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ABSTRACT

Motivation: Defining the precise location of structural variations
(SVs) at single-nucleotide breakpoint resolution is an important
problem, as it is a prerequisite for classifying SVs, evaluating their
functional impact and reconstructing personal genome sequences.
Given approximate breakpoint locations and a bridging assembly
or split read, the problem essentially reduces to finding a correct
sequence alignment. Classical algorithms for alignment and their
generalizations guarantee finding the optimal (in terms of scoring)
global or local alignment of two sequences. However, they cannot
generally be applied to finding the biologically correct alignment
of genomic sequences containing SVs because of the need to
simultaneously span the SV (e.g. make a large gap) and perform
precise local alignments at the flanking ends.
Results: Here, we formulate the computations involved in this
problem and describe a dynamic-programming algorithm for its
solution. Specifically, our algorithm, called AGE for Alignment with
Gap Excision, finds the optimal solution by simultaneously aligning
the 5′ and 3′ ends of two given sequences and introducing a
‘large-gap jump’ between the local end alignments to maximize
the total alignment score. We also describe extensions allowing the
application of AGE to tandem duplications, inversions and complex
events involving two large gaps. We develop a memory-efficient
implementation of AGE (allowing application to long contigs) and
make it available as a downloadable software package. Finally, we
applied AGE for breakpoint determination and standardization in the
1000 Genomes Project by aligning locally assembled contigs to the
human genome.
Availability and Implementation: AGE is freely available at
http://sv.gersteinlab.org/age.
Contact: pi@gersteinlab.org
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The problem of single-nucleotide breakpoint resolution for genome
structural variations (SVs) (deletions, insertions, inversions, etc.)
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is of great importance for a number of reasons. First, as recently
demonstrated (Lam et al., 2010), single-nucleotide breakpoint
resolution is absolutely necessary for SV classification and
annotation. It is also important for genotyping known SVs in
newly sequenced genomes (Lam et al., 2010). Second, precise
breakpoints are required to evaluate the functional impact of SVs.
For example, uncertainty in breakpoints in just a few bases may
lead to ambiguous conclusions when an SV is close to a splice-
junction and/or regulation sites or overlaps exon(s). Last, but not
least, construction of personal diploid genomes (one of the ultimate
long-term goals of human genome analysis) cannot be done properly
without precise knowledge of SV breakpoints.

It might seem obvious, but the only plausible way to achieve
single-nucleotide breakpoint resolution is to align two sequences:
one without an SV (e.g. a region in the reference human genome) and
another containing an SV (e.g. locally assembled contig, completely
sequenced and assembled fosmid clone or long read). Most
commonly used methods for SV detection provide only approximate
breakpoint locations. Paired-end mapping (also called read-pair)
approaches inherently have uncertainty in breakpoint resolution,
due to uncertainty in the distance between sequenced ends and the
possibility of read mismapping (Korbel et al., 2009; Medvedev et al.,
2009). Resolution of breakpoints by array comparative genomic
hybridization analysis and read-depth approaches is limited by the
probe density (for array) and the genomic bin size (for read-depth)
used to produce the subsequently analyzed signal (Abyzov et al.,
2010; Medvedev et al., 2009; Wang et al., 2009).

While being imprecise in breakpoint resolution, the approaches
mentioned above yield approximate SV locations, where a local
assembly of a haplotype bridging an SV region could be
accomplished. Subsequently, alignment of the assembled contig
to the predicted SV region identifies precise SV breakpoints. The
described strategy is employed by the 1000 Genomes Project
(Durbin et al., 2010; Mills, 2010), where tens of thousands of local
haplotype assemblies in the SV regions are made. Proper alignment
of those contigs will and already is an important challenge that
must be fulfilled precisely and computationally efficiently, given the
number of expected local assemblies. Single-nucleotide resolution
of SV breakpoints will allow their standardization and analysis in a
single framework.

