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ABSTRACT

Motivation: A post-translational modification (PTM) is a chemical
modification of a protein that occurs naturally. Many of these
modifications, such as phosphorylation, are known to play pivotal
roles in the regulation of protein function. Henceforth, PTM
perturbations have been linked to diverse diseases like Parkinson’s,
Alzheimer’s, diabetes and cancer. To discover PTMs on a genome-
wide scale, there is a recent surge of interest in analyzing
tandem mass spectrometry data, and several unrestrictive (so-called
‘blind’) PTM search methods have been reported. However, these
approaches are subject to noise in mass measurements and in the
predicted modification site (amino acid position) within peptides,
which can result in false PTM assignments.
Results: To address these issues, we devised a machine learning
algorithm, PTMClust, that can be applied to the output of blind
PTM search methods to improve prediction quality, by suppressing
noise in the data and clustering peptides with the same underlying
modification to form PTM groups. We show that our technique
outperforms two standard clustering algorithms on a simulated
dataset. Additionally, we show that our algorithm significantly
improves sensitivity and specificity when applied to the output
of three different blind PTM search engines, SIMS, InsPecT and
MODmap. Additionally, PTMClust markedly outperforms another
PTM refinement algorithm, PTMFinder. We demonstrate that our
technique is able to reduce false PTM assignments, improve overall
detection coverage and facilitate novel PTM discovery, including
terminus modifications. We applied our technique to a large-scale
yeast MS/MS proteome profiling dataset and found numerous known
and novel PTMs. Accurately identifying modifications in protein
sequences is a critical first step for PTM profiling, and thus our
approach may benefit routine proteomic analysis.
Availability: Our algorithm is implemented in Matlab and is freely
available for academic use. The software is available online from
http://genes.toronto.edu.
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Proteins are created through a biological process called protein
biosynthesis. This process begins with transcription and splicing
of genes into messenger RNA (mRNA) molecules, which are later
translated into polypeptides. At the time of translation, a protein can
either be active or inactive, and its subsequent activity is generally
regulated by chemical modifications referred to as post-translational
modifications (PTMs). PTMs, which may occur during or after
translation, involve an enzymatic addition of a chemical group
(e.g. a phosphate) or a larger moiety (e.g. an additional polypeptide
such as ubiquitin) onto one or more amino acid side chains. Many
PTMs, in particular, phosphorylation on serine (S), threonine (T)
or tyrosine (Y), can regulate a protein’s function by influencing its
folding, stability or physical association with other proteins, thereby
activating or suppressing it.

Since PTMs have been shown to dynamically influence a
wide range of important processes (e.g. catalysis of biochemical
reactions, intracellular cell signaling and cell division), mapping
of PTMs in a comprehensive proteome-wide manner remains
a critical outstanding research problem. Although the biological
importance of certain PTMs is well established, the diversity and
the prevalence of PTMs and their targets remain to be fully
elucidated. One recently developed approach to discover PTMs
on a genome-wide scale is to analyze tandem mass spectrometry
(MS/MS) data using an unrestricted (so-called ‘blind’) PTM search
engine. Unlike traditional ‘restricted’ search methods [Baliban
et al. (2010); Craig and Beavis (2004); Eng et al. (1994);
Matthiesen et al. (2005); Perkins et al. (1999)], blind search
engines require no predetermined list of candidate PTMs, with
pre-defined delta masses or preferred target residues. This allows
blind PTM search engines to be able to consider a large number
of potential PTMs at once, representing both previously known
PTMs and new ones. A number of blind search engines have been
reported that employ various different optimization techniques and
sequence prediction approaches [Baumgartner et al. (2008); Chen
et al. (2009); Han et al. (2005); Hansen et al. (2005); Havilio and
Wool (2007); Kim et al. (2006); Liu et al. (2006, 2008); Na and Paek
(2009); Savitski et al. (2006); Searle et al. (2006); Tanner et al.
(2005); Tsur et al. (2005)].

Reviews of protein mass spectrometry and the detection of PTM
by mass spectrometry can be found in Domon and Aebersold
(2006) and Witze et al. (2007). Briefly, a typical proteomic MS/MS
experiment begins with an enzymatic digestion of proteins into
peptides. For a complex mixture, it is common to simplify the
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mixture by separating peptides based on their chemical properties,
such as hydrophobicity using liquid chromatography, before they
are ionized and injected into a mass spectrometer. Once in the
spectrometer, peptides are grouped and isolated based on their mass-
to-charge ratio (simply referred to as mass). Ideally, each group
will contain one peptide variant. For each group, the peptides are
further broken down by a fragmentation method, such as collision-
induced dissociation (CID), to produce ion fragments. The mass
spectrometer captures the ion fragmentation pattern for each group
in a mass spectrum. The presence of PTMs shifts the mass of the
corresponding ions, which changes the ion fragmentation pattern
significantly. Specialized PTM search engines, like those discussed
above, are used to decipher these ion patterns and map each mass
spectrum to a peptide sequence that best explains it.

