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ABSTRACT 

Motivation: The MEDLINE database, consisting of over 19 million 

publication records, is the primary source of information for biomedi-

cine and health questions. Although the database itself has been 

growing rapidly, the search paradigm of MEDLINE has remained 

largely unchanged. 

Results: Here we propose a new system for exploring the entire 

MEDLINE collection, represented by two unique features: 1) interac-

tive: providing instant feedback to users’ query letter by letter, and 2) 

fuzzy: allowing approximate search. We develop novel index struc-

tures and search algorithms to make such a search model possible. 

We also develop incremental-update techniques to keep the data up 

to date. 

Availability: Interactive and fuzzy searching algorithms for exploring 

MEDLINE are implemented in a system called iPubMed, freely ac-

cessible over the Web at http://ipubmed.ics.uci.edu/ and 

http://tastier.cs.tsinghua.edu.cn/ipubmed/  . 

Contact: chenli@ics.uci.edu or xhx@ics.uci.edu 

1 INTRODUCTION 

The PubMed service provided by NCBI is the most widely used 

system for accessing the MEDLINE database, which contains 

more than 19 million (as of April 2010) records from approxi-

mately 5,000 selected publications covering biomedicine and 

health from 1950 onwards. It handles over 2 million searches per 

day, has become an essential part of every biomedical scientist’s 

research effort, and is increasingly employed by physicians and 

patients as an indispensable tool to answer clinical questions.  

 

PubMed uses keywords and Boolean operators to retrieve docu-

ments from MEDLINE. To perform a search, users need to first 

compose a keyword query, submit it to the server, wait and finally 

review the returned search results. If the returned results are too 

many or not pertinent, the users need to modify or refine the query, 

and resubmit it to the server. This type of try-and-see search para-

digm requires the users to have certain knowledge to choose wisely 

the appropriate keywords, and often requires numerous iterations 

  
* Contributed equally.  §To whom correspondence should be addressed.  

to reach the desired documents (Wildemuth and Moore, 1995; 

Lewis et al., 2006), creating significant delay between the initial 

query and the final results. Even though there are several systems 

supporting search in the medical domain such as CiteXplore and 

HubMed, all of these systems use this traditional search paradigm. 

Recently PubMed has started to give automatic suggestions as 

typing the query; but these suggestions are not based on the entire 

dataset. The suggestions are obtained by performing prefix search 

on the popular queries made by other users. For instance, if we 

type “Weinberg oncogene” to search for publications written by 

“Weinberg” related to “oncogene”, PubMed does not give any 

suggestions while there are a lot of documents containing these 

terms. In addition, PubMed cannot automatically handle approxi-

mate query search. Instead, it provides a list of candidate terms 

close to the query string and relies on users to pick up the right 

one, based on which it then performs exact search. This limitation 

is problematic for searching biomedical literatures, for which user 

queries frequently contain difficult-to-spell author names, non-

standard gene symbols, or specialized medical terms.  

 

We propose an interactive and dynamic model of information re-

trieval and implement it to explore MEDLINE. The new model 

incorporates two unique features: 1) interactive: providing instant 

feedback as the query is being typed, and 2) fuzzy: allowing ap-

proximate search (Gusfield, 1997; Navarro, 2001). Under this 

model, the system updates search results online invoked by every 

keystroke from the users. This type of search-as-you-type para-

digm allows the users to find results “on the fly” and enables them 

to dynamically modify or refine queries, removing the major bar-

rier between queries and search results. The existing PubMed sys-

tem has several similar features, such as “browsing the index of 

terms”, “automatic term mapping”, and “truncating search terms”. 

The main difference between these features and iPubMed's features 

is that we do prefix-based search on the fly as the user types in a 

query, and we allow minor errors." 

 

The new search paradigm poses significant computational chal-

lenges, due to the requirement of high interactive speed and the 

capability of relaxing keyword conditions. The total round-trip 

time between the client browser and the backend server includes 
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the network delay and data-transfer time, query-execution time on 

the server, and the javascript-execution time on the client browser. 

To achieve an interactive speed, this total time should not exceed 

milliseconds (typically within 100ms); the query-execution time on 

the server should be even shorter. This high speed is challenging to 

achieve especially since we allow keywords to appear at different 

places and to match approximately, both of which are not permit-

ted by the popular autocompletion method implemented in major 

search engines (Bast and Weber, 2006) and more recently by 

PubMed.  