The problem of aligning two sequences containing SVs might
seem to be trivial, but upon deeper consideration it is not. The major
complications are due to possible repeats within aligned sequence,

© The Author(s) 2011. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://sv.gersteinlab.org/age
http://creativecommons.org/licenses/


[15:16 3/2/2011 Bioinformatics-btq713.tex] Page: 596 595–603

A.Abyzov and M.Gerstein

Fig. 1. Schematics of the expected optimal alignment around a structural variation (left) and alignments produced by global Needleman–Wunsch (NW) and
local Smith–Waterman (SW) algorithms (right). The structural variation, i.e. deletion, is in red. In (B), the deletion is accompanied by a small insertion (blue).
Throughout the figure, alignable flanking regions are shown in green and orange. Both SW and NW algorithms generally cannot arrive at a biologically correct
alignment.

sequence homology/identity around breakpoints and, the often
complex nature of SVs, where, for instance, a deletion/insertion
is accompanied by smaller insertion/deletion. More specifically,
classical algorithms, which guarantee the finding the optimal global
Needleman–Wunsch (Gotoh, 1982; Needleman and Wunsch, 1970)
and local SmithWaterman (Smith and Waterman, 1981) alignments,
generally cannot arrive at a biologically correct solution when
aligned sequences contain SVs (Fig. 1). The major problem with
those algorithms is the gap penalty. A large gap penalty does not
allow for the extension of alignment across an SV. Reducing the gap
penalty interferes with the alignment scoring scheme and jeopardizes
the construction of the proper alignment in regions flanking the SV
and when the sequence(s) contains repeats. In addition, it offers only
a partial solution to the problem, and cases when the SV is not a
pure deletion or insertion are still not solved (Fig. 1B).

A generalized global alignment (Huang and Chao, 2003)
algorithm is generally also unable to solve the formulated problem.
The algorithm works by introducing the concept of a ‘difference
block’, e.g. large gap, and imposing a cap on the penalty for having
such a block in an alignment. When a block is small, e.g. small gap,
it is penalized, as it would be in the classical Needleman–Wunsch
algorithm. For a large block, e.g. large gap, the penalty is constant.
Therefore, it can only be applied to the alignment of sequences
where the SV size is large enough for the algorithm to work in
the non-classical mode. More importantly, the algorithm can be
misled by sequence similarity around SV breakpoints. Specifically,
when sequences around breakpoints are homologous (Fig. 2A), the
algorithm has to choose between aligning with a higher sequence
identity—but introducing a large gap—or aligning with a lower
sequence identity and no gap (Fig. 2B). Only the former scenario is
correct, but either one can be chosen by the algorithm (considered
to be optimal) depending on the scoring scheme, size of deletion,
length and percent of homology around breakpoints, and the lengths

of aligned sequences flanking the breakpoints (longer flanking
sequences allow one to resolve breakpoints within longer and higher
homologous sequences). Incidentally, this problem is inherent to all
algorithms employing a concave/piecewise gap penalty. It is also
inherent to Needleman–Wunsch and Smith–Waterman algorithms.
Therefore, the described problem may hamper the discovery and
characterization of a particular class of NAHR (Lam et al., 2010)
SVs that are characterized by long similar/homologous sequences
around breakpoints.

The ‘sandwich dynamic programming’ algorithm, introduced
(Wu and Watanabe, 2005) to align cDNAs to exons, could be useful,
but even if adopted for aligning sequences containing SVs, it does
not offer a general solution, as it has the same problems as the
Needleman–Wunsch algorithm when handling events that are not
pure deletions or insertions (Fig. 1B). Also, none of the mentioned
algorithms could be applied to determine tandem duplication and
inversion breakpoints.

Hence, with the aim of achieving single-nucleotide SV breakpoint
resolution and standardization, we have developed an algorithm for
the correct alignment of sequences containing SVs. This article first
describes an algorithm for optimal sequence alignment containing
only a single SV deletion or insertion. We then describe algorithm
extensions to align sequences containing other SVs. To accomplish
the first aim, we formulated it as a problem of finding the optimal
local alignment of two sequences containing one unaligned and
unpenalized region/gap (corresponding to one SV) between two
aligned regions.