The use of real and decoy proteins is an established practice
for estimating false predictions for MS/MS spectra analysis using
database search approaches [Kall et al. (2007); Kislinger et al.
(2003); Peng et al. (2003)], including blind PTM search methods
(Liu et al., 2008). Decoy proteins are generated by reversing the
amino acid sequence of real proteins; this ensures that real and decoy
proteins have the same distributions of amino acids and protein
lengths. When using a protein reference database containing an
equal number of real and decoy proteins, a random (false) peptide
prediction (modified or unmodified) will have an equal likelihood
of choosing a peptide from either a real protein or a decoy protein.
This allows the number of decoy peptide hits as an estimate for false
detection rate.

In practice, blind PTM search methods suffer from two major
sources of error: sequence-dependent uncertainty in the modification
position (residue position along the peptide sequence where the
modification is deemed to occur) and mass inaccuracy for the
modification mass. The fragmentation process is often incomplete
and the presence of labile PTMs may interfere with this process
(Mikesh et al., 2006). Both issues combined result in MS/MS
spectra missing peaks that in turn may lead to ambiguous or
erroneous modification predictions. The presences of natural stable
isotopes, such as carbon-13, in addition to electronic noise are
major contributors to inaccurate mass measurements. This is more
prominent in spectra generated from low mass resolution mass
spectrometers (e.g. ion trap mass spectrometers), which are still
commonly used in today’s mass spectrometry studies. Figure 1
shows a diagrammatic representation of the search results obtained
from applying the blind PTM search engine SIMS (Liu et al., 2008)
to a set of MS/MS spectra previously mapped to phosphopeptides
(Beausoleil et al., 2004). Enriched for phosphopeptides using a
strong cation exchange-based method, the spectra from the complex
peptide mixture in the original study were analyzed by a restricted
PTM search method designed to look for phosphorylation and were
validated manually. The same dataset has been used in benchmark
experiments in previous PTM studies [Liu et al. (2008); Tanner
et al. (2005)]. Phosphorylation is known to occur at ∼80 Da and
primarily on the amino acid serine (S) and less frequently on
threonine (T). Yet the results show, even for those observed peptide
sequences that match to the original reference study, that many of
their modification (delta) masses and modified amino acid sites
deviate from this reference. A closer look (Fig. 1C) shows that
many of the amino acids misplaced are a few residues away from
their corresponding reference modification position. In a global-
scale PTM survey, these issues can make distinguishing true PTM

Fig. 1. Histograms of inputs to our algorithm [generated by SIMS (Liu et al.,
2008)] for spectra previously determined to be mapped to phosphopeptides
(Beausoleil et al., 2004). They show that the statistics for modification mass
and modified amino acid deviate from the reference, which determined that
the PTM (phosphorylation) occurs at ∼80 Da and on serine (S) and threonine
(T). (A) The distribution of the measured modification mass. (B) Identified
amino acids that deviate from S and T. (C) The distribution of the distance
(in residues) from the identified amino acid to the reference for misplaced
modifications; this demonstrates that identified modifications are generally
only a few residues away from the reference.

matches from false detections non-trivial; therefore, identifying
bona fide PTMs confidently remains difficult. While these errors
can potentially be reduced by technological improvement in
instrumentation (e.g. higher mass accuracy mass spectrometers or
using alternate fragmentation mechanisms), we sought to develop
an algorithm that can deconvolve errors associated with measuring
masses and mapping of modification positions simultaneously to
salvage both existing datasets and current experimental platforms.

These two sources of error were acknowledged by Tsur et al.
(2005), who briefly described a heuristic approach to account for
‘shadows’ (modifications that are misplaced by a PTM search
engine), and later by the same group in the PTM refinement
algorithm PTMFinder (Tanner et al., 2008). However, in the
former method, their approach favors high abundance modified
peptides, since it requires each peptide match to occur multiple
times; discretizes observed modification masses, which introduces
additional error with the mass measurements; and can handle only
one type of error per peptide (namely either a modification mass error
of exactly 1 Da or a modification position misplaced by exactly one
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residue). The latter method, PTMFinder, takes a machine learning
approach where it groups and reanalyzes spectra mapping to the
same modified peptide sequence to produce for each spectrum a
final peptide sequence with a modification mass and a modification
position. This method also suffers from favoring high abundance
modified peptides and discretizing observed modification masses.
As we show later, it is not always the case that many spectra
map to the same modified peptide in a typical genome-wide MS
study. These restrictions limit the suitability of both methods’ error
correction approach to global PTM studies. We note that in addition
to correcting for errors with modification mass and modification
position estimations, PTMFinder can refine the peptide sequence and
provides a P-value confidence score for both the reported peptide
sequence and modification.

