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ABSTRACT

Motivation: Experiments such as ChIP-chip, ChIP-seq, ChIP-PET
and DamID (the four methods referred herein as ChIP-X) are used to
profile the binding of transcription factors to DNA at a genome-wide
scale. Such experiments provide hundreds to thousands of potential
binding sites for a given transcription factor in proximity to gene
coding regions.
Results: In order to integrate data from such studies and utilize
it for further biological discovery, we collected interactions from
such experiments to construct a mammalian ChIP-X database. The
database contains 189 933 interactions, manually extracted from
87 publications, describing the binding of 92 transcription factors
to 31 932 target genes. We used the database to analyze mRNA
expression data where we perform gene-list enrichment analysis
using the ChIP-X database as the prior biological knowledge gene-
list library. The system is delivered as a web-based interactive
application called ChIP Enrichment Analysis (ChEA). With ChEA,
users can input lists of mammalian gene symbols for which the
program computes over-representation of transcription factor targets
from the ChIP-X database. The ChEA database allowed us to
reconstruct an initial network of transcription factors connected
based on shared overlapping targets and binding site proximity. To
demonstrate the utility of ChEA we present three case studies. We
show how by combining the Connectivity Map (CMAP) with ChEA,
we can rank pairs of compounds to be used to target specific
transcription factor activity in cancer cells.
Availability: The ChEA software and ChIP-X database is freely
available online at: http://amp.pharm.mssm.edu/lib/chea.jsp
Contact: avi.maayan@mssm.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Gene expression profiling using microarrays, or now RNA-seq, are
popular methods to measure the level of mRNA in mammalian
cells at a genome-wide scale. Yet, since mRNA levels only
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weakly correlate with protein level, data collected from mRNA
profiling provides little clues on how cells are regulated by the
activity of transcription factors, co-regulator complexes and cell
signaling pathways. Many methods have been applied to study
transcriptional regulation both experimentally and computationally.
Recently, large-scale experimental methods that profile the binding
of transcription factors to DNA at the genome-wide level have
emerged. These methods include ChIP-chip (Iyer et al., 2001), ChIP-
seq (Johnson et al., 2007), ChIP-PET (Wei et al., 2006) and DamID
(Vogel et al., 2007) (these four methods are referred to as ChIP-
X for shorthand hereinafter). Results from such experiments report
the binding of specific transcription factors to DNA in proximity
of target gene loci, commonly listing hundreds to thousands of
potential regulatory interactions. Such interactions are often reported
in Excel spreadsheets or PDF tables as Supplementary Materials to
research articles, or as raw data files provided as short-sequence-
reads in FASTA format, making such data difficult for reuse.
So far, information from genome-wide ChIP-X studies, as well
as low-throughput transcription-factor/DNA interaction studies, is
utilized to develop binding-site sequence-motifs. For example,
JASPAR (Sandelin et al., 2004) and TRANSFAC (Matys et al.,
2003) are two popular databases that collect information about
potential binding sites into logo-motifs also known as binding-site
matrices. These databases contain collections of transcription factors
with information on regulatory-motif elements. With binding-
site matrices, it is straight forward to map potential binding
sites across an entire genome. Alternatively, conserved sequences
near gene-coding regions across and within species can suggest
transcription-factor binding sites and be used to improve predictions
of functional transcription-factor/DNA interactions using multiple
alignments combined with logo-motif search. The obvious emerging
alternative method is to utilize ChIP-X data for linking transcription
factors to gene expression changes by computing binding site over-
representation. By compiling ChIP-X experiments into a gene-list
library database, we can rank transcription factors most likely
responsible for the observed changes in gene expression based
on statistical enrichment analysis. We show that this method is
powerful, capable of capturing interesting underlying biology with
clear signals. Such an approach likely works well because it
considers the chromatin structure of a specific cellular state, in
a specific experiment; and as such, it is a more direct way to
infer transcription factor regulation compared to sequence-based
methods.
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Fig. 1. Screen-shot from the ChIP-X database web application. Users can
interactively adjust the normalized peak height threshold to determine the
genes that are regulated by the transcription factor.

