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ABSTRACT

Motivation: A major goal of biomedical research in personalized
medicine is to find relationships between mutations and their
corresponding disease phenotypes. However, most of the disease-
related mutational data are currently buried in the biomedical
literature in textual form and lack the necessary structure to allow
easy retrieval and visualization. We introduce a high-throughput
computational method for the identification of relevant disease
mutations in PubMed abstracts applied to prostate (PCa) and breast
cancer (BCa) mutations.
Results: We developed the extractor of mutations (EMU)
tool to identify mutations and their associated genes. We
benchmarked EMU against MutationFinder—a tool to extract point
mutations from text. Our results show that both methods achieve
comparable performance on two manually curated datasets. We
also benchmarked EMU’s performance for extracting the complete
mutational information and phenotype. Remarkably, we show that
one of the steps in our approach, a filter based on sequence analysis,
increases the precision for that task from 0.34 to 0.59 (PCa) and from
0.39 to 0.61 (BCa). We also show that this high-throughput approach
can be extended to other diseases.
Discussion: Our method improves the current status of disease-
mutation databases by significantly increasing the number of
annotated mutations. We found 51 and 128 mutations manually
verified to be related to PCa and Bca, respectively, that are not
currently annotated for these cancer types in the OMIM or Swiss-
Prot databases. EMU’s retrieval performance represents a 2-fold
improvement in the number of annotated mutations for PCa and
BCa. We further show that our method can benefit from full-text
analysis once there is an increase in Open Access availability of
full-text articles.
Availability: Freely available at: http://bioinf.umbc.edu/EMU/ftp.
Contact: mkann@umbc.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Relating human genomic variation to disease risk is one of the
major challenges of personalized medicine. During the past decade,
hundreds of mutations in the human genome have been associated
to disease phenotypes. When available, this information can be
integrated into the analysis of genomic variation of individual
genomes, which is crucial to developing personalized medicine
approaches. Yet, mutational information is, for the most part, in
textual form and not organized for easy identification and association
to the corresponding disease phenotype. Moreover, the complexity
of natural language processing and the continuous exponential
growth of literature repositories (e.g. PubMed) make extracting this
information challenging.

Publicly available databases like online Mendelian inheritance in
man (OMIM) (Amberger et al., 2009) and Swiss-Prot (Boeckmann
et al., 2003) contain categorized protein and DNA mutational
information with explicit associations to cancer and other diseases.
Other resources focus on specific diseases, such as cancer
[e.g. Cancer Gene Index (caBIG, 2007)] or specific chromosomal
locations (Claustres et al., 2002). These databases are currently
constructed and curated manually, which is a slow process that
limits the number of cancer mutations available to the biomedical
community. Text-mining methods to find reported mutations in these
databases have yielded up to 0.98 sensitivity (Caporaso et al., 2007)
but, to date, no accurate automatic methods to find disease-related
mutations are available.

Several algorithms have been developed to extract mutational
data from the biomedical literature. All of these methods implement
standard regular expressions to identify either the point mutations
alone [e.g. MutationFinder (Caporaso et al., 2007)], or both
the mutations and their associated gene and protein names
[e.g. MEMA (Rebholz-Schuhmann et al., 2004); MuteXt (Horn
et al., 2004)]. Most of the ‘mutation + gene’ recognition methods
implement standard regular expressions and generate text collections
of the point mutation information; some, however, provide
algorithmic and interface alternatives. For instance, Mutation
Grab (Lee et al., 2007) uses graph-based expressions to identify
mutations, while MutationMiner (Baker and Witte, 2006) uses
structural visualizations to display them. Overall, most methods have
focused on the extraction of point mutations and their association
with specific genes with reasonable accuracy. However, generating
a resource of disease-related mutations is still a challenge.
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MuGeX (Erdogmus and Sezerman, 2007) extends the
‘mutation + gene/protein’ extraction capability to investigate
the role of the given mutation in disease. MuGeX automatically
finds mutation-gene pairs in MEDLINE abstracts for Alzheimer’s
disease and the authors claim that this functionality can be extended
to any disease query. But, one of MuGeX’s disadvantages is its
inability to identify the exact correspondence between mutations
and genes in abstracts featuring multiple mutations in multiple
genes. For instance, if three mutations are present in three different
genes, MuGeX reports the nine possible mutations, of which only
three are correct. Most recently Yeniterzi and Sezerman (2009)
developed EnzyMiner as an enzyme-specific mutation identification
tool, which was applied to a set of disease-related abstracts to
identify disease mutations. One of the disadvantages of EnzyMiner
is that it only reports mutations related to enzymes. For that subset,
however, it provides additional relevant information about the
functional cause of the disorder. OSIRIS (Bonis et al., 2006), on the
other hand,focuses on identifying abstracts linked to entries from
the dbSNP (Sherry et al., 2001) database. While many of these
entries have disease-associations, such associations are limited to
the manually curated OMIM database. In a recent paper, Kuipers
et al. introduced an automatic method to extract and validate
mutations for Fabry disease (Kuipers et al., 2010).