Here we introduce a novel generative probability model
(PTMClust) that addresses the aforementioned problems
encountered when using blind PTM search engines. It accomplishes
a significant boost in PTM prediction accuracy and precision by
modeling the hidden relationships between the compositions of
amino acids in the peptide sequence, specifically the modification
mass, the modification position and the identity of the modified
amino acid. Our algorithm iterates between clustering modified
peptides with similar modifications to form groups, which we call
PTM groups, and finding the most likely modification mass and
modification position for each peptide based on the grouping. Our
method distinguishes itself from others by modeling modifications
at the PTM level instead of at the individual peptide level.
By rigorous benchmarking, we show that a number of learned
PTM groups correspond to known PTMs and many reported
modified peptides match to annotated modifications. In addition,
our algorithm simultaneously considers PTMs occurring in either
the middle or at the terminal ends of a peptide or protein, which
provides additional information missed by blind PTM search
techniques [Han et al. (2005); Liu et al. (2006, 2008); Searle et al.
(2006); Tanner et al. (2005); Tsur et al. (2005)]. To ensure broad
applicability, we have designed and optimized PTMClust to analyze
PTM data generated from low resolution MS/MS spectra processed
by popular blind PTM search engines, such as those generated from
ion trap mass spectrometers.

2 METHODS
Our proposed algorithm PTMClust consists of a generative model, which
captures the hidden relationship between the factors that influence the
PTM mapping process, and an algorithm to infer the values of the hidden
variables and parameters. It includes a background model to account for
spurious data. The input to PTMClust is obtained using a blind PTM search
method [e.g. SIMS or InsPecT Tanner et al. (2005)]. It consists of a list of
modified peptides with the following attributes: peptide sequence, measured
modification mass and estimated position of the modification along the
peptide sequence (modification position). The output of PTMClust for each
input peptide consists of a cluster assignment, a corrected modification
position and a corrected modification mass. The identity of the modified
amino acid for each peptide can be obtained from its peptide sequence and
modification position.

A key component of our algorithm is the model selection method that
selects the appropriate number of clusters by adjusting the model complexity
‘control knob’αb. Using the labels of real and decoy peptides, we defined rate
of detection (RD) as the number of real peptides that are not assigned to the
background model, divided by the total number of real peptides. Similarly, we
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Fig. 2. A Bayesian network describing our generative model, using plate
notation (box). The shaded nodes represent observed variables, the unshaded
nodes represent latent variables and the variables outside the plate are model
parameters. The model describes how the observed modification mass and
modification position are generated. Given the type of PTM (PTM group),
we can generate the observed modification mass as a noisy version of the
modification mass mean, and select an amino acid to be modified. Given
the peptide sequence, we can choose a position along it that matches the
modified amino acid as the ‘true’ modification position. We can generate the
observed modification position as a noisy version of the ‘true’ modification
position. The plate notation indicates there are N copies of the model, one
for each input peptide.

defined rate of false detection (RFD) as the number of decoy peptides that are
not assigned to the background model, divided by the total number of decoy
peptides. A setting for αb was chosen by weighing the tradeoff between the
number of decoy peptides allowed and the number of real peptides detected,
as described below.

2.1 A generative model for finding PTM groups
By accounting for combinatorial interactions between hidden variables that
play a role in the protein modification process, our generative probability
model aims to describe how each PTM observation is generated. For a
given PTM type (PTM group), the observed modification mass is assumed
to be a noisy version of the expected (mean) modification mass, and the
modified amino acid is chosen from a distribution over amino acids that
may be modified in that type. For example, modifications occur primarily on
serine (S) and threonine (T) for phosphorylation. For a given peptide, the true
modification position is assumed to be chosen uniformly among occurrences
of that amino acid in the peptide. Finally, the observed modification position
is assumed to be a noisy version of the true position. Below, we described the
components of our model: the probability of choosing each PTM type, the
probability of choosing each amino acid to be the modified amino acid given
the PTM type, the probability of the true modification position given the
modified amino acid and the uncertainty in the observed modification mass
and modification position. We then introduce an algorithm for learning the
model parameters and inferring the hidden (latent) variables from the input
data. Once a model is learned, we can refine the modification for each input
peptide sequence by inferring its most likely PTM group, true modification
mass and true modification position.