The rationale is that flanking regions of an SV are very similar
and can be aligned collinearly (5′ end to 5′ end and 3′ end to
3′ end) using a local Smith–Waterman algorithm (Fig. 2C). To
yield the final alignment, the two local ones should simply be
combined. However, if the alignments of the flanking regions
overlap, combining two local alignments becomes complicated,
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Fig. 2. Sequence similarity (see A) around SV breakpoints (shades of green) can mislead local and/or global alignment(s) to produce incorrect alignment
(see B). Conceptually, to produce correct alignment one has to find an optimal jump between overlapping local alignments. However, local alignment
calculation and jump finding have to be done simultaneously rather than successively to guarantee finding the optimal alignment (Supplementary Fig. S4).

and an optimal jump from one local alignment to another must
be found—that is, a gap must be introduced—to maximize the
alignment score. The optimal (highest scoring) alignment may not
be found if the jump is searched between already calculated local
alignments because trimming a local alignment does not guarantee
that it is still optimal (a simple example demonstrating the concept
is shown in Supplementary Fig. S4). Therefore, the calculation of
flanking sequence alignments and finding the optimal jump between
the two must be done simultaneously rather than successively.

When formulated this way, the problem explicitly addresses
only the issue of the largest gap in the alignment and does
not require adjustment or modifications of the alignment scoring
scheme. Therefore, substitution matrices and gap penalties tuned
to a particular alignment purpose, e.g. contig or short/long-read
alignment, can be used unchanged.

2 METHODS

2.1 Algorithm
Let us denote the lengths of two compared sequences as N and M. The
algorithm starts with the construction of two [0,N +1]x[0,M +1] alignment
scoring matrices SL and SR, a la the Smith–Waterman algorithm, for the
local alignment of two sequences (Fig. 3A). Indices [1,N] and [1,M] in
each matrix, respectively, are used to store alignment scores while indices
0, N +1, and M +1 are used for the convenience of filling the matrices
and tracing back. One matrix represents a score for the alignment initiated
from the 5′ ends (left flanking region of the SV), whereas the other one
represents a score for the alignment initiated from the 3′ ends (right flanking
regions of the SV). The maximum in each matrix defines a cell from
which to start tracing back to find the best local alignment. Importantly, the
maximum in the leading/trailing submatrix does so for the local alignment of
sequence ends. Specifically, the maximum ML(n,m) in the leading submatrix
[0,n]x[0,m] of SL , where n<=N and m<=M, anchors the best local
alignment for n and m nucleotides at the 5′ ends. Similarly, the maximum
MR(n+1,m+1) in the trailing submatrix [n+1,N+1]x[m+1,M+1] of SR,
anchors the best local alignment for N −n and M −m nucleotides at the 3′
ends: i.e.

ML(n,m)=max(SL(n′,m′)),n′ ≤n,m′ ≤m

MR(n,m)=max(SR(n′,m′)),n′ ≥n,m′ ≥m.
(1)

Then, the total score of aligning n and m nucleotides at the 5′ ends and
N −n and M −m nucleotides at the 3′ ends is ML(n,m)+MR(n+1,m+1).
The optimal alignment has the highest score; thus it maximizes the
sum: i.e.

BS=max(ML(n,m)+MR(n+1,m+1)), (2)

where BS is the best score. In other words, one has to maximize
the sum of the maxima in the paired submatrices of SL and SR

(Fig. 3B). Such a maximum can be found in quadratic time. Note

that

ML(n,m)=max(SL(n,m),ML(n−1,m),ML(n,m−1))

MR(n,m)=max(SR(n,m),MR(n+1,m),MR(n,m+1)).
(3)

Using (3), one can convert matrices SL and SR to have values ML(n,m)
and MR(n,m), respectively. During such conversion, one can trace from
whence the value in each cell was assigned, just like when constructing
an alignment score matrix. Having matrices ML and MR calculated, one
can find the highest score sum (2) in one pass through the matrices. The
corresponding alignment is then constructed by, first, tracing back the
maximum location in each matrix and, then, tracing back alignments for the
5′ and 3′ ends (i.e. alignment is inferred from each matrix) and combining
them (Fig. 3C). The unaligned region is the one between 5′ and 3′ end
alignments.

The best score can be redundant (Fig. 3B). However, redundancy does not
necessarily imply alternative alignments. As shown in the figure, the sum for
indices (n,m) falling in the bold area is equal to the best score. However,
tracing back for the maximum locations in each matrix will lead to the same
cells, i.e. the very northwest and southeast cells of the bold area for matrices
SL and SR, respectively. Intuitively, one can think about finding the optimal
(maximum) score as a procedure of trying all possible sequence splitting
into two subsequences (5′ end and 3′ end) and optimally aligning those
subsequences. The splitting of one of the sequences within the SV region
does not change flanking alignment, and, thus, generates the same maximum
score (Supplementary Fig. S6). Thus, only different maximum locations are
indicative of alternative alignments. It is a trivial computational task to check
for such alternative alignments.