In this article, we propose a novel, high-throughput approach
for identifying point mutations and their relationships to disease
phenotypes from the biomedical literature. Our approach combines
text mining and sequence analysis to identify mutations and their
associated genes and diseases. Our results show that when our
approach is applied to the identification of mutations related to
prostate cancer (PCa) and breast cancer (BCa), we obtain almost
twice as many annotated mutations for these diseases compared
to the current data in OMIM and Swiss-Prot. Application of our
method to full-text articles is desirable, but currently limited by their
availability in publicly available repositories. Furthermore, we show
that this semi-automatic method can be applied to other diseases and
discuss the remaining challenges for the complete automation of this
methodology.

2 MATERIALS
We used the PubMed search engine to retrieve a set of abstracts that
were potentially useful for identifying mutations from MEDLINE.
Our PubMed query took advantage of the controlled vocabulary
indexing in MEDLINE’s Medical Subject Headings (MeSH). We
submitted a simple query based on the MeSH descriptor ‘mutation’
(i.e. term = ‘mutations[MeSH Terms]’) and downloaded all PubMed
citations for which an abstract was available. The citations were
downloaded in XML format using the ‘e-utilities’ programming
interface provided by NCBI.

The following explains the identification of disease terms using
the MetaMap program. The identification of names of entities
in text is generally referred to as entity recognition and often
exploits terminologies and ontologies as a source of vocabulary
(Krauthammer and Nenadic, 2004; Park and Jim, 2006). In the
biomedical domain, the largest source of vocabulary is the Unified
Medical Language System (UMLS) Metathesaurus (Bodenreider,
2004). The Metathesaurus integrates some 8-million terms from
∼150 source vocabularies. The MetaMap program (Aronson, 2001)
is a biomedical entity-recognition software specifically designed

to discover Metathesaurus concepts in text. We used MetaMap
to identify disease names in the title and abstract of MEDLINE
citations. Version 2008AB of the UMLS was used as the source
of vocabulary. Specific options selected in MetaMap include
the identification of the longest-spanning entities (e.g. identify
‘androgen-independent prostate cancer’ rather than ‘androgen’ and
‘prostate cancer’ in the phrase ‘Molecular biology of androgen-
independent prostate cancer’). Citations were processed on a small
cluster of Solaris computers at the National Library of Medicine.

The Metathesaurus concepts identified by MetaMap in the titles
and abstracts of MEDLINE citations were restricted to disease
concepts. Each Metathesaurus concept is categorized using semantic
types from the UMLS Semantic Network (McCray, 2003). For
example, the concept ‘adenocarcinoma of prostate’ is categorized
with the semantic type ‘neoplastic process’. Groupings of semantic
types, called semantic groups (Bodenreider and McCray, 2003),
define coarser categories. We used the semantic group ‘disorders’
as a filter for selecting disease entities from the UMLS concepts
identified by MetaMap in MEDLINE citations.

For specific diseases, we used hierarchical relations among UMLS
concepts to select all specific kinds of cancers. Examples of kinds of
prostate cancer include ‘prostate cancer stage B’, ‘carcinoma in situ
of prostate’and ‘androgen-independent prostate cancer’. We identify
as related to prostate cancer any citation in which any descendant,
direct or not, of the Metathesaurus concept ‘malignant neoplasm of
prostate’ (C0376358) is discovered by MetaMap. Analogously, we
use ‘malignant neoplasm of breast’ (C0006142) for breast cancer.
The resulting sets of citations compose the PCa_MetaMap and
BCa_MetaMap datasets, respectively.

3 METHODS
Our approach for identifying disease mutations is depicted in Figure 1 and can
be summarized as follows. First, the EMU mutation extraction tool is used
to identify and retrieve mutations from the mutation-disease-related corpus.
EMU also identifies gene names in the text. Second, a filter (SEQ_Filter) is
applied to exclude all mutations for which the amino acids differ from those
reported in the associated reference protein sequences. Finally, the pre- and
post-SEQ_Filter results could be optionally curated manually to create a
database of fully-annotated disease mutations. In the following sections, we
provide a more detailed description of this multi-step approach.