The structural relationships between the variables are shown by the
Bayesian network in Figure 2. It describes the model for one input peptide
and is repeated for N inputs, as indicated by the plate notation (box in the
figure).

In our model, each input peptide sequence Sn, indexed by n∈{1,...,N}
where N is the number of peptides in the dataset, has a corresponding
discrete peptide length Ln, observed modification position xn ∈{1,...,Ln}
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and observed modification mass mn. Sn(j) is the amino acid in position j
of the input sequence n. The total number of values Sn(j) can take on is
A=24, which includes the 20 naturally occurring amino acids and 4 special
tokens indicating the beginning and end of proteins and peptides. The latent
variable cn ∈[1,..,K] denotes the unknown PTM group for peptide sequence
n, where K is the number of PTM groups and will be adjusted depending
on the desired false detection rate, as described later. The prior probability
(mixing coefficient) for each PTM group is given as

P(cn =k)=αk, (1)

where it satisfies the constraints αk ≥0 and
K∑

k=1
αk =1, and is inferred from

the data (see below for details).
The probability that the PTM occurs on amino acid i∈{1,...,A}, given

that the PTM group is k, is

P(an = i|cn =k)=βki, (2)

where the latent variable an denotes the true (unobserved) modified amino

acid and the β’s satisfy the constraints βki ≥0 and
A∑

i=1
βki =1, and is inferred

from the data (see below for details).
Given the peptide sequence Sn and the modified amino acid an, each

occurrence of that amino acid in the peptide sequence has equal probability
of being the true (unobserved) modification position zn. For completeness,
our probabilistic model considers the likelihood of cases where an amino
acid does not occur in Sn. To do so, we allowed for the event that the true
PTM occurs outside of the given peptide sequence,1 indicated by zn =0, so
that zn ∈{0,...,Ln}. All other positions in the peptide sequence have zero
probability of being the true modification position. This can be written as

P(zn = j|an = i,Sn)=

⎧⎪⎨
⎪⎩

1
δni+1 if Sn(j)= i,j≥1,

1
δni+1 if j=0,

0 otherwise,

(3)

where δni denotes the number of times amino acid i occurs in sequence n.
We modeled the modification position error (xn −zn) between the observed

modification position xn and the true modification position zn with a discrete
probability distribution, given as

P(xn|zn = j)=
⎧⎨
⎩

φ(xn −j) if j>0,

φ(Ln) if j=0,

0 otherwise,
(4)

where the likelihood function φ accounts for the modification position error.
This likelihood function is shared across all PTM groups and is inferred from
our empirical observation of the yeast PTM dataset as follows (see Section 3
for description of the dataset). We grouped the entries in the dataset by
their peptide sequence and modification mass, allowing for mass differences
of ±2 Da. Then, we determined the average modification position for each
group (rounded to the nearest position) and computed a histogram of the
modification position error. In the above assignment, groups with less than
three entries were removed. This threshold was chosen so that a reasonable
number of points (1206) were available to estimate the likelihood function,
while also filtering out false modified peptides. The frequency of peptides
for each group size, shown in Supplementary Figure S1, exhibits a heavy-tail
distribution where the majority of modified peptides have low counts. More
than 48% of the entries have a group of size exactly three. The resulting
likelihood distribution is shown in Figure 3.

Lastly, we accounted for the variation (noise) in the estimated modification
mass by assuming the observed modification mass for each PTM group is
normally distributed around the true modification mass, given as

P(mn|cn =k)= 1√
2π�k

exp

(−(mn −µk)2

2�k

)
, (5)

where µk and �k are the modification mass mean and variance for the k-th
PTM group, and are inferred from the data (see below for details).

1zn =0 is needed to avoid numerical issues since our algorithm considers
each amino acid as a possible modification target.
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Fig. 3. Distribution of modification position error used by PTMClust. This
empirical distribution was derived using yeast PTM data (Krogan et al., 2006)
analyzed with SIMS (Liu et al., 2008). A positive (negative) modification
position error indicates that the observed modification position is toward the
C-terminus (N-terminus) of the expected modification position.

Combining the structure of the Bayesian network and the conditional
distributions described above, we can write the joint distribution as

P(c,a,z,x,m|S,θ)=
N∏

n=1

(
P(cn|θ)P(mn|cn,θ)P(an|cn,θ)P(zn|an,Sn,θ)P(xn|zn,θ)

)
,

(6)

where θ represents the model parameters (αk , βki, µk and �k).
The input data are noisy and may contain false positives and modified

peptides that do not fit into proper PTM groups. To account for these
spurious data points, we included an additional PTM group (background
component) that acts as a garbage collection process (background model).
In the background component, we assumed there is no specific relationship
between the modification mass and modified amino acid. Formally, the
background component has a fixed modification mass mean µb and variance
�b set to be equal to the mean and variance of the data. Additionally, it has a
fixed uniform probability over the modified amino acid βb

a = 1
A , ∀ a=1,...,A,

and a mixing coefficient αb, which will be used to adjust model complexity
(see below).

