Finally,

we rank the records in RQ according to their relevance to Q.

ID Title Author Journal name Year

r1 Biopsy findings after breast conservation therapy
for early-stage invasive breast cancer

Vapiwala N, Starzyk J, Harris EE, Tchou JC, Boraas
MC, Czerniecki BJ, Rosato EF, Orel SG, Solin LJ

Int J Radiat
Oncol Biol Phys

2007

r2 Fine-needle aspiration biopsy findings in patients with small
lymphocytic lymphoma transformed to hodgkin lymphoma

Catrina Reading F, Schlette EJ, Stewart JM,
Keating MJ, Katz RL, Caraway NP

Am J Clin
Pathol

2007

r3 Histopathology reporting of prostate needle biopsies Montironi R, Vela Navarrete R, Lopez-Beltran A,
Mazzucchelli R, Mikuz G, Bono AV

Virchows Arch 2006

r4 Ultrasound-guided prostate biopsy in 2005 Clements R., Luis T Int Am J 2006

r5 Epidemiology of biopsy proven giant cell arteritis in
northwestern Spain: trend over an 18 year period

Gonzalez-Gay MA, Garcia-Porrua C, Rivas MJ
Rodriguez-Ledo P, Llorca J

Ann Rheum
Dis

2007

r6 The optimal diet for women with polycystic ovary syndrome? Marsh K, Brand-Miller J Br J Nutr. 2007

r7 Bile duct dysplasia and congenital hepatic fibrosis
associated with polycystic kidney (Caroli syndrome) in a rat

Bettini G, Mandrioli L, Morini M Vet Pathol 2007

r8 Open-heart operations in patients with a spinal cord injury Lin D, Bakaeen FG, Shenaq SA, Ribati M,
Atluri PV, Holmes SA, Berger DH, Huh J

American J of
surgery

2007

r9 Effects of zinc coadministration on lead toxicities in rats Piao F, Cheng F, Chen H, Li G, Lu X,
Liu S, Yamauchi T, Yokoyama K.

Ind Health 2007

r10 Dye-guided and radio-guided sentinel node biopsy
in breast cancer

Imoto S, Ito H J of surgery 2007

Table 1: A sample publication relational table

Figure 2: The system architecture of iPubMed

 at U
niversity of C

alifornia, Irvine on January 3, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

4

2.3 Index structure

We use a trie to index the words in the table. Each word w in the

table corresponds to a unique path from the root of the trie to a leaf

node. Each node on the path has a label of a character in w. The

nodes with the same parent are sorted by the node label in their

alphabetical order. Each leaf node has a unique keyword ID for

the corresponding word. The keyword ID is assigned in the pre-

order. Each node maintains the range of keyword IDs in its sub-

tree: [minKeyID, maxKeyID]. For each leaf node, we store an

inverted list of record IDs that contain the corresponding word. To

improve search performance, we can also maintain a forward index

for the records. For each record, the forward index keeps the sorted

keyword IDs in the record. Consider the publication relation in

Table 1. Its trie for the tokenized words is shown in Figure 3. The

word “luis” has a node ID of 16, and its inverted list includes re-

cord r4. The keyword ID of leaf node 11 is 3. The keyword range

of node 11 is [3,5]. The forward list of record r4 includes keyword

IDs 2, 7, and 9.

2.4 Search algorithm

We tokenize each query string to keywords. Our search algorithm

consists of the following three steps: 1) Finding the predicted

words of each keyword and the list of records that contain the pre-

dicted words; 2) Identifying the predicted records by computing

the intersection of the lists corresponding to different query key-

words; and 3) Ranking the answers. Next we describe these three

steps.

2.4.1. Incrementally identifying predicted words of

each keyword

For each input keyword, we incrementally identify the predicted

words based on its prefixes. In the case of exact search, there exists

only one trie node that match a partial keyword, therefore finding

the predicted words is relatively easy and can be done by travers-

ing the descendants of the trie node. However, to support fuzzy

search, we need to predict multiple prefixes that are similar to the

partial keyword. We call the nodes of these similar prefixes the

active nodes of the input keyword. We will need to locate the leaf

descendants of all active nodes, and identify the predicted records

of these leaf nodes. For example, consider the trie in Figure 3.