3.1 EMU: a method for extracting mutations from the
biomedical literature

3.1.1 Identifying mutations through text mining with EMU The EMU
algorithm is a rule-based method that finds mutations in a given document
using regular expression matching. The input is plain text and the output is
a list of mutation terms. The algorithm is executed in two steps. First, EMU
searches the input text for mutations using a set of regular expressions (called
positive patterns) and stores the recognized terms in a list L. In the second
step, EMU eliminates false positive terms from list L using another set of
regular expressions (called fallible patterns). A set of 6541 cell line names
was included in the fallible patterns. The regular expression schemes used
in the positive and fallible patterns are available via our ftp site.

To develop the mutation patterns, we used the regular expressions in
Pharmspresso (Garten and Altman, 2009) as a reference. We further refined
Pharmspresso’s patterns by manually extracting positive and fallible patterns
from a set of 300 abstracts from PubMed. This 300-abstract set was chosen
randomly from the ‘MeSH = mutation’ set we queried from PubMed. The
300-abstract set excluded the abstracts used in the ‘PCa’ and ‘BCa’ datasets
or in any of the gold standards used to evaluate our methods in this article.
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Fig. 1. Schematic of the overall methodology for disease-related extraction
of mutational information (manual curation processes are optional).

In the literature, mutations are often recorded within word descriptions and
not always in the (more easily parsed) alphanumerical mutation convention.
For instance, an A21G mutation might be recorded as ‘Ala was substituted by
Gly in the VKORC1 gene at residue 21’. Thus, we created regular expressions
to capture mutation annotations within word descriptions, as well as to
identify cryptic residue positions (e.g. ‘residue DD’, ‘codon DD’, where DD
stands for a residue position). When more than one residue position is found
in the same sentence, EMU selects the position closest to the mutation pattern.
In addition, EMU’s algorithm also includes regular expressions that use
the Human Genome Variation Society’s (HGVS) nomenclature for residue
substitution. EMU is implemented in Perl and it is freely available via our
ftp site, along with the complete set of regular expressions used in this study
(http://bioinf.umbc.edu/emu/ftp/).

3.1.2 Identifying gene information with EMU Historically, genes and
proteins have not been recorded in the biomedical literature in a standardized
manner. As a result, automating the extraction of gene and protein
information from abstracts has remained a significant text-mining challenge.
Our approach for extracting gene names is based on a string look-up on
an in-house dictionary of human gene names from the Human Genome
Organization (HUGO) and from the National Center for Biotechnology
Information’s (NCBI) gene database. All gene names that were identical
to codon names were removed. The P53 gene name, which was absent in
both gene dictionaries used, was added since it is a commonly used term.

It should be noted that EMU uses a dictionary of human genes; thus, EMU
assumes that all reported genes are from human. Therefore, in our approach,
during the first manual curation process, we removed all non-human-related
abstracts.

3.2 Filtering mutations with inconsistencies in amino
acid position with SEQ_Filter

For each gene name and mutation identified within an abstract we validated
the corresponding protein information against NCBI’s reference protein

Fig. 2. Schematic of the process used to benchmark EMU. Steps 1 and 2
represent the manual curation processes to create the gold standards datasets
for prostate cancer (PCa) and breast cancer (BCa), PCa_EMU_GS and
BCa_EMU_GS, respectively.

sequence set [RefSeq (Pruitt et al., 2007)]. More specifically, given a gene,
we identified all its associated proteins. For each protein, we verified that
the wild-type amino acid recorded in the given mutation corresponded to the
actual amino acid in the specified protein sequence position. In practice, we
used NCBI’s e-utilities to search for the gene in GenBank (Benson et al.,
2009) and to retrieve their linked proteins along with their sequences. The
association between the gene and the mutation was deemed valid if there
was a match for the wild-type (or mutated type) amino acid at the position
of the mutation for at least one of the associated proteins.

3.3 Evaluation
3.3.1 Establishing gold standards All citations related to PCa or BCa
identified by MetaMap, and in which EMU had identified a mutation, were
manually curated by our team and further validated by the same team (seven
curators including authors ED and GT). Curators identified mutation, gene
name, and the disease-association for each citation. The curated data was
then validated by two additional curators to ensure accuracy. If during
the validation process, the validator could not reconcile the mutational
information with that of the original curator, the entry was excluded
from the final set. Abstracts lacking information about the relationship
between the phenotype and mutation were also manually excluded from the
benchmarking set. Likewise, abstracts with incomplete information about
the mutation were excluded. All abstract exclusions are available in the
PCa_Excluded and BCa_Excluded datasets (see diagrams in Fig. 2). The
curators provided a numerical code for the categorization of the disease-
mutation relationship. The manually curated datasets, PCa_EMU_GS and
BCa_EMU_GS, could be used for training machine-learning methods for text
mining other disease-mutation relationships, and are available upon request
from the authors.