Inference and learning: The key step in our algorithm is to infer an optimal
setting for latent variables and learn the model parameters. However, exact
inference and learning of the above model is computationally intractable,
because of non-linear relationship between latent variables and parameters.
Instead, we used the EM algorithm [Dempster et al. (1977); McLachlan and
Krishnan (1997)], which alternates between probabilistically filling in the
latent variables cn, an and zn and estimating the parameters αk , βki, µk and
�k . A detailed derivation of the EM algorithm for our model is provided as
part of the Supplementary Material.

In the E-step, the posterior probabilities for iteration t and every peptide
n are evaluated using the parameters from iteration t−1 by conditioning on
the observed variables mn and xn in (6):

Q(t)(cn,an,zn)=P(cn,an,zn|mn,xn,Sn,θ
t−1)=

P(cn,an,zn,mn,xn |Sn,θt−1)∑
cn

∑
an

∑
zn

P(cn,an,zn,mn,xn |Sn,θt−1)
. (7)

In the M-step, the parameters are reestimated by maximizing the expected
complete log likelihood using the current posterior probabilities. This is
done by taking the partial derivative of the expected complete log likelihood
with respect to each parameter. Lagrangian terms are added to the expected
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complete log likelihood to account for the constraints on probabilities αk and
βki. The updates for the parameters are as follow:

µk =

N∑
n=1

Q(t)(cn =k)mn

N∑
n=1

Q(t)(cn =k)

, �k =
N∑

n=1
Q(t)(cn=k)

(
mn−µk

)2

N∑
n=1

Q(t)(cn=k)
,

αk = 1

N

N∑
n=1

Q(t)(cn =k), βki =
N∑

n=1
Q(t)(cn=k,an=i)

N∑
n=1

Q(t)(cn=k)
. (8)

At the end of each pair of E- and M-steps, we calculated the log likelihood
and stop if the difference between the current and previous log likelihood
divided by the current log likelihood is smaller than 10−5 (this stop criterion
is chosen to ensure the EM algorithm terminates).

Recursive merge method for model selection: In our model, the only free
parameter is the number of PTM groups (mixture components) K and the
probability of the background component. We devised a recursive merge
method, similar to the split and merge model selection methods,2 that will
effectively evaluate and identify the optimal free parameters that achieve a
desired false detection rate.

Instead of adjusting K directly, we adjusted the mixing coefficient of
the background component αb, which represents the prior probability that
a data point belongs to the background model, to adjust model complexity.
We gradually increase this parameter and for each specific setting of αb,
our method infers the hidden variables, parameter settings and K . Using
maximum likelihood estimation, as αb increases (we used step size of 0.01),
more and more of the loosely clustered peptide sequences are redistributed
to other components, including the background component, and the number
of non-background components is reduced by merging clusters (reducing
K). This is accomplished by pruning away ‘empty’ components, where we
define a component to be empty when it has less than or equal to one
peptide sequence assigned to it. In effect, the non-background components
are slowly merging with each other and the background component as αb

increases until the non-background components are empty and pruned away,
which decreases the model complexity. In our algorithm, we started with
a large value for K and a small value for αb (0.01), and slowly merge
the non-background components and the background component, pruning
away any empty clusters, by increasing αb each time. In total, we learn M
models where M is the number of different αb settings. We chose a single
model (i.e. a specific setting for αb) by analyzing the results from our model
selection method using the measures RD and RFD. The choice of which
model to use depends on the desired RD and RFD.

2.2 Synthetic PTM data generation
To compare PTMClust against standard clustering algorithms on the problem
of finding correct groupings of modifications, we generated a synthetic
PTM dataset that provides us with ground truth. The dataset consists of
five subsets, each having 100 peptides randomly picked from the yeast
protein complex dataset, described in Section 3. Here, each set of peptides
is assigned to have one of the five arbitrarily chosen modified amino acids:
aspartic acid (D), phenylalanine (F), histidine (H), leucine (L) and proline (P).
The true modification position for each peptide was randomly chosen to
be on one of the instances of the preassigned amino acid for that subset,
and the modification positions used as input to the algorithms are set to
a noisy version of the true modification positions. The noise (modification
position error) added was chosen from a standard normal distribution (see
Supplementary Fig. S2). Since the true modified amino acids are predefined,
we can use them as labels to evaluate the performance of the algorithms.