 

In this paper, we show that the goal of high speed for interactive 

and fuzzy search is achievable by employing novel index struc-

tures, caching techniques, and search algorithms. We implemented 

these algorithms and techniques in a system called iPubMed 

(stands for Interactive PubMed), which is currently able to search 

the entire MEDLINE. The preliminary algorithmic aspect of this 

work was presented previously in a conference proceeding (Ji et al. 

2009). Here we provide a full description of the algorithms used 

and deploy these techniques specifically for MEDLINE search, 

incorporating additional methods such as incremental update, arti-

cle ranking, and parallel computing.  

 

Figure 1 shows a screenshot of the system as a user typed in four 

keywords – “amyo lateral rilu zacco”. The user intended to find 

the publications describing the treatment of amyotrophic lateral 

sclerosis with drug riluzole authored by Zoccolella. PubMed at 

NCBI failed to return any publication record for this query as it 

contains a misspelling of the author name and two incomplete 

query keywords. By contrast, iPubMed was able to retrieve the 

right publications. More importantly, because the search results are 

returned in real time as query strings are being typed, users can 

adaptively change queries until desired results are reached. 

   

The iPubMed interface has several important features that make it 

powerful and user friendly. It allows users to specify whether the 

system should do “fuzzy” search by clicking the “On” or “Off” 

links. In addition, keywords in returned results are highlighted in 

the client’s browser, with different colors depending on whether it 

is a fuzzy or an exact match. The system has also a pagination 

feature that helps users easily navigate through the results by using 

the provided links for the previous and next pages. 

2 METHODS 

2.1 System Architecture of iPubMed 

The overall architecture of iPubMed is shown in Figure 2. The 

client accepts a query through the user interface, and checks 

whether the cached results are enough to answer the query. If not, 

the client sends the query to the Web server. The server has several 

components. The Web server has a Broker that receives a query 

from a user, and sends the query to the FastCgi servers in the clus-

ter. Each FastCgi Server waits for queries from the broker, and 

caches query results. The Cache component checks whether the 

query can be answered using the cached results. If not, the FastCgi 

server incrementally answers the query. For each query keyword, 

the Fuzzy Prefix Finder computes the predicted words and the lists 

of records that contain a predicted word.  Next, the FastCgi server 

computes the intersection of the lists to compute the predicted 

records of the query and ranks the predicted records to identify the 

best answers. Finally the broker collects all these local best an-

swers from the FastCgi servers, aggregates these results and 

Figure 1: Screenshot of iPubmed System (http://ipubmed.ics.uci.edu/ and http://tastier.cs.tsinghua.edu.cn/ipubmed/) 

Turn On / Off 
Fuzzy Search 

Exact match 

Fuzzy match 
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returns the best answers to the client. The Indexer component in-

dexes the data as a trie structure with inverted lists of keywords 

and creates a forward index. It keeps the data and all these struc-

tures are in memory. For data changes, we download the update 

files from an NLM FTP server on a daily basis. We preprocess the 

files to extract the six most commonly searched attributes: authors, 

their affiliations, article title, journal name, journal issue, and 

MESH  

terms, and keep this data in a relational table. Then we partition the 

data into several machines horizontally and keep in a data shard. 

The Updater component reads the updates from the corresponding 

data shard and loads it into memory. Then it incrementally updates 

the index in memory.  

 

2.2 Problem Formulation 

We formalize the problem of interactive, fuzzy search on a struc-

tured table, although our method can be easily adapted to textual 

documents, XML data, and relational databases. Consider a rela-

tional table T with m attributes and n records. Let A = {a1,a2,…,am} 

denote the attribute set, R = {r1,r2,…,rn} denote the record set, and 

W = {w1,w2,…,wp} denote the distinct word set in T.  Given two 

words wi and wj, wi ≤ wj denotes that wi is a prefix string of wj. An 

example relational table is shown in Table 1, which has 10 records 

and 4 attributes. 