2 IMPLEMENTATION
We manually collected data from ChIP-X experiments into a
database of gene lists by extracting lists from the supporting
materials of publications. In this ChIP-X database, each record
contains a list of genes potentially regulated by a specific
transcription factor under a specific condition. We only included
publications that describe ChIP-X experiments applied to profile
human or mouse cells. Besides manually extracting the gene lists
reported by the authors from the publications’ supporting materials,
when it was possible and available, we also generated gene lists
directly from the raw data files that belong to each publication.
We implemented our own method for indexing, peak calling and
gene matching to process the raw ChIP-seq and ChIP-chip data
using a standard process (see Supplementary data for detail). The
manually curated portion of the database as of July 26, 2010 contains
189 933 extracted interactions, from 84 publications, describing the
binding of 92 transcription factors to 31 932 target genes. Several
publications reported target genes for more than one factor, and
several factors were profiled by different groups using different
conditions and cell types. The automatically generated portion of
the database contains 19 ChIP-seq and 10 ChIP-chip publications
with 203 ChIP-seq and 22 ChIP-chip individual experiments.
Both parts of this ChIP-X database are expected to continually
grow. Additionally, since peak height varies significantly across
experiments, we also implemented an interactive visualization tool
that gives users the control to dynamically set the peak height cut-off
for a specific experiment using a slider (Fig. 1).

For comparing input gene lists across species, human and mouse
gene IDs were merged using homologene. However, species are
separated in the database and the user can perform the analysis on
each species separately. The automatically generated lists displayed
more variability in total gene calling per experiment per transcription

Fig. 2. Screen-shot from the ChEA program web application. Users can cut
and paste input lists of genes in the text box on the left. The system reports
a ranked list of transcription factors/experiments (concatenated string that
includes the transcription factor and the PubMed ID linking the factor to a
specific study) based on over-representation of transcription factor putative
targets in the input list.

factor when using a fixed peak height, in combination with the
same indexing and peak calling methods. This suggests that there is
intrinsic variability in average peak height and number of identified
peaks across different ChIP-seq and ChIP-chip experimensts. The
ChIP-X database is utilized to create a web-based interactive
software application called ChIP Enrichment Analysis (ChEA)
(Fig. 2). With ChEA, users can cut and paste input lists of
mammalian gene symbols, typically gene lists that significantly
changed in expression level from genome-wide gene expression
profiling studies. Then, the software computes over-representation
for targets of transcription factors from the ChIP-X database. To
compute statistical enrichment, we implemented the Fisher exact
test with the Bonferroni’s correction, where the proportions for
the test are the number of genes in the input list, the number
of genes identified in the ChIP-X experiment, the genes that are
shared among the two lists and the number of overall targets in
the ChIP-X database (∼30 000). The program reports a ranked list
of ChIP-X experiments that show statistically significant overlap
with the input list. Indentified genes from the input list, potentially
regulated by a specific transcription factor, are also connected and
visualized as a network using known protein–protein interactions.
To construct the protein–protein interaction network we used the
networks we consolidated for the program Genes2Networks (Berger
et al., 2007), as well as all mammalian interactions downloaded
from the KEGG pathway database (Kanehisa et al., 2008). The
ChEA software application and the interactive features of the ChIP-
X database are implemented with JavaScript, AJAX, Java Server
Pages, with a back-end MySQL database, as well as an interactive
Adobe Flash-based network and peak-calling viewer developed
using ActionScript 3.0. The system can also be downloaded and
installed as a standalone Java desktop application, or as a command-
line tool. The tool also provides search capabilities for finding
transcription factor regulators for specific genes, or for finding
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Fig. 3. Transcription factor/target gene similarity distance table based on
hierarchical clustering on 122 experiments from the manually extracted
ChIP-X database. Transcription factors are considered similar if target
genes reported from a ChIP-X study implicate significant overlap
(Jaccard’s Coefficient). Detailed labels of all experiments are shown in the
Supplementary Figures.

experiments for specific transcription factors, including the ability to
find which genes are regulated by more than one transcription factor
(Supplementary Fig. S1). Users can also browse the content of the
database online. The database containing all interactions extracted
manually from the ChIP-X experimental data, as well as the indexed
files created from the raw data analysis can be downloaded from our
web site.