3.3.2 Evaluating mutation detection against MutationFinder In order
to evaluate EMU’s ability to retrieve non-synonymous single point
mutation events, we compared its performance to that of MutationFinder
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(Caporaso et al., 2007), which is a reference tool for identifying mutations.
The performance evaluation was conducted on two manually-curated gold
standard datasets: PCa (PCa_GS) and MutationFinder (MF_GS). Both gold
standards were evaluated on both EMU and MutationFinder.

PCa gold standard (PCa_GS): We randomly selected 500 abstracts from
the PCa_MetaMap mutation corpus subset. These citations were manually
curated by our team, who annotated 95 mutations in 55 abstracts.

MutationFinder Gold Standard (MF_GS): This gold standard was
downloaded from MutationFinder’s supplementary data and it contains 476
unique mutations in 508 abstracts.

Metrics: To evaluate the mutation extraction algorithms we used the
following standard information-retrieval metrics: recall, precision and
F-measure. The recall R is defined as R = TP/(TP + FN), the precision as
P = TP/(TP + FP) and the F-measure as F = 2PR/(P + R), where TP, FP and
FN stand for the number of true positives, false positives and false negatives,
respectively.

3.3.3 Benchmarking EMU’s precision as identifying correct mutational
information, genes, and disease association in PCa and BCa-related records
To evaluate EMU’s overall performance (i.e. not only the identification
of the mutation, but also its relation to a gene and a disease), we used
the sets PCa_EMU_GS and BCa_EMU_GS that were manually-curated
records obtained according to Section 3.3.1 above. For each one of the data
subsets (with and without SEQ_Filter, as shown in Fig. 2), the precision
was calculated as P = TP/(TP + FP). In addition, the following three events
were defined. A ‘mutation’ (mutation only) event involves the identification
of the position in which the mutation took place and the identification of the
wild-type and mutated amino acids. A ‘complete mutation’ (mutation + gene)
event involves the identification of the mutation and a validation of the gene
in which the mutation was reported to occur. In a ‘disease mutation’ event,
the mutation, the gene and the disease to which the mutation is related are
identified.

4 RESULTS
This section is organized by the different steps in our procedure
to extract disease mutations: namely, creating the mutation-
disease-related corpus, using EMU to extract mutations (which is
benchmarked against MutationFinder), and estimating the overall
performance (precision in terms of identifying correct mutational
information, genes and disease association) of our approach.

4.1 Establishing a corpus of mutation-disease-related
abstracts

A search of the ‘mutation’ MeSH descriptor in July 2008 retrieved
447 601 abstracts from which 353 626 were selected based on
abstract availability (Fig. 2). Using a set of 218 UMLS concepts
denoting forms of PCa as a filter for UMLS concepts identified
by MetaMap in the title and abstract of MEDLINE citations, we
selected 1721 citations annotated by MetaMap related to any of
these PCa concepts (set PCa_MetaMap). The UMLS concepts
most frequently identified are ‘prostate carcinoma’ (C0600139) and
‘malignant neoplasm of prostate’ (C0376358), and, more rarely,
‘adenocarcinoma of prostate’ (C0007112) and ‘prostate cancer
metastatic’ (C0936223). Similarly, a set of 5967 citations was
obtained with the filtering for breast cancer (set BCa_MetaMap).

4.2 Benchmarking EMU and MutationFinder
We compared EMU against MutationFinder using two manually
curated gold standard datasets: PCa_GS and MF_GS, which were

Table 1. EMU against MutationFinder (MF) on two datasets

TP FP FN Precision Recall F-measure

PCa_GS EMU 87 (53) 8 (6) 8 (3) 0.92 0.92 0.92
MF 70 (45) 1 (1) 25 (14) 0.99 0.74 0.84

MF_GS EMU 388 (164) 3 (3) 92 (37) 0.99 0.81 0.89
MF 387 (162) 6 (4) 93 (36) 0.98 0.81 0.88

Results are based on the number of mutations extracted. The numbers in parentheses
represent the number of abstracts in which the mutations were found.

Table 2. EMU’s overall precision

Dataset Mutation only: Complete mutation: Disease-mutation:
precision (TP, FP) precision (TP, FP) precision (TP, FP)

PCa_ALL 0.97 (248, 8) 0.53 (207, 181) 0.39 (151, 237)
PCa_filtered 0.99 (195, 2) 0.80 (173, 43) 0.59 (127, 89)
BCa_ALL 0.94 (353, 23) 0.42 (300, 412) 0.34 (242, 470)
BCa_filtered 0.96 (249, 10) 0.74 (233, 81) 0.61 (193, 121)

previously described in the Section 3. The results in Table 1
show that both methods have high precision at comparable levels
(P = 0.92–0.99). EMU achieves a comparable F-measure in the
MF_GS dataset (EMU: 0.89 versus MutationFinder: 0.88) and
better F-measure for the PCa_GS dataset (EMU: 0.92 versus
MutationFinder: 0.84).