 

Each keyword in a given query is treated as a partial keyword.  For 

each query keyword, we first identify the words in W (called pre-

dicted words) that contain a prefix matching the query keyword 

exactly or approximately (in the case of fuzzy search). Then, we 

find the records in R (called predicted records) that contain at least 

one of the predicted words of every query keyword. Finally, we 

rank the returned records. 

 

More precisely, the search problem is formulated as follows. Given 

a query consisting of a set of prefixes Q = {p1,p2,…,pl}, we first 

identify the predicted-word set of each prefix, that is, for prefix pi, 

Pi = {pi′ | ∃w ∈ W, pi′ ≤ w and ed(pi′, pi) ≤ δ}, where ed(pi′, pi) is 

the edit distance between two strings and δ  is the edit-distance 

threshold. Next we identify the predicted-record set of the query, 

RQ = {r | ∃pi′ ∈ Pi & wi in r ∈ R s.t. pi′ ≤ wi, ∀i ∈ [1, l]}. Finally, 

we rank the records in RQ according to their relevance to Q.  

ID Title Author Journal name Year 

r1 Biopsy findings after breast conservation therapy  
for early-stage invasive breast cancer 

Vapiwala N, Starzyk J, Harris EE, Tchou JC, Boraas  
MC, Czerniecki BJ, Rosato EF, Orel SG, Solin LJ 

Int J Radiat 
Oncol Biol Phys 

2007 

r2 Fine-needle aspiration biopsy findings in patients with small 
lymphocytic lymphoma transformed to hodgkin lymphoma 

Catrina Reading F, Schlette EJ, Stewart JM,  
Keating MJ, Katz RL, Caraway NP 

Am J Clin 
Pathol 

2007 

r3 Histopathology reporting of prostate needle biopsies Montironi R, Vela Navarrete R, Lopez-Beltran A, 
Mazzucchelli R, Mikuz G, Bono AV 

Virchows Arch 2006 

r4 Ultrasound-guided prostate biopsy in 2005 Clements R., Luis T Int Am J 2006 

r5 Epidemiology of biopsy proven giant cell arteritis in  
northwestern Spain: trend over an 18 year period 

Gonzalez-Gay MA, Garcia-Porrua C, Rivas MJ  
Rodriguez-Ledo P, Llorca J 

Ann Rheum  
Dis 

2007 

r6 The optimal diet for women with polycystic ovary syndrome? Marsh K, Brand-Miller J Br J Nutr. 2007 

r7 Bile duct dysplasia and congenital hepatic fibrosis  
associated with polycystic kidney (Caroli syndrome) in a rat 

Bettini G, Mandrioli L, Morini M Vet Pathol 2007 

r8 Open-heart operations in patients with a spinal cord injury Lin D, Bakaeen FG, Shenaq SA, Ribati M,  
Atluri PV, Holmes SA, Berger DH, Huh J 

American J of 
surgery 

2007 

r9 Effects of zinc coadministration on lead toxicities in rats Piao F, Cheng F, Chen H, Li G, Lu X,  
Liu S, Yamauchi T, Yokoyama K. 

Ind Health 2007 

r10 Dye-guided and radio-guided sentinel node biopsy  
in breast cancer 

Imoto S, Ito H J of surgery 2007 

Table 1: A sample publication relational table 

Figure 2: The system architecture of iPubMed 
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2.3 Index structure 

We use a trie to index the words in the table. Each word w in the 

table corresponds to a unique path from the root of the trie to a leaf 

node.  Each node on the path has a label of a character in w. The 

nodes with the same parent are sorted by the node label in their 

alphabetical order.  Each leaf node has a unique keyword ID for 

the corresponding word.  The keyword ID is assigned in the pre-

order. Each node maintains the range of keyword IDs in its sub-

tree: [minKeyID, maxKeyID]. For each leaf node, we store an 

inverted list of record IDs that contain the corresponding word. To 

improve search performance, we can also maintain a forward index 

for the records. For each record, the forward index keeps the sorted 

keyword IDs in the record. Consider the publication relation in 

Table 1. Its trie for the tokenized words is shown in Figure 3.  The 

word “luis” has a node ID of 16, and its inverted list includes re-

cord r4. The keyword ID of leaf node 11 is 3. The keyword range 

of node 11 is [3,5]. The forward list of record r4 includes keyword 

IDs 2, 7, and 9. 