Another reason for a redundant maximum score sum is sequence identity
around SV breakpoints (Supplementary Fig. S2). In such cases, ‘shuttling’ of
one or a few pairs of aligned nucleotides in alignment from one breakpoint to
another does not change the overall score. Thus, in some cases, the resolution
of SV breakpoints is naturally limited to the length of sequences that are
identical around breakpoints. Note, that the limitation is not methodological,
but, rather, biological. Moreover, wherever the actual breakpoints within the
identical sequences are, the resulting sequence, after SV excision, is the same.
Therefore, breakpoint uncertainty caused by sequence identity will not affect
downstream analysis. Such cases can be easily identified and described by
post-processing the produced alignments.

2.2 Generalization of the algorithm
The generalizations described below allow for breakpoint inference for
multiple deletions/insertions, tandem duplication, inversions and for splice
sites within genes. As previously explained, approximate locations of
breakpoints and read/assembly bridging SV breakpoints or splice sites are a
prerequisite.

2.2.1 Inferring breakpoints when sequences contain multiple
deletions/insertions When aligned sequences contain two SVs (either
insertions or deletions) an optimal alignment with two unaligned regions
must be found. Thus, it is necessary to introduce two jumps between three
matrices (Supplementary Fig. S5). As before, two matrices ML and MR
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Fig. 3. Schematics of the algorithm. (A) Two alignment score matrices for the alignment of the 5′ ends (SL matrix) and the 3′ ends (SR matrix) are constructed
a la the Smith–Waterman local alignment. In this example, scoring is as follows: match = 1, mismatch = −1, gap open penalty = 4 and gap extend penalty = 2.
Orange arrows represent trace-back information. The best alignment maximizes the sum of the maximum in the leading submatrix (highlighted buff) in SL

and the maximum in the paired trailing submatrix (highlighted cyan) in SR. (B) Matrices are converted so that each cell contains the maximum score of the
leading submatrix in SL and the trailing submatrix in SR. The location of score maxima is traced (blue arrows), just like the score is traced in scoring matrices.
Maximum score sum (red) can now be found in one pass through the matrices. (C) Alignment is constructed by, first, tracing back the maximum location (red
arrows) in each matrix and then, tracing back alignments for the 5′ and 3′ ends (green arrow). The resulting alignment is the sum of the alignments at the
5′ and 3′ ends, with the unaligned region in-between. The maximum score can be redundant (bold rectangles). However, the resulting alignment will be the
same.

598



[15:16 3/2/2011 Bioinformatics-btq713.tex] Page: 599 595–603

Alignment with gap excision

represent the alignment of sequence 5′ and 3′ ends and one SR represents
the local alignment of sequence fragments between two SVs. The optimal
alignment will maximize the total score of aligning all three fragments: i.e.

BS=max(ML(n,m)+SR(n+1,m+1)−SR(n′,m′)+MR(n′,m′)),n<n′,

m<m′,TSR(n+1,m+1)=TSR(n′,m′) (4)

where TSR(n,m) is a trace-back path for element (n,m) in matrix SR. The last
condition states that elements (n,m) and (n′,m′) are on the same alignment
path. The maximum can efficiently be found by checking all pairs of (n,m)
and only those (n′,m′) pairs that can be traced back from the (n+1,m+1)
element in matrix SR. Tracing back is a linear procedure and may require
up to min(N,M) operations: thus, the optimal solution can be found in
O(NMmin(N,M)) time in the worst case.

Furthermore, the algorithm can be inductively generalized to produce
alignments with any given k number of SVs. For k =3, one needs to maximize
the sum of scores for Smith–Waterman alignment of 5′ end sequences and
that of 3′ end sequences with two SVs: i.e.