3 RESULTS

3.1 Overlapping target genes among transcription
factors

The collection of gene lists for each transcription factor from the
ChIP-X studies allows us to reconstruct initial distance matrices
that connect transcription factors based on different measures of
binding site similarity. The first approach is based on shared target
genes. If two factors share many targets, it is likely that they
regulate genes together and potentially physically interact. We used
the Jaccard Coefficient and hierarchical clustering to visualize such
overlap (Fig. 3; Supplementary Figs S2–S5). Such analysis unravels
known clusters linking the polycomb group members near the self-
renewal embryonic stem-cell members, and clustering cancer related
oncogenic transcription factors such as Myc and Cyclin-D1, as well
as less obvious relations. Similarity between pairs of transcription
factors profiled using ChIP-X studies can be further examined by
looking at the proximity of binding peaks. Hence, the second type
of distance matrix counts the number of proximal peaks for pair-
wise factors (Supplementary Figs S6 and S7 and Supplementary
Material). Given an arbitrary threshold, such distance matrices can
be transformed into networks (Supplementary Figs S8–S10). Such

networks can be used to further visualize potential transcription
factor complexes and help in placing new ChIP-X results within
the context of nuclear transcription regulators from prior studies
based on target similarity, binding proximity and protein–protein
interactions.

3.2 Case studies: gene expression analyses with ChEA
To demonstrate the usefulness of ChEA we used the ChIP-X
database for the analysis of mRNA expression data. We demonstrate
the utility of the system for three different applications: The first
case study is the re-analysis of gene lists that were extracted as
biomarker features from two studies that developed a classifier for
breast cancer metastasis using tissue from patients profiled with
mRNA expression microarrays. The second application is the re-
analysis of microarray data collected after over-expression of key
transcription factors in embryonic stem cells. Whereas the last
example cross references the ChIP-X database with the connectivity
map (CMAP), a database of over 6000 chemical perturbations
followed by results from genome-wide gene-expression microarrays
(Lamb et al., 2006). Joining the ChIP-X and CMAP databases
provides predictions for combinations of small molecule drugs that
could be used to potentially down-regulate Myc activity in different
cancers.

3.3 Case study 1: linking breast cancer signature genes
to transcription factors

The first case study demonstrates how the ChEA system can be used
for comparative analysis of two reports that identified a biomarker
set for invasive breast cancer inferred from microarray studies. In
two independent publications, the authors used two independently
collected compendiums of mRNA expression microarrays from
patients with breast cancer tumors to find a signature set of genes that
can differentiate between benign and malignant breast cancers (van’t
Veer et al., 2002; Wang et al., 2005). Both studies produced lists of
genes considered as selected feature ‘biomarkers’. Surprisingly, the
two lists, containing 162 and 73 genes, share very little overlap (two
genes) which is statistically insignificant. However, when both gene
lists are used as input for ChEA separately, they show enrichment
for SMAD2/3 gene targets. The P-value of 2.2E-05 for the list of
73 genes (the third-most significant out of all other experiments in
the ChIP-X database) and also 9.5E-05 for the list of the 162 genes
(fourth most significant ChIP-X experiment). When the lists are
combined, SMAD2/3 is at the top of the list of enriched factors with
an improved P-value of 9.3E-10 (Table 1; Supplementary Tables
S1–S4).

Careful examination of the 35 genes that were identified as
overlapping among the Smad2/3 targets from the two studies point
to several genes that have been previously reported to play a role in
breast cancer metastasis (Supplementary Table S4). In particular,
MMP9 and CD44 are both highly implicated in breast cancer
metastasis. MMP9 and CD44 are listed in GeneRifs for 23 and 17
articles returned by the query search ‘breast cancer’, respectively.
MMP9 is a metalo-protease that digests the extra-cellular matrix
during invasion, whereas changes in CD44 expression likely play
a role in evading the host immune response. The results from the
ChEA analysis clearly implicate that TGF-β/SMAD2/3 signaling
plays a dominant role in breast cancer metastasis and can be used to
further explain the origins of the discrepancy between the original
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Table 1. Overlap summary among two prior reports that extracted biomarker
sets from microarray mRNA profiling of breast cancer tissue from patients,
and the top-ranked ChIP-X study identified by ChEA

Experiment Targets Targets P-values
input (database)

Van’t Veer et al. (2002) E2F1-18555785 35 4172 2.56E-07
CREB1-15753290 15 957 1.15E-06
CUX1-19635798 27 3052 3.54E-06
SMAD2/3-18955504 20 1936 9.50E-06

Wang et al. (2005) ZFP281-18757296 16 2004 7.72E-06
HNF4A-19822575 29 6083 2.20E-05
SMAD2/3-18955504 15 1936 2.23E-05

Combined SMAD2/3-18955504 35 1936 9.30E-10
ZFP281-18757296 32 2004 9.58E-08
E2F1-18555785 50 4172 1.17E-07

Complete tables are provided at Supplementary Tables S1–S4.