2.4 Search algorithm 

We tokenize each query string to keywords.  Our search algorithm 

consists of the following three steps: 1) Finding the predicted 

words of each keyword and the list of records that contain the pre-

dicted words; 2) Identifying the predicted records by computing 

the intersection of the lists corresponding to different query key-

words; and 3) Ranking the answers. Next we describe these three 

steps. 

 

2.4.1. Incrementally identifying predicted words of 

each keyword 

For each input keyword, we incrementally identify the predicted 

words based on its prefixes. In the case of exact search, there exists 

only one trie node that match a partial keyword, therefore finding 

the predicted words is relatively easy and can be done by travers-

ing the descendants of the trie node. However, to support fuzzy 

search, we need to predict multiple prefixes that are similar to the 

partial keyword. We call the nodes of these similar prefixes the 

active nodes of the input keyword.  We will need to locate the leaf 

descendants of all active nodes, and identify the predicted records 

of these leaf nodes. For example, consider the trie in Figure 3.  

Suppose δ = 1, and a user types in a partial keyword “li”. The 

words “li”, “lin”, “liu”, “lu” and “lui” are all similar to the input 

keyword, since their edit distances to “li” are within a threshold δ 

= 1. Thus nodes 11, 12, 13, 14, and 15 are active nodes. 

 

Given an input keyword p, we store the set of active nodes Φp = 

{<n, ξn>}, where n is an active node for p, and ξn = ed(p, n) ≤ δ. 

(For the simplicity of notation, we will use n to denote both the trie 

node and its corresponding string). We call Φp the “active-node 

set” for keyword p (together with the edit-distance information for 

each active node). The main idea behind our method is to use the 

prefix-filtering. That is, when the user types in one more letter 

after p, only the descendants of the active nodes of p can be the 

active nodes of the new query and need to be examined. We use 

this property to incrementally compute the active-node set of a new 

query, taking advantage of the cached active-node sets Φp. 

 

Suppose a user is typing in a query string c1c2…cx letter by letter. 

After the user types in a prefix query pi = c1c2…ci (i ≤ x), we keep 

an active-node set Φpi for pi. When the user types in a new charac-

ter cx+1 and submits a new query px+1, we compute the active-node 

set Φpx+1 for px+1 making use of Φpx as follows. 

 

We start by initializing an active node set corresponding to the 

empty keyword ε, i.e.,  Φp0 = Φε = {<n,ξn> | ξn = |n| ≤ δ}. That is, 

it includes all trie nodes n whose corresponding string has a length 

|n| within the edit-distance threshold δ. These nodes are active 

nodes for the empty string since their edit distances to ε are within 

δ. 

 

For each <n,ξn> in Φpx, we consider whether the descendants of n 

are active nodes for px+1. If ξn + 1 ≤ δ, then n is an active node for 

px+1, so we add <n,ξn + 1> to Φpx+1. This case corresponds to delet-

ing the last character cx+1 from the new query string px+1. Note that 

even if ξn + 1 ≤ δ does not hold, node n can still potentially become 

an active node of the new query string, due to operations described 

below on other active nodes in Φpx.  For each child nc of node n, 

we consider two possible cases. 

Figure 3: An example index structure (partial) for the publication 

records shown in Table 1 

Figure 4: Incrementally computing active nodes 

 at U
niversity of C

alifornia, Irvine on January 3, 2012
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


5 

In the first case, the child node nc has a character different from 

cx+1.  Suppose node ns is such a child node. We have ed(ns, px+1) ≤ 

ed(n, px)+1 = ξn + 1. If ξn + 1 ≤ δ, ns is an active node for the new 

string, and thus <ns, ξn + 1> will be added to Φpx+1.  This case 

corresponds to substituting the label of ns for the letter cx+1. 

 

In the second case, the child node nc has a label cx+1. Suppose node 

nm is such a child node. In this case, we have ed(nm, px+1) ≤ 

ed(n, px) = ξn ≤ δ.  Therefore nm is always an active node of the 

new string, so we add <nm, ξn> to Φpx+1. This case corresponds to 

the match between the character cx+1 and the label of nm.  One sub-

tlety here is that, if the distance for the node nm is smaller than δ, 

i.e., ξn < δ, we need to consider additional nodes: for each descen-

dant d of nm that is at most δ - ξn letters away from nm, we also 

need to add <d,ξd> to Φpx+1, where ξd = ξn + |d| - |nm|. This opera-

tion corresponds to inserting letters after node nm (For node ns, we 

do not need to consider its descendants for insertions; because if 

these descendants are active nodes, they must be in Φpx and thus 

will still be considered). 