Suppose δ = 1, and a user types in a partial keyword “li”. The

words “li”, “lin”, “liu”, “lu” and “lui” are all similar to the input

keyword, since their edit distances to “li” are within a threshold δ

= 1. Thus nodes 11, 12, 13, 14, and 15 are active nodes.

Given an input keyword p, we store the set of active nodes Φp =

{<n, ξn>}, where n is an active node for p, and ξn = ed(p, n) ≤ δ.

(For the simplicity of notation, we will use n to denote both the trie

node and its corresponding string). We call Φp the “active-node

set” for keyword p (together with the edit-distance information for

each active node). The main idea behind our method is to use the

prefix-filtering. That is, when the user types in one more letter

after p, only the descendants of the active nodes of p can be the

active nodes of the new query and need to be examined. We use

this property to incrementally compute the active-node set of a new

query, taking advantage of the cached active-node sets Φp.

Suppose a user is typing in a query string c1c2…cx letter by letter.

After the user types in a prefix query pi = c1c2…ci (i ≤ x), we keep

an active-node set Φpi for pi. When the user types in a new charac-

ter cx+1 and submits a new query px+1, we compute the active-node

set Φpx+1 for px+1 making use of Φpx as follows.

We start by initializing an active node set corresponding to the

empty keyword ε, i.e., Φp0 = Φε = {<n,ξn> | ξn = |n| ≤ δ}. That is,

it includes all trie nodes n whose corresponding string has a length

|n| within the edit-distance threshold δ. These nodes are active

nodes for the empty string since their edit distances to ε are within

δ.

For each <n,ξn> in Φpx, we consider whether the descendants of n

are active nodes for px+1. If ξn + 1 ≤ δ, then n is an active node for

px+1, so we add <n,ξn + 1> to Φpx+1. This case corresponds to delet-

ing the last character cx+1 from the new query string px+1. Note that

even if ξn + 1 ≤ δ does not hold, node n can still potentially become

an active node of the new query string, due to operations described

below on other active nodes in Φpx. For each child nc of node n,

we consider two possible cases.

Figure 3: An example index structure (partial) for the publication

records shown in Table 1

Figure 4: Incrementally computing active nodes

 at U
niversity of C

alifornia, Irvine on January 3, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

5

In the first case, the child node nc has a character different from

cx+1. Suppose node ns is such a child node. We have ed(ns, px+1) ≤

ed(n, px)+1 = ξn + 1. If ξn + 1 ≤ δ, ns is an active node for the new

string, and thus <ns, ξn + 1> will be added to Φpx+1. This case

corresponds to substituting the label of ns for the letter cx+1.

In the second case, the child node nc has a label cx+1. Suppose node

nm is such a child node. In this case, we have ed(nm, px+1) ≤

ed(n, px) = ξn ≤ δ. Therefore nm is always an active node of the

new string, so we add <nm, ξn> to Φpx+1. This case corresponds to

the match between the character cx+1 and the label of nm. One sub-

tlety here is that, if the distance for the node nm is smaller than δ,

i.e., ξn < δ, we need to consider additional nodes: for each descen-

dant d of nm that is at most δ - ξn letters away from nm, we also

need to add <d,ξd> to Φpx+1, where ξd = ξn + |d| - |nm|. This opera-

tion corresponds to inserting letters after node nm (For node ns, we

do not need to consider its descendants for insertions; because if

these descendants are active nodes, they must be in Φpx and thus

will still be considered).

Note that during the update of Φpx+1, the above procedure may

result in the addition of multiple sets corresponding to the same

node, in which case we only keep the one with the shortest edit

distance to the query string px+1.

2.4.2. Finding predicted records

Given a query Q = {p1,p2,…,pl}, suppose {ki1,ki2,…} is the set of

keywords that are similar to the prefix pi. Let Lij denote the in-

verted list of kij, and Ui = ∪j Lij be the union of the lists for pi. Our

goal is to find ∩iUi, the intersection of different prefix union lists.

Figure 5 illustrates an example in which we want to answer query

“in bio li”.

To find the intersection, we first find the prefix with the shortest

union list. We call each record in this list candidate record. Then

we use the forward index to check whether each candidate record

contains similar prefixes of every other query keyword. If so, this

record is an answer. Each active state of other query keywords has

a keyword range [s, l], and we check whether the candidate record

contains a keyword in the range [s, l] using the following steps: a)

Use a binary search method to find the candidate record ID in the

forward index; b) Find the smallest keyword ID on the candidate

record’s forward list that is larger than or equal to s, and c) Check

whether this keyword ID is smaller than l.