two studies. It has been well-established that TGF-β/SMAD2/3
signaling is playing an important role in breast cancer metastasis
(Koumoundourou D, 2007; Liapis et al., 2007; Xie et al., 2002).
However, the ChEA analysis combined with the microarray profiling
provides unbiased global additional support for such hypothesis.
Our results also complement a network analysis approach applied
to the same data using protein interactions. Chuang et al. (2007)
‘connected’ the breast cancer biomarkers identified by the two
independent studies using known protein-protein interactions to
find that a SMAD2/3 sub-network, among other sub-networks, is
up-regulated in metastasized tumors. Here we linked such results
to transcriptional regulation evidence from ChIP-X studies. Gene-
expression profiling from different cancers, collected from patients
or cell types, can now be linked to a transcription factor regulatory
signature using ChEA. Such signature may hint, in a direct way, to
the molecular regulatory mechanisms altered in any specific cancer
subtype.

3.4 Case study 2: re-analysis of gene over-expression
followed by mRNA profiling of mESCs

For the second case study, we re-analyzed results from a report where
the authors over-expressed 50 transcription factors, one-by-one, in
mouse embryonic stem cells (mESCs) and then measured the effect
of such perturbations on gene-expression response using mRNA
microarrays (Nishiyama et al., 2009). Among the 50 transcription
factors used, all the well-known mESCs regulators are included,
i.e. Oct4, Nanog and Sox2. The study identified Cdx2 as the
transcription factor with the most dramatic effect when over-
expressed, and as such it was selected for conducting a ChIP-seq
experiment. We re-analyzed the results from the Nishiyama et al.
study by inputting the top 500 genes that changed mostly as
compared to the control for each of the 50 perturbations using ChEA.
Surprisingly, the two studies that reported ChIP-X results for Suz12
binding appeared as the most statistically enriched for binding sites
for almost all of the perturbations (Fig. 4; Supplementary Table S5).
The P-values for overlap with Suz12 targets were very significant,
reaching for example, 1.65E-89 for the up-regulation of Sox9.
Additional confidence is added due to the fact that the ChEAdatabase
contains two independent Suz12 ChIP-X experiments that do not

Fig. 4. ChEA analysis of the top 500 genes that changed in their mRNA
expression after 50 over-expression experiments of single transcription
factors in mESCs. The P-value rankings from ChEA for each transcription
factor over-expression perturbation are inverse log transformed. The top-
ranked transcription factors reported by ChEA are labeled (peaks in the
bar graph). Out of the 50 perturbations, only those factors that reached a
low P-value of 1.0E-22 are labeled for clarity. Full results are available in
Supplementary Table S5.

fully overlap, and both studies appeared at the top for almost all the
gain-of-function experiments. Suz12 is a member of the polycomb
group (PcG) complex responsible for methylation of lysine 9 and
27 of histone 3. Such methylation is known to cause transcriptional
suppression of differentiation genes (Ru and Yi, 2004). Hence, the
fact that all the changes in gene expression observed in this study are
strongly associated with Suz12 targets, regardless of the perturbation
applied to mESCs, may implicate that almost all perturbations
cause differentiation. This suggests that the quantitative level of
many components of the self-renewal machinery must be critically
balanced to maintain the pluripotency state. It seems that the type
of perturbation in itself was less critical as any perturbation induce
similar global changes in chromatin rearrangements.

3.5 Case study 3: cross-referencing ChEA with CMAP
for designing multiple drug treatments for cancer

Another opportunity offered by the ChIP-X database, and the ChEA
gene-list enrichment analysis software, is to combine ChEA with the
Connectivity Map (CMAP) (Lamb, 2006, 2007). Such combination
of databases can be used for identifying and ranking small molecules
that can potentially be used for controlling the activity of specific
transcription factors. CMAP is a dataset of mRNA microarray
expression profiling of drug-stimulated mammalian cancer cells.
CMAP contains ∼6000 perturbations with ∼1300 single drugs,
sometimes in different concentrations, cell types or other variable
experimental conditions. Examining the genes that increased or
decreased significantly after a perturbation, we can use ChEA to
rank the transcription factors that most likely regulate (statistically
over represented transcription factors) the genes that increase or
decrease in expression due to the drug perturbation. This ranking
can be used to design combinations of drugs that can potentially
counteract the activity of specific transcription factors in a specific
cellular context (Fig. 5).