The modification mass for each peptide was randomly generated to have
Gaussian noise with a small variance (0.2) from the modification mass

2Our approach only makes use of merge steps.

center for that particular set of peptides (see Supplementary Fig. S3). The
distribution of modification masses was chosen to provide significant overlap
in modification mass between adjacent sets. The modification mass centers
were set to 40.0 Da for peptides with PTMs on D, 41.0 Da for peptides with
PTMs on F, 42.0 Da for peptides with PTMs on H, 43.0 Da for peptides with
PTMs on L and 44.0 Da for peptides with PTMs on P.

For k-means clustering and mixture of Gaussians (MOG), the format
of each input peptide is a vector consisting of the modification mass and
the distance between the modification position and the closest instance of
each amino acid, i.e. a vector of size 21 with the modification mass as the
first element and the 20 amino acid as the next 20 elements (alphabetically
ordered). The distance between the true modification position and each amino
acid is used to account for our expectation that each PTM occurs on a specific
set of amino acids. To interpret the input distances, for each PTM group, the
amino acids most likely to be the true modified amino acid will have a small
variance and the amino acids that are unlikely to be the true modified amino
acid will have a large variance.

3 RESULTS
We conducted two proof-of-concept experiments. First, we
compared PTMClust to two standard clustering algorithms, k-means
clustering (MacQueen, 1967) and a mixture of Gaussians (MOG),
on a synthetically generated PTM dataset. Second, we benchmarked
PTMClust against three state-of-the-art blind PTM search engines
and a PTM refinement algorithm on a reference phosphopeptide
dataset. To show its strengths, we applied our algorithm to process
a yeast proteome dataset that contains multiple PTMs.

In our experiments, we initialized our algorithm with number of
clusters K =150 (except for the first proof-of-concept experiment);
the prior probability of each PTM group αk = 1

K , where k ∈
{1,...,K}; the probability that the PTM occurs on amino acid
i∈{1,...,A}, given that the PTM group is k, βki = 1

A ; the modification
mass mean for each PTM group µk to be uniformly distributed
across the searched modification mass range (except for the first
proof-of-concept experiment); and the variance of modification mass
for each PTM group �k =1 and limited, during learning, to be
no greater than 2. The assumption on the maximum value for �k
corresponds to our knowledge that for a PTM group to be physically
relevant, it should have a well-defined modification mass.

3.1 Comparison of algorithms on synthetic data
Both the k-means clustering and MOG algorithms are standard
methods used when faced with an unsupervised clustering problem.
They perform effectively in many cases and are simple to understand
and implement. Our algorithm improves upon them by explicitly
modeling the hidden relationship between the modification mass,
modified amino acid, peptide sequence and modification position.
We evaluated the performance of PTMClust against these two
algorithms using the synthetic PTM dataset described above, which
provides us with ground truth labels for the true modified amino
acids, modification positions, modification masses, identities of the
PTM groups and cluster assignment for each peptide. The synthetic
data was designed to have overlapping modifications, in terms of
modification masses and modified amino acids, so that it is non-
trivial to identify the PTM groups. The goal of this experiment is
to evaluate how well the three algorithms perform with increasing
complexity in the input data, so multiple datasets were generated
with the number of PTM groups ranging from two to five. Details
on how we generated the synthetic data can be found in Section 2.
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To test whether each method could identify the PTMs, we fixed
the number of clusters (K) for each algorithm. In fact, PTMClust
can automatically determine the number of PTM clusters, but we
deactivated this feature for this experiment. The initial parameter
settings for the modification mass cluster centers, shared for all
three algorithms, were initialized randomly within the range of
modification masses in the input dataset. For MOG, the variance was
initialized to 1 for modification mass (consistent with PTMClust)
and distances between the observed modification position and the
closest instance of each amino acid (same variance used to generate
the data). Theoretically, a large initial variance for modification mass
(e.g. 10 in this experiment) can result in data points being falsely
assigned to one cluster, because many data points with different
labels have the same observed modified amino acids. This has an
effect much like our background model. At the other extreme, a
small initial variance for modification mass (e.g. 0.1) can result in
clusters that explain only a few data points that are near the initial
cluster centers. However, due to the small size and simplicity of
this dataset, we did not see significant problems in this regard for
both MOG and PTMClust when we varied the initial modification
mass variance (data not shown). We initialized the other parameters
in PTMClust as discussed above. For each method, we performed
30 random restarts and picked the restart with the best joint log-
likelihood. To do this, we learned k-means clustering by modifying
the MOG, where, after each EM iteration, we set the probability
between a data point and its closest cluster center to 1 and 0 for all
other cluster centers to that data point.