2.4.3. Ranking

We consider the following several factors when designing a metric

for ranking the search answers: 1) Matching prefixes: We consider

the similarity between a query keyword and its best matching pre-

fix. The more similar a record's matching keywords are to the

query keywords, the higher this record should be ranked. The simi-

larity is also related to keyword length. Exact matches on the query

have a higher priority than fuzzy matches. For example, consider

the trie in Figure 3. If a user types in “liu”, the record r9 could be

ranked higher than r8; since the record r9 has an exact keyword

match when r8 has a fuzzy keyword match “lin”. 2) Record

weights: Different records could have different weights. For exam-

ple, a newly added publication record could be ranked higher than

older publications.

To combine these factors, we use the following scoring function.

Suppose the query is Q = {p1,p2…,pm}, pi' is the best matching

prefix for pi. The score of a record r for Q is defined as:

 score(r, Q) = ∑i=1,2,…,m [ψ(r) / (α × ed(pi, pi')
2 + β)],

where α and β are weights used to adjust the effect of edit distance.

We use α = 10, β = 1 in our system. ψ(r) is the score of record r,

which is defined as:

ψ(r) = r[year] - 1900 + 10-9 × r[pmid],

where r[year] and r[pmid] are the corresponding fields of the re-

cord r. These fields are used in the ranking function to give a

higher priority to recent publications. Since many records have the

same year and pmids are given to the records in an increasing or-

der, we also used the pmid field to be able to rank the records with-

in the same year.

2.5 Caching algorithms

Results of earlier computations are cached to speed up later que-

ries. After finding the answers of a query, we cache the active

states for prefixes of each input keyword. We then incrementally

answer the subsequent keywords using the cached active states.

For the query with multiple keywords, we also cache the predicted

records (intersection of union lists). If the user types another key-

word, we use the cached records to answer the query by checking

whether the cached records contain the new keyword using the

forward index. If there are too many predicted records, we just

cache the highly relevant ones. For each subsequent keyword, we

first use the cached records to compute the answer. If there are not

enough top answers, we continue to compute more answers for the

previous query and store the results in the cache. This “on-

demand” caching method makes sure that each query is answered

efficiently, and we cache results of a query only if they are needed.

Results in the client are cached to reduce communication cost.

This optimization is especially important in scenarios where the

user has a limited network bandwidth, such as mobile networks.

The main idea is that the client browser caches the results of previ-

ous queries. To send to the client the answers to a subsequent

query, the server just sends the identifiers of those already in the

earlier results, in addition to the additional records. In this way,

Figure 5: Intersecting lists for answering a keyword query “in bio li”

 at U
niversity of C

alifornia, Irvine on January 3, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

6

only the ids of the earlier results need to be transferred over the

network.

2.6 Incremental Updates

Since many new records are added to the MEDLINE database on a

daily basis, updating our dataset timely becomes very crucial. We

download the provided update files from an NLM FTP server

every day and use incremental-update techniques to maintain the

trie structure, inverted lists, and forward index. This allows us to

process inserted, revised and deleted records without reconstruct-

ing the whole structure from scratch.

The MEDLINE database is maintained via insertions, deletions,

and revisions. For each revision, we delete the existing record first,

and then insert the new record. Therefore, we will focus on inser-

tions and deletions. We store the trie, inverted lists, forward lists,

and the original data in memory. We also keep a copy of the data

shard on the disk to be able to rebuild the structures in case of a

system failure. Next we discuss how these structures change in the

presence of an insertion or deletion.

Deletion: Assume a record r is deleted. First we delete it from the

copy on disk. For the in-memory copy, we mark the record r as

invalid, but do not delete its keywords from the trie, because other

records may contain these keywords. We do not modify the in-

verted index nor the forward index, since they are kept sorted and

could be large. In this scenario, if the record r is found in the an-

swers to a query, the system will not return the record r to the user

since it is marked as invalid.