4.3 Precision in retrieval of PCa and BCa-related
records

As shown in Fig. 2, EMU’s precision was evaluated in 141 and 203
abstracts obtained in the initial searches of PCa and BCa mutations,
respectively (PCa_ALL and BCa_ALL). EMU’s precision was also
evaluated in 113 (PCa_filtered) and 147 (BCa_filtered) abstracts that
passed the SEQ_Filter analysis.

Table 2 records EMU’s performance at identifying the
following events extracted from these datasets: mutation only,
complete mutation (mutation + gene) and disease-mutation
(mutation + gene + disease). In what follows, the numbers reported
are numbers of mutations, not numbers of citations in which these
mutations were identified.

4.3.1 Mutation only Our results show that EMU’s precision for
mutation-only events is high and ranging from 0.94 to 0.99. These
results are consistent with our previous finding in the MF_GS and
PCa_GS datasets.

4.3.2 Complete mutation The additional task of identifying the
gene of the reported mutation results in a substantial loss of the
method’s precision: from 0.97 to 0.53 and from 0.94 to 0.42 for
the PCa_ALL and BCa_ALL sets, respectively. However, applying
the SEQ_Filter protocol significantly improves the correct retrieval
of genes and increases precision (e.g. precision values of 0.80 and
0.74 were observed for the PCa_filtered and BCa_filtered datasets,
respectively).
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Table 3. EMU’s overall precision using abstracts versus full text

Dataset Mutation only: Complete mutation: Disease-
precision precision association:

(TP, FP) (TP, FP) precision
(TP, FP)

BCa_Abs 0.95 (19, 1) 0.37 (17, 29) 0.37 (17, 29)
BCa_Abs_filtered 0.93 (14, 1) 0.55 (11, 9) 0.55 (11, 9)
BCa_Full 0.84 (47, 9) 0.55 (46, 37) 0.55 (46, 37)
BCa_Full_filtered 0.94 (17, 1) 0.77 (17, 5) 0.77 (17, 5)

4.3.3 Disease-mutation Lastly, to evaluate EMU’s ability to
retrieve disease-specific mutations, our curators manually annotated
and validated all complete mutation-phenotype associations
extracted by our method (i.e. EMU was combined with MetaMap
to retrieve disease-related records). From this analysis, 151 out of
the 207 correctly-identified mutations in the PCa-ALL set were
found to be related to PCa. Similarly, 242/300 BCa_ALL, 127/173
PCa_filtered, and 193/233 BCa_filtered mutations were related to
their corresponding diseases. Table 2 lists the overall precision of the
automatic portion of the method in retrieving mutations that denote
risk to the disease (No SEQ_Filter: 0.39 and 0.34, SEQ_Filter: 0.59
and 0.61, for the PCa and Bca, respectively).

4.4 Comparing EMU’s overall precision with abstracts
versus full-text

We performed a preliminary analysis on a subset of 10 full-text
articles related to BCa (see additional details in Supplementary
information). The performance of EMU and SEQ_Filter in the
abstracts of the 10 articles (BCa_Abs and BCa_Abs_filtered sets)
was compared against their performance in the body of the
text (BCa_Full and BCa_Full_filtered). Table 3 depicts EMU’s
performance at identifying the following events extracted from these
datasets: mutation only, complete mutation (mutation + gene) and
disease-mutation (mutation + gene + disease).

4.4.1 Mutation only Our results show that EMU’s precision for
mutation-only events is comparable between abstracts and full text
(0.93 versus 0.94 for the BCa_Abs_filtered and BCa_Full_filtered
sets, respectively).

4.4.2 Complete mutation The additional task of identifying the
gene of the reported mutation results in a substantial loss of the
method’s precision: from 0.93 to 0.37 and from 0.94 to 0.55 for
the BCa_Abs and BCa_Full sets, respectively. However, applying
the SEQ_Filter protocol significantly improves the correct retrieval
of genes and increases precision from 0.37 to 0.55 and from
0.55 to 0.77 for BCa_Abs_filtered and BCa_Full_filtered sets,
respectively. In comparing the precision between BCa_Abs_filtered
and BCa_Full_filtered, the latter showed a 0.22 increase in precision.