BS|k=3 =max(ML(n,m)+ BSr
∣∣
k=2),

where BSr is the best score for aligning residual sequences at 3′ ends, i.e.
[n+1,N] and [m+1,M]. Generally, for k >2 SVs in alignment, best score
can be found using the following induction

BS|k =max(ML(n,m)+ BSr
∣∣
k−1). (5)

For each increment of k >2, the time complexity of the algorithm increases
multiplicatively by a factor of O(NM).

2.2.2 Inferring splice sites by cDNA alignment Given a cDNA sequence
containing two exons and an approximate location of an intron between
the two exons, the described algorithm can be extended to determine the
splice site at breakpoint resolution. Aligning such cDNA to the genome is
similar to aligning sequences containing deletion/insertion SVs, but has an
important difference. The complete cDNA sequence is expected to align
to the genome, i.e. cases when deletion is accompanied by micro insertion
(Fig. 1B) do not happen. In other words, with an excised intron the sequence
should align to the genome globaly. This can be accomplished by introducing
two changes to the algorithm: (i) matrices SL and SR should be calculated a
la the Needelman–Wunsch algorithm; (ii) maxima should be calculated for
different submatrices

ML(n,m)=max(SL(n′,m)),n′ ≤n

MR(n,m)=max(SR(n′,m)),n′ ≥n,
(6)

where we assume that the second sequence is cDNA. Now ML(n,m) stores
the value of the the best global alignment for the 5′ end, while MR(n,m) does
so for the 3′ end. Subsequent steps (finding best score and tracking back)
should be done as before.

2.2.3 Inferring breakpoints for tandem duplications Aligning a contig
or a read that spans tandem duplication breakpoints is similar to aligning
sequences with deletions and insertions (Fig. 4). In particular, when a
contig/read spans an insertion site around a breakpoint that is farther from
the duplication original site (Fig. 4A), then the alignment procedure is
exactly the same as for sequences with simple deletion or insertion. In
cases when a contig/read spans an insertion site around a breakpoint that
is closer to the duplication original site (Fig. 4B), then the order of the
aligned fragments is different in the two sequences. Using the described
methodology, but maximizing a different function (assuming the second
sequence is a contig/read)

BS =max(ML(N,m)+MR(1,m+1)), (7)

one can find the highest scoring split-alignment for a contig’s 3′- and 5′-ends.
Subsequently, post-processing can be applied to ensure that end alignments
do not overlap.

2.2.4 Inferring breakpoints for inversions The algorithm for the optimal
alignment of inversions was described a number of years ago (Schoniger
and Waterman, 1992). However, it is only applicable to cases in which an
inversion is completely enclosed in either of the aligned sequences. Cases in
which an inversion is incomplete, i.e. one sequence spans only the inversion
breakpoint, are not handled by that algorithm, but this can be accomplished
by generalizing the algorithm described above. Indeed, if we have two
sequences, part of the first sequence will align to the second and another non-
overlapping part will align to the reverse complement of the second sequence
(see schematics in Fig. 4). Again, using the described methodology one can
find split-alignment for a contig’s 3′ and 5′ ends. Note that one should use
a reverse complement for one of the aligned sequences to construct matrix
SR together with maximizing the function in Equation (7). The same post-
processing as for tandem duplication breakpoint inference can be applied to
ensure that end alignments do not overlap.

2.3 Alternative recurrence
The described algorithm and generalizations can be restated using alternative
but equivalent recurrence. Namely, to infer deletion/insertion breakpoints,
the recurrence is

S1(n,m)=max

⎧⎪⎪⎨
⎪⎪⎩

S1(n−1,m)−gap
S1(n,m−1)−gap
S1(n−1,m−1)+match(n,m)
0

M1(n,m)=max(M1(n−1,m),M1(n,m−1),S1(n,m))

S2(n,m)=max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S2(n−1,m)−gap
S2(n,m−1)−gap
S2(n−1,m−1)+match(n,m)
M1(n−1,m−1)+match(n,m)
0

, (8)

and to infer splice sites, the recurrence is

S1(n,m)=max

⎧⎨
⎩

S1(n−1,m)−gap
S1(n,m−1)−gap
S1(n−1,m−1)+match(n,m)

M1(n,m)=max(S1(n,m),M1(n−1,m))

S2(n,m)=max

⎧⎪⎪⎨
⎪⎪⎩

S2(n−1,m)−gap
S2(n,m−1)−gap
S2(n−1,m−1)+match(n,m)
M1(n−1,m−1)+match(n,m)