Insertion: Let r be an inserted record. First we insert the record

into the data on disk. Then we tokenize r to keywords and insert

each of its keywords into the trie. If there is a leaf node for the

keyword, we can just add the record r into the inverted list of this

leaf node. Since the inverted list of this keyword is sorted and

might be huge, it could be expensive to insert r directly into the

list. For this reason, for each leaf node, we keep a primary list and

a secondary inverted list. We use the primary inverted list when

building the structure, and use the secondary inverted list for stor-

ing updates. This method can reduce the time to insert a record to

the inverted list, since the number of records in the secondary in-

verted list tends to be smaller than the primary one. These two lists

can be merged into the primary list periodically to be able to keep

the secondary inverted list small.

If a keyword is seen for the first time, it should be added to the trie.

To be able to use the forward index with the updated trie, we want

to preserve the order of the assigned ids of the trie nodes. If the

keyword ids on the trie are assigned consecutively, we may not be

able to assign new unique ordered ids for the new keywords. To

solve this problem, we reserve some extra keyword ids on the trie

to use in case the updated dataset contains new keywords. In the

rare case where the reserved space is not enough for new key-

words, we can rebuild the index structures.

After inserting all the keywords of record r into the trie and the

record id of r into their corresponding inverted lists, we can simply

append the record id of r with its corresponding keyword ids into

the forward index. In this scenario, for a query, if we reach a leaf

node in the trie, we need to consider both its primary and secon-

dary inverted lists. The rest of the search process will be the same

as before.

3 RESULTS

3.1 System Implementation

The iPubMed Web server was set up using Apache2 on a Linux

machine. The Web server has a broker which receives a query

from a user, and sends the query to the FastCgi Servers in the clus-

ter. In order to process queries over 19 million records, the current

iPubMed system at Tsinghua University is using a cluster of two

slave machines, each with four Intel Xeon E5420 (2.5GHz) CPUs

and 16G DDR2-800 memory. The system at UCI is using a cluster

of four slave machines, each with two AMD Opteron 248

(2.2GHz) CPUs and 8G DDR2-800 memory. In the rest of the

paper, we focus on the cluster at UCI and run our experiments in

this cluster. Each slave at UCI has two FastCgi Servers and each

server builds its local index on its local data (about 2.4 million

records). The data is partitioned through these 8 processes by

round-robin partitioning to do the load balancing. The backend was

implemented as a FastCGI server process, written in C++, com-

piled with a GNU compiler. Indexes were constructed on six most

commonly searched attributes: authors, their affiliations, article

title, journal name, journal issue and MESH headings. Table 2

shows the size of the dataset, index size, and index-construction

time. These numbers are the sum of the sizes across eight proc-

esses. In the future, if the total size of the index structures in one

processor exceeds the memory limit; we can add more machines to

the cluster.

Table 2: Total index size and construction time for 4 slaves each with 2

processes

3.2 User Interface

The iPubMed interface is designed to show the query results in a

user friendly way. Figure 1 demonstrates an example of a query

results. In this interface, a user can specify whether to use fuzzy

search feature. If this feature is disabled, only the exact matches to

a query will be displayed. Furthermore, the fuzzy matches and

exact matches are highlighted with different colors to make them

more distinguishable. The interface has also a pagination feature

for navigation through the different pages of the results.

3.3 Query Performance

We evaluated the query performance as the number of key-

words increased. Two types of queries were generated: the

first one consisting of keywords randomly chosen from the

dataset, and the second one consisting of modified queries from the

Record Number 19 million

Total Size of Indexed Attributes 5.8 GB

Number of Distinct Keywords 3.07 million

Index Construction Time (for each process) 320 sec

Trie Size 1.82 GB

Inverted-List Size 2.65 GB

Forward-Index Size 2.65 GB

 at U
niversity of C

alifornia, Irvine on January 3, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

7

first type by adding 1 edit error to each keyword. Each query asked

for 10 best records. The average query response time for a query is

shown in Figure 6(a), which demonstrates that the algorithms can

answer a single-keyword query very efficiently (within 20ms) for

both types of queries. The processing time for multiple-keyword

queries is typically longer; however, it is still within a millisecond

range. Our algorithm caches the earlier results and uses them to

calculate the new result set incrementally. It intersects the earlier

results with the results of the new query keyword. Thus the aver-

age search time may also decrease if the last query keywords are

very restrictive. We see such a behavior in the results of exact

match for 4-keyword queries.