4.4.3 Disease-mutation Our manual curation showed that all
complete mutations in both BCa_Abs_filtered and BCa_Full were
related to BCa. The BCa_Full_filtered contained 17 true positives
BCa mutations while the BCa_Abs_filtered contain 11 BCa
mutations. When comparing both sets, there were seven additional
true positives in the BCa_Full_filtered set. The BCa_Abs_filtered

set contained one true positive not present in the BCa_Full_filtered
set.

5 DISCUSSION
In this section, we discuss the results for the comparison of: (i) two
methods to extract mutations (EMU versus MutationFinder) and
(ii) the advantages and disadvantages of using SEQ_Filter. We
also discuss mapping the mutations found by EMU to disease-
mutation reference databases. In addition, we discuss the feasibility
of applying our approach to other diseases and to full-text articles, as
well as the main challenges we foresee in the complete automation
of the annotation of disease mutations extracted from PubMed
abstracts.

5.1 Evaluating the ability of EMU and MutationFinder
to identify mutations

We compared our method for identifying mutations (EMU)
against a reference, high performance method [MutationFinder,
(Caporaso et al., 2007)]. Our results show that EMU achieves
a comparable F-measure and a better recall (0.92 versus 0.74)
for the PCa_GS dataset. Analysis of the records in which
MutationFinder missed the mutations and EMU did not suggests that
MutationFinder missed those whose protein locations are cryptically
specified (e.g. by the mutation’s codon number). Moreover, several
mutation patterns [e.g. ‘(d)A>A’] seem to be missing in the
MutationFinder method. EMU failed to extract eight mutations
from three abstracts that were also not found by MutationFinder.
These mutations come from the following sentences: (i) ‘by
substituting alanine for six residues in the proposed IGF binding site,
Ile(56)/Tyr(57)/Arg(75)/Leu(77)/Leu(80)/Leu(81)’ (Hong et al.,
2002), (ii) ‘mutants with Leu47 replaced by serine’ (Ray et al., 1988)
and (iii) ‘substitution of glutamic acid for the wild-type glutamine
at position 798’ (Evans et al., 1996). The first case contains six Ala
to Ile mutations in several different positions, which EMU failed to
identify. The last two cases contain expressions for mutation changes
and locations that were not included in the current version of EMU.

Lastly, EMU retrieved eight false positives, two of which are
shown below. The first phrase read: ‘codon 119 (G→T), codon
432 (C→G), codon 449 (C→T)’ (Tanaka et al., 2002). From this
sentence, EMU extracted the order of the positions incorrectly,
which resulted in two incorrectly-recorded mutations: codon 449
(C→G) and codon 432 (G→T). The second phrase involved a
synonymous mutation—this type of mutation was excluded since
it is not reported by MutationFinder—and it read: ‘revealed six
201G>A (R201R) polymorphisms’ (Koivisto et al., 2004). EMU
reports a ‘G>A’ that results in a synonymous mutation, and while
EMU did not report R201R, it still reported ‘201G>A’. The
additional five false positives are either insertions or transitions that
could be easily corrected in the next release by modifying the fallible
patterns.

In summary, both MutationFinder and EMU show high precision
in extracting mutations. These findings are comparable to the
high mutation-pattern accuracy results reported for (Erdogmus and
Sezerman, 2007) and suggest that these methods capture unique
identifying features of mutations that separate them from other
natural language samples.
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5.2 Evaluating EMU’s performance at identifying gene
names

One of the most challenging tasks in natural language processing
is that of retrieving gene and protein names from the literature.
We documented two main issues responsible for the difficulty of
this task: (i) identifying the correct gene name and (ii) identifying
the correspondence between genes and mutations when multiple
mutations are reported within an abstract.

First, we evaluated how well our dictionary-based method
correctly identified the gene name. To do so, we manually identified
all the records for which EMU recognized a mutation without its
associated gene name. Our team of curators identified only 23 (out of
300) BCa-mutations and 12 (out of 205) PCa-mutations associated to
genes that were not in the dictionary used. Examples of gene names
that were not in our dictionary include the ER (official symbol:
ESR) and Caveolin 1 (official symbol: CAV-1). In conclusion, our
approach can successfully identify gene names when the standard
gene name is used in the abstract. More sophisticated approaches,
such as BANNER (Leaman and Gonzalez, 2008), GeNo (Wermter
et al., 2009) and others (Neves et al., 2010; Tanabe and Wilbur,
2002) could be used to identify and normalize name entities when
alternative names are used for the gene name.