Algorithmically, we can define two families of sets: one describing
the relationship between drugs and the mRNAs they affect based on
CMAP, and the other family of sets describing transcription factors
and their target genes based on entries from the ChIP-X database.
The drug-mRNA family of sets DR contains the top 500 genes that
increased or decreased in expression given drug i and perturbation
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Fig. 5. Illustration of the concept of using pair-wise drug perturbations to
target the Myc target gene space.

j from CMAP, and where j is used as the set label. Hence, the
cardinality of all sets DRj is always 500. Elements in DRj sets are
gene symbols. The second family of sets TR is made of target genes
from all the ChIP-X experiments. Hence, TRi contains gene symbols
reported to be targets of transcription factor i in experiment j where
j is the set label. Now we can operate on these families of sets to find
the best pair-wise combinations of drugs that cover the target space
for transcription factor i. First, we can compute the union of DR
with itself to create a new family of sets DP describing how pairs
of drugs may affect gene expression in an additive manner. For all
DRi and for all DRj where i not equal to j

DPk =DRi ∪DRj

The additive assumption was chosen for simplicity, however there
is some evidence that it might be reasonable (Geva-Zatorsky et al.,
2010). Hence DP contains a family of (n2/2)−n sets, where n is
the number of drug perturbation experiments in CMAP. Note that
the family of sets DP contains also genes symbols as the elements
of the sets. We are now ready to score how drug perturbation pairs
may affect the activity of transcription factor k in experiment j. Such
score is simply the intersection between DP and TR,

Score=DPi ∩TRj

The scoring scheme can be used to suggest, for example, how
we can use small molecules to induce the activity of specific
transcription factors such as Oct4 for iPS reprogramming, or for
blocking uncontrolled cell proliferation by targeting Myc. In this
case study, we devise mechanisms to down-regulate the activity
of the transcription factor Myc and hence potentially block the
proliferation of cancer cells. When we examined the results of
inputting all lists of the mostly down-regulated 500 genes as reported
in the ranked lists from CMAP entered in a batch mode into ChEA,
we noticed that Myc appears often as the top-ranked transcription
factor for binding in proximity to genes that decreased in expression
after many drug perturbations. This is expected since Myc is a
known oncogene, and all cell-lines in CMAP are human cancer
cells, and many of the drugs that were used to create CMAP are
anti-cancer drugs. For illustration, we ranked pairs of drugs based
on their combined coverage of Myc targets (Fig. 5). Our strategy
optimizes selection of drug-pairs that do not have similar effects
on Myc targets. Table 2 provides the resulting top 10 pair-wise
entries (a Perl script with an input table is provided as supporting

Table 2. Top-ranked pairs of drug perturbations from CMAP experiments
that cover the gene target space of Myc as determined by several ChIP-X
experiments independently

ExpID

Drug1 Drug2 Targets for Total
D1/D2/overlap targets

monastrol-614 clonidine-1555 170/215/8 377/500
monastrol-614 colchicine-1598 170/210/8 372/500
monastrol-614 tolazoline-2000 170/208/7 371/500
nocodazole-1393 laudanosine-1741 178/191/6 363/500
nocodazole-1393 valproic acid-1047 178/192/7 363/500
monastrol-614 dihydroergocristine-1745 170/201/8 363/500
nocodazole-1393 tolazoline-2000 178/208/24 362/500
monastrol-614 methylergometrine-1607 170/203/11 362/500
monastrol-614 bromocriptine-2007 170/203/11 362/500
monastrol-614 tretinoin-1548 170/202/10 362/500

D1, drug1; D2, drug2; ExpID, experiment ID from CMAP.

materials, Script S1, Supplementary Table S6). The top 10-ranked
list of pair-wise drugs suggests combinations of drug treatments for
further maximally reducing Myc transcriptional regulatory activity.
The combinations we identified include known cancer drugs as well
as other drugs. For example, monastrol is a known cancer drug that
targets kinesin-5, a motor protein important in mitosis (Mayer et al.,
1999), whereas clonidine is a alpha-adrenergic agonist (Andén et al.,
1970) that is an anti-hypertensive used to aid sleeping and treat
ADHD. Hence, it is likely acting through a different pathway to
regulate a subset of Myc-regulated target genes. Our initial approach
of combining and ranking pairs of drugs to regulate the activity of
specific transcription factors can be further improved in many ways.
One possibility is to compute the likelihood that a combination of
more than two drugs will cover a specific transcription factor target
space. This can be achieved, for example, with algorithms such
as the probabilistic generative model for GO enrichment analysis
(Lu et al., 2008). Our initial formulation can also be extended
by using quantitative values instead of sets, and include statistical
randomization as control. In summary, the approach presented in
this third case study provides a step forward toward rationale
combinatorial application of drugs to treat specific cancers with
a transcription-factor anchoring. Such an approach is amenable
also for improving iPS reprogramming strategies by, for example,
designing combination of drugs that would activate Oct4 or other
key stem-cell self-renewal factors for reprogramming somatic cells
into iPS cells. Many other similar applications to attempt to control
cell fate are possible. The strategy should also work for other types
of gene expression microarray datasets in other contexts.