 

Note that during the update of Φpx+1, the above procedure may 

result in the addition of multiple sets corresponding to the same 

node, in which case we only keep the one with the shortest edit 

distance to the query string  px+1. 

 

2.4.2. Finding predicted records 

Given a query Q = {p1,p2,…,pl}, suppose {ki1,ki2,…} is the set of 

keywords that are similar to the prefix pi.  Let Lij denote the in-

verted list of kij, and Ui = ∪j Lij be the union of the lists for pi. Our 

goal is to find ∩iUi, the intersection of different prefix union lists. 

Figure 5 illustrates an example in which we want to answer query 

“in bio li”.  

To find the intersection, we first find the prefix with the shortest 

union list. We call each record in this list candidate record. Then 

we use the forward index to check whether each candidate record 

contains similar prefixes of every other query keyword. If so, this 

record is an answer. Each active state of other query keywords has 

a keyword range [s, l], and we check whether the candidate record 

contains a keyword in the range [s, l] using the following steps: a) 

Use a binary search method to find the candidate record ID in the 

forward index; b) Find the smallest keyword ID on the candidate 

record’s forward list that is larger than or equal to s, and c) Check 

whether this keyword ID is smaller than l. 

 

2.4.3. Ranking 

We consider the following several factors when designing a metric 

for ranking the search answers: 1) Matching prefixes: We consider 

the similarity between a query keyword and its best matching pre-

fix. The more similar a record's matching keywords are to the 

query keywords, the higher this record should be ranked. The simi-

larity is also related to keyword length. Exact matches on the query 

have a higher priority than fuzzy matches. For example, consider 

the trie in Figure 3. If a user types in “liu”, the record r9 could be 

ranked higher than r8; since the record r9 has an exact keyword 

match when r8 has a fuzzy keyword match “lin”. 2) Record 

weights: Different records could have different weights. For exam-

ple, a newly added publication record could be ranked higher than 

older publications. 

To combine these factors, we use the following scoring function. 

Suppose the query is Q = {p1,p2…,pm},  pi' is the best matching 

prefix for pi. The score of a record r for Q is defined as:  

 

          score(r, Q) = ∑i=1,2,…,m [ψ(r) / ( α × ed(pi, pi')
2 + β )], 

 

where α and β are weights used to adjust the effect of edit distance. 

We use α = 10, β = 1 in our system. ψ(r)  is the score of record r, 

which is defined as: 

 

ψ(r) = r[year] - 1900 + 10-9 × r[pmid], 

 

where r[year] and r[pmid] are the corresponding fields of the re-

cord r. These fields are used in the ranking function to give a 

higher priority to recent publications. Since many records have the 

same year and pmids are given to the records in an increasing or-

der, we also used the pmid field to be able to rank the records with-

in the same year. 

 

2.5 Caching algorithms 

Results of earlier computations are cached to speed up later que-

ries. After finding the answers of a query, we cache the active 

states for prefixes of each input keyword. We then incrementally 

answer the subsequent keywords using the cached active states. 

For the query with multiple keywords, we also cache the predicted 

records (intersection of union lists). If the user types another key-

word, we use the cached records to answer the query by checking 

whether the cached records contain the new keyword using the 

forward index. If there are too many predicted records, we just 

cache the highly relevant ones. For each subsequent keyword, we 

first use the cached records to compute the answer. If there are not 

enough top answers, we continue to compute more answers for the 

previous query and store the results in the cache. This “on-

demand” caching method makes sure that each query is answered 

efficiently, and we cache results of a query only if they are needed. 

 

Results in the client are cached to reduce communication cost.  

This optimization is especially important in scenarios where the 

user has a limited network bandwidth, such as mobile networks.  

The main idea is that the client browser caches the results of previ-

ous queries.  To send to the client the answers to a subsequent 

query, the server just sends the identifiers of those already in the 

earlier results, in addition to the additional records. In this way, 

Figure 5: Intersecting lists for answering a keyword query “in bio li” 
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only the ids of the earlier results need to be transferred over the 

network. 