We also measured the query time as the number of characters in-

creased in the query keyword. We generated single-keyword que-

ries that asked for 10 best records incrementally starting from the

third keystroke to the tenth keystroke. The average query response

time for each keystroke is shown in Figure 6(b). Since all the que-

ries have single keyword, the time does not include intersecting

any inverted list. So the time to retrieve the best 10 records is ex-

pected to be very similar no matter how many characters the key-

word has. However, the figure shows that our algorithms can spee-

dup the later queries by caching the former results.

3.4 Incremental Updates

MEDLINE is a highly dynamic database with thousands of publi-

cation records added or revised each day. Therefore it is important

for iPubMed to be able to keep up with these daily changes and

update the internal data structures quickly and efficiently. In our

current implementation, we download the update files from the

NLM FTP server every day and use incremental-update techniques

to maintain the trie structure, inverted lists, and forward index (See

Section 2.6). This allows us to process inserted, revised, and de-

leted records without reconstructing the whole structure from

scratch. Instead of spending 320 seconds to reconstruct the index

structures, we incrementally update the structures around 15 sec-

onds in average.

4 DISCUSSION

We described a new system for searching the MEDLINE database,

implemented in a fully functional server called iPubMed. Compar-

ing with the most widely used PubMed system at NCBI, the iPub-

Med system contains two unique features: 1) being inter-active,

returning search results on the fly and allowing users to change

queries adaptively, and 2) allowing approximate search.

We emphasize that our goal is not to replace the PubMed system,

which contains a number of useful features not implemented in

iPubMed, such as limiting search within different fields, allowing

boolean operations, and so on. If a user knows exactly the authors

and the title of the paper he or she wants to find, the PubMed sys-

tem is sufficient for the task. Instead, iPubMed is targeting at a

different category of searches, in which the users have uncertain or

partial information regarding the publication records that they

would like to find as showed in Figure 1. Through interactive

search, iPubMed allows users to refine and/or modify queries on

the fly without the need of issuing separate, independent queries as

in PubMed.

Although iPubMed is fully functional in its current form, there is a

lot of room for further improvement. Currently iPubMed does not

search abstracts of articles due to computational constraints. In the

future, we plan to increase the scalability of the system by utilizing

parallel computing and expanding system hardware. We also plan

to increase the functionality of iPubMed in several other directions,

such as limiting search in different fields and allowing boolean

operations. Our goal is to make iPubMed a truly practical and use-

ful tool for biomedical researchers.

5 ACKNOWLEDGEMENT

The work is partially supported by gift funds from Google and

Microsoft, the National Natural Science Foundation of China un-

der Grant No. 60873065, the National High Technology Develop-

ment 863 Program of China under Grant No.2007AA01Z152 &

2009AA011906, and the National Grand Fundamental Research

973 Program of China under Grant No.2006CB303103.

REFERENCES

Bast, H. and Weber, I. (2006) Type less, find more: fast autocompletion search with a

succinct index. Proc. ACM SIGIR 2006 364--371

Gusfield, D. (1997) Algorithms on strings, trees, and sequences: computer science and

computational biology. Cambridge University Press, New York, NY, USA

Ji, S. et al. (2009) Efficient Interactive Fuzzy Keyword Search. Proc. WWW 2009.

Lewis, J. et al. (2006) Text similarity: an alternative way to search MEDLINE. Bioin-

formatics 22:2298-304

Navarro, G. (2001) A guided tour to approximate string matching. ACM Computing

Surveys (CSUR) archive 33:31-88

Wildemuth, B.M. and Moore, M.E. (1995) End-user search behaviors and their rela-

tionship to search effectiveness. Bull. Med. Libr. Assoc. 83, 294–30

0

10

20

30

40

50

60

1 2 3 4

A
v
e
ra

g
e
 S

e
a
rc

h
 T

im
e
 (

m
s)

Number of keywords

Queries with no errors

Queries with errors

Figure 6(a): Average search time for queries with different numbers of

keywords

0

10

20

30

40

50

60

3 4 5 6 7 8 9 10

A
v
e
ra

g
e

 S
e
a
rc

h
 T

im
e
 (

m
s)

Number of characters

Figure 6(b): Average search time for queries with different numbers of

characters

 at U
niversity of C

alifornia, Irvine on January 3, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