Second, our results show that the application of the SEQ_Filter
protocol greatly increases the correct identification of gene-mutation
relationships, particularly when several genes and mutations are
reported together. We found that, in most cases, when a gene name
was incorrectly assigned to a mutation, the reported amino acids
did not match the residues on the reference sequence. For these
cases, inaccurate gene name assignments were ruled out when the
SEQ_Filter was applied. We expect the SEQ_Filter to rule out
almost all DNA mutations with only ∼10% error due to incorrect
assignment of a DNA base mutation to a protein mutation. Our
results in BCa show that this estimates are correct: only 30 out
of the 314 BCa_filtered mutations are DNA mutations. We show
that the application of the SEQ_Filter greatly improves the precision
of the method. However, the SEQ_Filter limits the extraction
to protein-only mutations. For an expanded search of mutations
reported at the DNA level other techniques need to be implemented.
A more sophisticated approach to match each gene/protein name
inside text to its corresponding mutation is needed to make full use
of this method.

5.3 Mapping mutations to the OMIM, dbSNP and
Swiss-Prot reference databases

In addition to the evaluation of EMU, we compared EMU’s results
against two databases of disease-related protein mutations (Swiss-
Prot and OMIM), to assess the impact of the combined approach on
the current annotation of PCa and BCa mutations. When a mutation’s
gene, position, wild-type amino acids and mutated amino acids
were identical to those in the reference database, the mutation was
classified as a match to that database entry. A non-redundant count
of mutation matches to OMIM and Swiss-Prot was reported in our
results. Matches to dbSNP were used only to provide a SNP identifier
(rs id) when it was available.

Table 4 lists the mutations found by EMU (in conjunction with
MetaMap) that match entries in the reference databases. We show
that our method finds a total of 87 PCa-mutations and 189 BCa-
mutations in the set of abstracts studied in this work. Out of

Table 4. Mapping EMU’s disease mutations to those in OMIM and
Swiss-Prot

TP (unique TP in disease TP not in
mutations) databases disease databases

BCa_ALL 189 66 123
BCa_filtered 144 58 86
PCa_ALL 87 26 61
PCa_filtered 65 26 39

Two mutations were considered identical if they occurred in the same gene, location,
and involved the same amino acids.

these mutations, 26 PCa (from both PCa_ALL and PCa_filtered)
and 66 BCa mutations from BCa_ALL and 58 BCa mutations
from BCa_filtered matched disease mutations already listed in
the OMIM and Swiss-Prot databases. Furthermore, 12 of the 26
PCa-mutations and 49 of the 66 and 42 of the 58 BCa-mutations
(from BCa_ALL and BCa_filtered, respectively) were not previously
annotated specifically for PCa or Bca, respectively. In addition, we
manually verified that 51 and 128 mutations extracted by EMU were
previously unlisted PCa and BCa protein mutations (SEQ_Filter
applied). Thus, using EMU combined with manual curation resulted
in the annotation of 51 (12 + 39) PCa-mutations and 128 (42 + 86)
BCa-mutations not previously annotated for these cancer types.

In addition, we classified all disease mutations in the reference
databases and found that there are 22 PCa mutations and 23
BCa mutations in OMIM (July 2009), and 75 PCa- and 123
BCa-mutations in Swiss-Prot (July 2009). The combined total of
unique mutations in both databases comes to 83 PCa-mutations and
139 BCa-mutations. The new set of mutations correctly identified
by EMU almost duplicates the existing size of the annotated
datasets for both diseases. When the SEQ_Filter is not applied,
both DNA and protein mutations are extracted by EMU and,
thus, the total annotated mutations are 73 (12 + 61) PCa-mutations
and 172 (49 + 123) BCa-mutations. All the mutations, i.e. those
currently annotated in the reference databases (83 PCa and 139 BCa
mutations) and those by EMU (51 PCa and 128 BCa-mutations),
can be accessed on our website (http://bioinf.umbc.edu/EMU).

5.4 Limitations of the current approach and future
work

As discussed before, correctly matching the gene-mutation
relationship is a challenging task when text-mining mutations from
abstracts. Another, perhaps more difficult, task is that of extracting
the degree of association (or risk) between the mutation and the
disease phenotype from the abstract text alone. For instance, our
method classified a mutation as relevant to PCa even though the
result was a negative outcome for the association (e.g. ‘the existence
of this mutation in PCa patients was not associated with any of the
clinical or pathological characteristics of the disease’). Another error
occurs when the mutation is assigned to an incorrect disease. This
is a common mistake when processing abstracts reporting genes
or mutations with multiple disease associations. This problem is
particularly relevant in cancer, since cancer genes are known to
participate in a myriad of other diseases or cancer types. We found 46
and 40 additional false positives when we moved from the evaluation
of complete mutations to disease-mutations in the PCa_filtered
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Table 5. Time estimation for manual curation of disease mutations for 10
diseases