 

2.6 Incremental Updates 

Since many new records are added to the MEDLINE database on a 

daily basis, updating our dataset timely becomes very crucial. We 

download the provided update files from an NLM FTP server 

every day and use incremental-update techniques to maintain the 

trie structure, inverted lists, and forward index. This allows us to 

process inserted, revised and deleted records without reconstruct-

ing the whole structure from scratch.  

 

The MEDLINE database is maintained via insertions, deletions, 

and revisions. For each revision, we delete the existing record first, 

and then insert the new record. Therefore, we will focus on inser-

tions and deletions. We store the trie, inverted lists, forward lists, 

and the original data in memory. We also keep a copy of the data 

shard on the disk to be able to rebuild the structures in case of a 

system failure. Next we discuss how these structures change in the 

presence of an insertion or deletion. 

 

Deletion: Assume a record r is deleted. First we delete it from the 

copy on disk. For the in-memory copy, we mark the record r as 

invalid, but do not delete its keywords from the trie, because other 

records may contain these keywords. We do not modify the in-

verted index nor the forward index, since they are kept sorted and 

could be large. In this scenario, if the record r is found in the an-

swers to a query, the system will not return the record r to the user 

since it is marked as invalid. 

 

Insertion: Let r be an inserted record. First we insert the record 

into the data on disk. Then we tokenize r to keywords and insert 

each of its keywords into the trie. If there is a leaf node for the 

keyword, we can just add the record r into the inverted list of this 

leaf node. Since the inverted list of this keyword is sorted and 

might be huge, it could be expensive to insert r directly into the 

list. For this reason, for each leaf node, we keep a primary list and 

a secondary inverted list. We use the primary inverted list when 

building the structure, and use the secondary inverted list for stor-

ing updates. This method can reduce the time to insert a record to 

the inverted list, since the number of records in the secondary in-

verted list tends to be smaller than the primary one. These two lists 

can be merged into the primary list periodically to be able to keep 

the secondary inverted list small.  

 

If a keyword is seen for the first time, it should be added to the trie. 

To be able to use the forward index with the updated trie, we want 

to preserve the order of the assigned ids of the trie nodes. If the 

keyword ids on the trie are assigned consecutively, we may not be 

able to assign new unique ordered ids for the new keywords. To 

solve this problem, we reserve some extra keyword ids on the trie 

to use in case the updated dataset contains new keywords. In the 

rare case where the reserved space is not enough for new key-

words, we can rebuild the index structures. 

 

After inserting all the keywords of record r into the trie and the 

record id of r into their corresponding inverted lists, we can simply 

append the record id of r with its corresponding keyword ids into 

the forward index. In this scenario, for a query, if we reach a leaf 

node in the trie, we need to consider both its primary and secon-

dary inverted lists. The rest of the search process will be the same 

as before. 

3 RESULTS 

3.1 System Implementation 

The iPubMed Web server was set up using Apache2 on a Linux 

machine. The Web server has a broker which receives a query 

from a user, and sends the query to the FastCgi Servers in the clus-

ter. In order to process queries over 19 million records, the current 

iPubMed system at Tsinghua University is using a cluster of two 

slave machines, each with four Intel Xeon E5420 (2.5GHz) CPUs 

and 16G DDR2-800 memory. The system at UCI is using a cluster 

of four slave machines, each with two AMD Opteron 248 

(2.2GHz) CPUs and 8G DDR2-800 memory. In the rest of the 

paper, we focus on the cluster at UCI and run our experiments in 

this cluster. Each slave at UCI has two FastCgi Servers and each 

server builds its local index on its local data (about 2.4 million 

records). The data is partitioned through these 8 processes by 

round-robin partitioning to do the load balancing. The backend was 

implemented as a FastCGI server process, written in C++, com-

piled with a GNU compiler. Indexes were constructed on six most 

commonly searched attributes: authors, their affiliations, article 

title, journal name, journal issue and MESH headings. Table 2 

shows the size of the dataset, index size, and index-construction 

time. These numbers are the sum of the sizes across eight proc-

esses. In the future, if the total size of the index structures in one 

processor exceeds the memory limit; we can add more machines to 

the cluster. 