Using i∈{1,...,K} to index each cluster, we evaluated the
performance of the algorithms using a criterion that measures how
well each ground truth modification was detected. For cluster i, we
deemed the largest group of peptides with the same label assigned
to it as true positives (TPi) and all other peptides assigned to it as
false positives (FPi). To evaluate each algorithm, we calculated the
correction rate (CR), which we defined as the difference between the
total number of true positives and the total number of false positives
divided by the total number peptides in the sample, given as

CR=
∑

iTPi −
∑

i FPi

N
, (9)

where N is the total number of peptides in the sample. The CR is a
measure of the fraction of PTM predictions that are expected to be
not due to chance.

Figure 4 shows the result of applying the three algorithms on
input datasets with varying number of PTM groups. It shows that our
algorithm outperforms both k-means clustering and the MOG. The
key observation is that PTMClust performed consistently well, while
the performances of the other two algorithms exhibit a significant
drop as the complexity of the dataset increases.

3.2 Benchmarking against phosphopeptide predictions
We next examined the abilities of our algorithm to identify PTM
groups corresponding to bona fide PTMs, fine-tune observed
modification masses and correct for misplaced modification
positions. We chose to focus this analysis on phosphorylation
because it plays a vital role in protein regulation for many different
biological processes. As a result, it is well studied and annotated
datasets are readily available. Using a dataset of ion trap MS/MS
spectra (human HeLa cells) previously mapped and manually
validated as phosphopeptides (Beausoleil et al., 2004), we compared
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Fig. 4. A comparison of clustering algorithms on a synthetically generated
dataset. It shows how each of the three methods, k-means clustering, a
mixture of Gaussians (MOG) and PTMClust (our algorithm), performs as
more sets of data points with different modifications are added (increasing
complexity). Correction rate is a quality measure defined as the difference
between the total true positives and the total false positives divided by the
total number peptides in the sample; higher correction rate indicates better
performance. The result shows PTMClust performs consistently well while
the other two algorithms exhibit a significant drop as the complexity of the
dataset increases.

the initial PTMs identified from three state-of-the-art blind PTM
search engines, SIMS (Liu et al., 2008), InsPecT 3 [Tanner et al.
(2005); Tsur et al. (2005)] and MODmap (Kim et al., 2006;
Na and Paek, 2009) to the results after applying PTMClust on each
of them individually. Additionally, we compared our results against
those obtained by post-processing the result from InsPecT with the
PTM refinement algorithm PTMFinder. Knowing the underlying
peptide sequence and PTM for each spectrum is critical to allow
us to compare the effectiveness of PTMClust.

The dataset consists of 1655 spectra but we focused only
on the 1340 spectra mapped and curated as singly modified
phosphopeptides (SIMS, InsPecT and PTMClust are limited to one
modification per peptide prediction). When searching the spectra,
we used the default settings optimized for ion trap instruments
for InsPecT, PTMFinder and MODmap, and reference settings
described in Liu et al. (2008) for SIMS. To simulate a true blind
PTM search, an empty list of known PTMs was passed into
PTMFinder, which ensures that any corrections made by PTMFinder
are not influenced by prior knowledge of known PTMs. Due to
the long search time required, which scales linearly with the size
of the reference database, a common practice employed by blind
PTM search engines [Liu et al. (2008); Tanner et al. (2005); Tsur
et al. (2005)] is a two-pass approach (Craig and Beavis, 2003),
where a reduced database is generated by filtering the reference
database for proteins that are found by an initial analysis of the
spectra not considering modifications. The human database from

3The MS-alignment algorithm (Tsur et al., 2005), which is part of the InsPecT
program, was used to perform blind PTM search.
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Table 1. Results for SIMS, InsPecT, MODmap and PTMFinder with and
without application of our method, PTMClust

No. of correct
modification
position matches (%
improvement over
base algorithm)

No. of misplaced
modification
position matches (%
improvement over
base algorithm)

Total correct
peptide
sequence
matches

SIMS 685 267 952
SIMS with PTMCIust 791 (∼15%) 161 (∼40%) 952
InsPect 621 239 860
InsPect with PTMCIust 712 (∼15%) 148 (∼38%) 860
PTMFinder 620 242 862
PTMFinderwith PTMCIust 711 (∼15%) 151 (∼38%) 862
MODmap 97 28 125
MODmap with PTMCIust 108 (∼11%) 17 (∼39%) 125

A reference set of MS/MS spectra previously mapped to phosphopeptides (Beausoleil
et al., 2004) was analyzed by SIMS (Liu et al., 2008), InsPecT (Tanner et al., 2005;
Tsur et al., 2005), MODmap (Na and Paek, 2009), and InsPecT followed by PTMFinder
(Tanner et al., 2008), a PTM refinement method. Using the reference peptide sequences
and modifications as the truth, the table shows the number of correct peptide sequence
matches, and the correct and misplaced modification positions before and after applying
PTMClust (our algorithm) to the output from the four methods. PTMClust was able to
correct for a significant portion of the modification position errors made by the four
methods and the improvements are consistent across different methods. Furthermore,
PTMClust is able to correct errors that PTMFinder missed, significantly outperforming
it in terms of refining PTMs.

the National Center for Biotechnology Information was used as
the initial reference database in this two-pass approach. A reduced
reference database of 1827 real proteins appended with the same
number of decoy proteins and a common modification range [−20,
300] Da was used for all algorithms.