, (9)

where second sequence is cDNA, match(n,m) is match or mismatch between
nucleotides in positions n and m, and gap is a gap function. The matrices S1

and M1 are the same as SL and ML , while the matrix S2 keeps the alignment
score for the left flanking region (matrix S1) and (via M1) for the right
flanking region. Generalizing to two or more SVs/introns in an alignment
requires the use of additional pairs of matrices Mi and Si for each SV/intron,
where the recurrence for Mi utilizes values from Si (just as M1 does from S1),
and the recurrence for Si+1 utilizes values from Mi (just as S2 does from M1).
Linear space alignment algorithms (Chao et al., 1994; Hirschberg, 1975) can
also be applied with this recurrence.

3 RESULTS

3.1 Implementation, Alignment with Gap Excision
program

We have implemented the algorithm described above in the
C++ language as the Alignment with Gap Excision (AGE )
program (freely available at http://sv.gersteinlab.org/age). The
current implementation is limited to aligning sequences containing
only one deletion, insertion or inversion. The major challenge in
implementation was to reduce memory usage, as the algorithm
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Fig. 4. Schematics for aligning sequences with tandem duplication and inversion. Color gradient reflects the directionality of sequences from the 5′-end to
the 3′-end. (A) Aligning a contig/read spanning a duplication breakpoint can be no different than aligning sequences with a deletion/insertion. (B) For contigs
spanning other duplication breakpoints, the order of the aligned fragments is different in the two se-quences. (C) Optimal split-alignment for sequences with
inversions is calculated by aligning the 5′-end of the first sequence to the 5′-end of the second one and aligning the 3′-end of the first sequence to the 3′-end
of the reverse complement of the second one.

operates on two matrices (unlike only one, in the case of the classical
Smith–Waterman algorithm) and requires additional storage for
recording of traces to locations of maxima (Fig. 3B). In addition,
genomics sequences containing SVs are typically thousands (at
times, hundreds of thousands) of nucleotides in length requiring
large matrices for alignment calculations. To reduce memory
usage, we used small integers for scoring and greedy affine gap
penalty calculations (Supplementary Material). Having done this,
we showed that AGE is practical even when aligning long sequences
of fosmid clones (Supplementary Material).

The input to the program is simple and consists of two
FASTA files, e.g. reference sequence and assembled contig,
specification of expected SV, e.g. option –inv for alignment with
inversions, and optional specification of sequence subranges and
scoring parameters. The output is comprehensive and includes
breakpoint coordinates of unaligned/excised region(s) for the two
best alignments, i.e. having the same maximum score (this can
be used to evaluate alignment uniqueness), coordinates of aligned
regions, i.e. regions flanking the SV from left and right, and
lengths of identical sequence at breakpoints calculated in three
different ways: around breakpoints, inside breakpoints and outside
breakpoints (Supplementary Fig. S2). The reported numbers are
followed by actual sequence alignment in blast-like format.

We have tested AGE to ensure that it reports accurate breakpoints.
To do this, we constructed a total of 312 contigs, by merging
the 500 bp flanking regions of large deletions (>1 kb), known
with breakpoint resolution from sequencing and assembly by long
Sanger reads (Levy et al., 2007). We then aligned these contigs

to deletion regions extended by 1 kb. In 303 (97%) cases, SV
breakpoints from optimal alignment(s) by AGE exactly matched
those we started from. In 8 (2.5%) cases, contigs could be perfectly
aligned (i.e. no mismatched and no gap) to the reference genome;
thus, no breakpoints were reported by AGE. In one case, however,
breakpoints were different. This may be due to the existence of
more than two optimal solutions, with the solution containing
actual deletion breakpoints simply not being reported. Indeed, when
increasing contig length up to 5 kb we found exact breakpoints for
all deletions. Thus, AGE is perfectly accurate in SV breakpoint
determination.

3.2 Application to 1000 Genomes Project data
The AGE program has been used to align genomic contigs that were
locally assembled by the 1000 Genome Project around predicted SV
regions (mostly deletions), with the aim of confirming predictions
and standardizing deletion breakpoints. Due to technical limitations,
current local assembly was done for a fraction (∼50%) of predicted
deletions and mostly for predictions made by read-pair and split-
read approaches, with only a tiny fraction of contigs assembled for
SV regions predicted by read-depth approaches. Thus, assembled
regions are not representative of all predicted deletions but are still
suited for demonstration purposes. The length of contigs ranged
from 43 to 2472, with an average of 915 nt. A total of 38 226 contigs
were aligned.