Table 2: Total index size and construction time for 4 slaves each with 2 

processes 

3.2 User Interface 

The iPubMed interface is designed to show the query results in a 

user friendly way. Figure 1 demonstrates an example of a query 

results. In this interface, a user can specify whether to use fuzzy 

search feature. If this feature is disabled, only the exact matches to 

a query will be displayed. Furthermore, the fuzzy matches and 

exact matches are highlighted with different colors to make them 

more distinguishable. The interface has also a pagination feature 

for navigation through the different pages of the results. 

 

3.3 Query Performance 

We evaluated the query performance as the number of key-

words increased. Two types of queries were generated: the 

first one consisting of keywords randomly chosen from the 

dataset, and the second one consisting of modified queries from the 

Record Number 19 million 

Total Size of Indexed Attributes 5.8 GB 

Number of Distinct Keywords 3.07 million 

Index Construction Time (for each process) 320 sec 

Trie Size 1.82 GB 

Inverted-List Size 2.65 GB 

Forward-Index Size 2.65 GB 
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first type by adding 1 edit error to each keyword. Each query asked 

for 10 best records. The average query response time for a query is 

shown in Figure 6(a), which demonstrates that the algorithms can 

answer a single-keyword query very efficiently (within 20ms) for 

both types of queries. The processing time for multiple-keyword 

queries is typically longer; however, it is still within a millisecond 

range. Our algorithm caches the earlier results and uses them to 

calculate the new result set incrementally. It intersects the earlier 

results with the results of the new query keyword. Thus the aver-

age search time may also decrease if the last query keywords are 

very restrictive. We see such a behavior in the results of exact 

match for 4-keyword queries. 
 

We also measured the query time as the number of characters in-

creased in the query keyword. We generated single-keyword que-

ries that asked for 10 best records incrementally starting from the 

third keystroke to the tenth keystroke. The average query response 

time for each keystroke is shown in Figure 6(b). Since all the que-

ries have single keyword, the time does not include intersecting 

any inverted list. So the time to retrieve the best 10 records is ex-

pected to be very similar no matter how many characters the key-

word has. However, the figure shows that our algorithms can spee-

dup the later queries by caching the former results. 

 

3.4 Incremental Updates 

MEDLINE is a highly dynamic database with thousands of publi-

cation records added or revised each day. Therefore it is important 

for iPubMed to be able to keep up with these daily changes and 

update the internal data structures quickly and efficiently. In our 

current implementation, we download the update files from the 

NLM FTP server every day and use incremental-update techniques 

to maintain the trie structure, inverted lists, and forward index (See 

Section 2.6). This allows us to process inserted, revised, and de-

leted records without reconstructing the whole structure from 

scratch.  Instead of spending 320 seconds to reconstruct the index 

structures, we incrementally update the structures around 15 sec-

onds in average. 

4 DISCUSSION 

We described a new system for searching the MEDLINE database, 

implemented in a fully functional server called iPubMed. Compar-

ing with the most widely used PubMed system at NCBI, the iPub-

Med system contains two unique features: 1) being inter-active, 

returning search results on the fly and allowing users to change 

queries adaptively, and 2) allowing approximate search. 

 

We emphasize that our goal is not to replace the PubMed system, 

which contains a number of useful features not implemented in 

iPubMed, such as limiting search within different fields, allowing 

boolean operations, and so on. If a user knows exactly the authors 

and the title of the paper he or she wants to find, the PubMed sys-

tem is sufficient for the task. Instead, iPubMed is targeting at a 

different category of searches, in which the users have uncertain or 

partial information regarding the publication records that they 

would like to find as showed in Figure 1. Through interactive 

search, iPubMed allows users to refine and/or modify queries on 

the fly without the need of issuing separate, independent queries as 

in PubMed. 

 

Although iPubMed is fully functional in its current form, there is a 

lot of room for further improvement. Currently iPubMed does not 

search abstracts of articles due to computational constraints. In the 

future, we plan to increase the scalability of the system by utilizing 

parallel computing and expanding system hardware. We also plan 

to increase the functionality of iPubMed in several other directions, 

such as limiting search in different fields and allowing boolean 

operations. Our goal is to make iPubMed a truly practical and use-

ful tool for biomedical researchers. 
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