4 DISCUSSION
One of the reasons high-throughput genome-wide ChIP-X studies
are expected to be more useful and accurate than computational
sequence-based methods is because the sequence-based approaches
do not take into consideration the chromatin state of the cell under a
specific experimental condition, cell type or organism. Hence, ChIP-
X databases and tools such as ChEA are expected to perform more
accurately when combined with data from mRNA gene expression
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studies as compared to computational sequence based methods. A
match between a transcription factor and changes in gene expression
will be found not only by linking the changes in expression to
transcription factor binding sites, but also linking such binding
to a specific prior experiment which has been conducted under
similar condition. Combining different types of ChIP-X experiments
from different papers, cell-types and experimental conditions,
using different statistical cut-offs and experimental techniques is
challenging. We chose to either use the criteria applied by the authors
of each study, or apply our own standard method for finding peaks
and calling target genes. Both approaches are simple and relatively
unbiased. The two approaches complement each other in regards to
coverage. The raw data route excludes many of the studies currently
in the database since there are many ChIP-X publications that only
provide the target list without the raw data. There are also many
ChIP-X raw data files available in the public domain without a
publication that contains an author extracted gene list. Regardless,
we expect that the database will rapidly continue to grow. Moreover,
multiple entries for the same transcription factor can increase the
confidence for functional binding sites (Wu and Ji, 2010). Our
initial analysis shows that overlap among different ChIP experiments
using the same factor increases functional gene predictability.
For example, we examined the overlap among independent Oct4
ChIP-X studies and compared the consensus overlapped genes
with an Oct4 knock-down followed by a microarray study. Initial
results demonstrate that functional genes prediction improves when
multiple independent studies are combined, but this should be further
investigated in future studies. Since we keep track in our database on
information such as the cell type, organism, experimental method,
distance to start site and peak height, we implemented filters
that can be used by users to exclude the analysis from including
specific organism, cell-type or experimental method; as well as
calibrate the gene calling threshold for peak height and distance
to start site. For future studies we plan to integrate ChIP-X data
with lost-of-function/gain-of-function microarray studies as well as
include more histone modification ChIP-X studies. Many of the
studies that report global transcription factor binding to DNA using
whole genome-wide ChIP-X experiments also often conduct global
mRNA experiments after knock-down or over-expression of the
transcription factors that were used in the ChIP-X studies, as well as
profiling specific histone modifications or polymerase binding using
ChIP-X technologies. By combining mRNA microarrays of RNA-
seq together with ChIP-X transcription factor, polymerase binding
and histone modification studies, we can determine which binding
sites are functional, as well as which functional sites are activation
or inhibition sites. By combining expression data with ChIP-X we
should be able to obtain a signed and directed network which is
desired for understanding pathways, improving enrichment analyses
and performing dynamical simulations. The ChIP-X database and
ChEA web-based software tool was generated utilizing code from
our previous work of developing a kinase-substrate database and
software system for kinase enrichment analysis (KEA) (Lachmann
and Ma’ayan, 2009). These two software systems can potentially
be combined. Since we know the group of transcription factors
that regulate genes based on changes at the mRNA level under
a certain experimental condition or in a specific disease based
on tissue expression profiling, we can use known protein–protein
interactions to build a sub-network to connect these transcription
factors. Then, we can link this sub-network, as input for KEA, to

obtain the protein kinases and pathways that most likely regulate the
transcription factor centered sub-network (Bromberg et al., 2008).
Such an approach can be used to understand cell regulation at the cell
signaling network level given mRNA expression profiling data and
suggest kinase inhibitors as drug-targets (Ma’ayan and He, 2010).

5 CONCLUSIONS
In summary, the ChIP-X database and the ChEA software provide an
alternative way for researchers to analyze mRNA expression data in
context of genome-wide transcription-factor ChIP-X experiments
collected and organized into a prior knowledge database and
an interactive web-based software system. As more transcription
factors are profiled, under different experimental conditions, the
database is expected to grow and improve in accuracy and coverage.
Using other tools and databases in combination with ChEA,
integrative creative new applications in systems biology can be made
possible.
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