Below we will refer to predicted breakpoints, determined by a
variety of approaches (read-pair, read-depth, etc.) as ‘predicted’
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and to breakpoints inferred from contig alignment using AGE
as ‘derived’. ‘Predicted’ breakpoints are typically a few dozen
nucleotides away from the true ones. Of all SV predictions, 35 822
(94%) have regions between predicted and derived breakpoints
overlapping by 80%, reciprocally. Moreover, for 36 290 (95%)
predictions, we observed excellent (within 50 bases) agreement of
breakpoints (Supplementary Fig. S3). The analyzed set of deletions
was a union of predictions made using different data and approaches
that have different breakpoint resolutions. Therefore, we use either
criterion: 80% reciprocal overall or 50 bases difference at each
breakpoint, to consider a prediction confirmed by assembly. A total
of 36 986 (97%) deletions have been confirmed, ranging in size
from 51 to 994 703 nt in length. For the confirmed deletions, we
investigated sequence identity around breakpoints (see definition in
Supplementary Fig. S2). We observed that 97% of sequences that
are identical around breakpoints are shorter than 20 nt, but can be as
long as 100 nt. Distribution of sequence identity around breakpoints
has two distinct peaks (around 0 and 15 bp). The first one is likely
to represent random sequence matches, while the second one is
indicative of transposable elements (Lam et al., 2010), characterized
by Target Site Duplication around breakpoints (∼15 nt in length).
Identical sequences outside breakpoints (Supplementary Fig. S3)
were almost all no longer than 30 nt and were typically shorter than
10 nt. Similarly, 98% of identical sequences inside breakpoints were
shorter than 10 nt.

Most of the contigs could be aligned as pure deletions, but in
4340 (11%) cases, deletion was accompanied by micro-insertion
(as on schematics in Fig. 1B). We further analyzed such cases
(Supplementary Fig. S3). The distribution of insertion lengths peaks
around 1 nt and decays exponentially. There is a slight elevation
in the event frequency for insertions of length 12 and 15 nt. This
could be further studied to determine whether this is a biological
phenomenon. In one case, the inserted sequences was extremely
long (1385 nt) and could be partially aligned to the opposite DNA
strand in the region of deletion and to the genome in the region next
to corresponding deletion. Thus, the region is a complex SV event
that has a deletion, duplication and inversion. Another alternative is
that the region was misassembled.

3.3 Examples
Application of other existing programs aimed at long gap alignment
to the same set of contigs from the 1000 Genomes Project revealed a
substantially higher SV confirmation rate when using AGE, thereby
suggesting its superior performance in determining SV breakpoints
(Supplementary Material). As it was pointed out in Section 1,
SV breakpoints with sequences homology around them are the
most challenging to determine (Fig. 2). For such SVs, successful
resolution of breakpoints depends on the length and percent of
homology of breakpoint sequences as well as the lengths of the
aligned sequence. To demonstrate the advantage of using AGE
in practice, we provide a few examples of alignments in such
cases. We chose to demonstrate examples for AGE, CrossMatch
(http://www.phrap.org/phredphrapconsed.html, implementing the
Smith–Waterman alignment), GAP3 (Huang and Chao, 2003)
(implementing a generalized global alignment with piecewise gap
penalty), and Blat (Kent, 2002), a popular heuristic alignment
program aimed at aligning highly similar sequences with large gaps.