Disease Number of Number of Number of
abstracts abstracts from abstracts from EMU’s

EMU’s output output with filter

Prostate cancer 2081 251 (40) 158 (25)
Breast cancer 8097 804 (128) 445 (72)
Diabetes mellitus 4788 1513 (242) 505 (81)
Alzheimer’s disease 2743 814 (130) 316 (51)
Hemochromatosis 1415 884 (141) 664 (106)
Lung cancer 4774 579 (93) 319 (51)
Acute myeloid leukemia 6987 304 (48) 148 (24)
Pancreatic cancer 1741 212 (34) 112 (18)
Colon cancer 4240 448 (72) 220 (35)
Cystic fibrosis 2341 587 (94) 497 (79)

The numbers in parentheses represent the number of hours estimated to be needed for
manual curation and validation of abstracts.

and BCa_filtered datasets, respectively. From the additional false
positives, we found 17 and 34, respectively, to be associated with
another disease. This suggests that the precision values reported in
Table 2 represent a lower bound of the method’s performance. We
expect that, for diseases involving genes that are more specific to the
particular disease, the method’s precision will improve (i.e. closer
to the performance for extracting the complete mutation).

In conclusion, the automatic procedure drastically reduces the
number of relevant records (from over 350 000 to ∼200 PCa and
500 BCa related abstracts), facilitating manual curation step. We
manually curated all the PCa- and BCa-related records by annotating
the disease-risk of the given mutations. We benchmarked the time
needed to manually curate EMU’s output for 50 abstracts. It took
our curators an average of 3 h to annotate the mutation, gene name
and disease risk information from 50 abstracts. Completing the
curation process requires two additional validation steps, and each
step takes less time than the initial curation. We have estimated that
the total time needed to completely validate 50 abstracts is ∼8 h.
Table 5 shows an estimation of the time it would take to curate and
validate the mutation information from PubMed abstracts related
to 10 arbitrarily chosen diseases. Abstracts for each disease were
selected based on a search that combines MetaMap with a MeSH
indexing for each disease.

Table 5 includes the number of abstracts obtained when EMU
is applied to the mutation corpus and when the additional filter is
incorporated. Overall, the filtering procedure reduces the number of
abstracts to be processed in half. We estimate that it would take three
curators roughly ∼3 months to process all the abstracts related to
these 10 diseases. However, this time can be shortened to 1.5 months
if only the filtered abstracts were analyzed. From our studies of PCa
and BCa mutations, we estimate that 75% of the mutations will still
be recovered after the filter is applied, which indicates that the filter
provides a good compromise between time and sensitivity.

We used MetaMap in order to identify disease terms, but MeSH
indexing could also have been used to select for citations for a
specific disease or diseases. We compared both methods to identify
disease-related citations. Although most citations were found by
both methods, we suggest a combined approach to extend the
analysis to other diseases and have maximal coverage.

Finally, our results are based on processing abstracts and limited
by the number of mutations reported within them. We expect a
significant number of mutations to be mentioned only in the body
section of the article. Below we discuss two issues concerning the
application of our method to the full text of manuscripts, namely the
availability of full-text articles for text mining and the performance
of the method in finding disease mutations.

Despite efforts from publishers and PubMed Central (PMC) to
provide free, open access to full-text articles, there are still a large
number of manuscripts without open access. From the original
1721 PCa_MetaMap and 5967 BCa_MetaMap, there are only 19
and 168 articles, respectively, with PMC open access. Furthermore,
the PCa_ALL and BCa_ALL sets contain only 12 and 4 articles,
respectively, with PMC open access. Using our approach (i.e. EMU
and SEQ_filter), we were able to extract 14 unique BCa-mutations
(10 of them were both in the abstract and body of the manuscript
and one was mentioned only in the abstract) with a precision that
increased from 0.55 (abstracts only) to 0.77 (body of manuscripts).
In conclusion, there is a gain in coverage when using the body of
the document (i.e. three new unique mutations) with a significant
increase in precision. However, this approach is severely limited by
the availability of full-text articles for text mining in open access
repositories.

6 CONCLUSIONS
Identifying the correct gene-mutation pair and the mutation-
phenotype relationship remains one of the main challenges in
automating the extraction and classification of disease mutations. In
this work, we introduce an automatic method for the extraction of
mutations, which is coupled with manual validation of the gene and
of the disease risk of the mutation. We show that this high-throughput
approach for extracting disease mutations is scalable and holds great
potential for contributing to a systematic repository of mutations
with disease-phenotype associations. Our preliminary results also
indicate that our text mining approach will greatly benefit from the
increasing open access availability of full-text articles.
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