Figure 5A shows an example of comparative contig-to-genome
alignments made by these programs. The contig is the local
assembly of the alternative (to the reference genome) haplotype
around the region of predicted deletion chr20:2,969,769-2,970,056.
AGE alignment clearly identifies a large unaligned region,
confirms the predicted deletion and derives deletion breakpoints
as chr20:2,969,756-2,970,052—in excellent agreement with the
prediction. GAP3 was challenged by sequence homology around
deletion breakpoints and did not introduce a large gap. Instead,
it aligned the left flanking sequence with gaps and mismatches.
CrossMatch aligned two regions, but contig sequence fragments
in those two alignments overlap by 315 bases and additional
analysis is required for breakpoints identification. Note that, as
mentioned, post-processing of local overlapping alignment does not
guarantee finding optimal alignment around breakpoints (see also
Supplementary Fig. S4). Blat heuristically starts alignment from
near-exact matches and, in fact, penalizes large gaps. Exact repeats
within homologous regions flanking breakpoints misled the program
into initiating alignment in the wrong regions and, as a result,
produced incorrect alignment. Another example (Supplementary
Fig. 5B) demonstrates the difficulty the GAP3 program has
producing the correct alignment in cases when SV flanking
sequences are not long enough. Note all alignment methods that
utilize concave/piecewise gap penalty will face the same challenge.

4 DISCUSSION
We have described an algorithm for the correct alignment of two
nucleotide sequences containing SVs, i.e. deletion, insertion, tandem
duplication or inversion, called AGE. The algorithm does not
require the adjustment or modification of the alignment scoring
scheme(s) that is usually tuned for a particular alignment purpose,
e.g. cross-species, contig or read alignments. Thus, the algorithm
can be universally applied in various biological studies relying
on alignment. Its distinguishing feature is that it produces correct
alignments in cases that are challenging for methods utilizing
concave/piecewise gap penalty, i.e. cases with long sequence
homology around breakpoints and/or a short SV region and/or short
flanking sequences. The algorithm naturally handles certain cases
of complex SV events, such as when deletion is accompanied by
insertion.

The most straightforward application of AGE is single-nucleotide
SV breakpoint resolution and standardization, as has just been
demonstrated by using the algorithm implemented in AGE software.
While the algorithm can be generalized to align sequences
containing any number of SVs, its most practical (due to
computational scalability) application is to align sequence with
one SV, which are also the most common. Sequences containing
more SVs are very rare, even when aligning long sequences of
fosmid clones (Kidd et al., 2008). Still, AGE can also be useful
in aligning such sequences. One may envision a strategy in which
SV breakpoints are approximately localized (e.g. by analysis of local
alignments) and then precisely identified using AGE to align only
subsequences that flank SVs.

Of perhaps equal importance, the algorithm can be used to refine
read alignment once a read has been heuristically mapped to a
particular genomic location that is expected to contain an SV.
Such read realignment has potential implications for genotyping
known SVs in newly sequenced individuals, and/or discovering
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Fig. 5. Comparison of assembled contig alignments in the region of predicted deletions. The first line in each alignment is the sequence for the genomic region,
while the second is for the contig sequence. Nucleotide numbering is sequential, starting from one in both compared sequences. Each alignment is accompanied
by a schematic representation underneath. (A) The predicted deletion is chr20:2,969,769-2,970,056. The contig that is 614 bp in length has been aligned by the
AGE, GAP3, CrossMatch and Blat programs to the predicted region of deletion, which is extended by 1 kb in each direction, i.e. from 2,968,769-2,971,056.
The first sequence (genomic region) has two pairs of homologous sequences: orange to yellow and dark green to light green. AGE alignment clearly identifies
a large unaligned region, confirms a predicted deletion, and derives deletion breakpoints as chr20:2,969,756-2,970,052 (coordinates are for the first and the
last deleted bases). Note that the resulting breakpoints are in excellent agreement (within 13 bp) with the prediction. No other program was able to produce the
correct alignment. (B) Predicted deletion is chr8:118,292,728-118,292,987. The contig of 530 bp in length has been aligned by the AGE and GAP3 programs
to the predicted region of deletion, which is extended by 1 kb in each direction, i.e. from 118 291 728 to 118 293 987. AGE alignment clearly identifies a large
unaligned region, confirms a predicted deletion, and derives deletion breakpoints as chr8:118,292,711-118,292,990 (coordinates are for first and last deleted
bases). GAP3 is not able to align the left flanking sequence, as the penalty for a long gap outweighs the matches at the left flanking sequence. All coordinates
are for human hg18 reference.
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de novo SVs within loci that are known or expected to have a
strong copy-number association with genetic diseases (McCarroll
and Altshuler, 2007). Finally, the algorithm is not alphabet specific
and can therefore be applied to the alignment of protein sequences.
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