Among the 952 outputted peptide sequences matching to the
reference for SIMS, 267 had their modification misplaced. Similarly,
InsPecT result matched 860 reference sequences but misplaced
239 modification positions. Using the default settings MODmap
produced a peptide sequence for only 157 spectra, which resulted in
125 peptide sequences matching to the reference with 28 of those
having misplaced modification positions. Lastly, post-processing
InsPecT outputs with PTMFinder produced a change to five peptide
predictions: two peptide sequence changes resulted in a match to the
reference but both cases failed to identify the correct modification
position; an incorrect modification position change on a previously
correct prediction; and two incorrect modification position changes
on previously mismatch modification positions (i.e. no positive
effect). In summary, we observed 242 of the 862 peptide sequences
matching to the reference with a misplaced modification position.

We initialized our algorithm as described above. Weighting the
tradeoff between maximizing RD and minimizing RFD, we settled
on a model complexity setting of αb =0.90, which resulted in a RD
of 0.76 and a RFD of 0.27 for SIMS; αb =0.94 with a RD of 0.72
and a RFD of 0.34 for InsPecT, αb =0.94 with a RD of 0.72 and a
RFD of 0.34 for PTMFinder; and αb =0.45 with a RD of 0.701 and
a RFD of 0 for MODmap.

As shown in Table 1, PTMClust was able to correct a significant
portion of the misplaced modifications identified by SIMS, InsPecT,
MODmap and PTMFinder. Across the board, PTMClust performed
consistently well. More specifically, for SIMS, PTMClust decreased
the number of misplaced modifications by ∼40% (106 fewer
misplaced modification positions) to produce 791 correct matches,

an increase of ∼15%. Similarity, for InsPecT, our algorithm
reduced the number of misplaced modification positions by ∼38%
(91 fewer modification position misplacement) to produce 712
correct predictions, an increase of ∼15%. PTMClust obtained
improvement on par with others for MODmap with a ∼39% decrease
in the number of misplaced modifications (11 fewer misplaced
modification positions) and a ∼11% increase of correct predictions
(108). Given PTMFinder had little effect on the result from InsPecT
for this dataset, we experienced similar improvements to those for
InsPecT where we obtained ∼38% (91) fewer modification position
misplacement to produce 711 correct predictions, an increase of
∼15%.

Importantly, a breakdown of the results show that our algorithm
made very few mistakes (19 for SIMS, 26 for InsPecT, 1 for
MODmap and 26 for PTMFinder) where it incorrectly changed
modification positions that were correctly identified by SIMS,
InsPecT, MODmap or PTMFinder, while making a large number of
improvements (125 for SIMS, 117 for InsPecT, 12 for MODmap
and 117 for PTMFinder). A closer examination of the models
learned (for all four algorithms) shows that the majority of the
reference phosphopeptides were assigned to a PTM group with
modification mass ∼79.87 Da and high likelihood for S (∼0.94)
and T (∼0.06): this corresponded correctly to our knowledge about
phosphorylation. A listing of the search results from all algorithms
are provided in Supplementary Table S1.

Next, we examined the overlap between the results from SIMS,
InsPecT and MODmap, and the corrected results after applying
our algorithm. PTMFinder is omitted here since its result is nearly
identical to InsPecT. It has been reported that a significant portion
of the results from SIMS and InsPecT do not match (Liu et al.,
2008), and this observation is widely believed to be true for
many pairs of blind PTM search methods. Our analysis shows that
many of the mismatches are due to incorrect modification position
assignments: 229 of the 790 spectra that both SIMS and InsPecT,
mapped to the same peptide sequence have mismatched modification
position. After post-processing with our algorithm, ∼41% (93) of
the mismatches were corrected, which significantly improved the
overlap between the results from the two algorithms. We observed
similar improvements when we include MODmap in the analysis:
25 of 106 spectra have mismatching modification position with
∼44% (11) improvement between InsPect and MODmap, and
25 of 98 spectra have mismatching modification position with
∼48% (12) improvement between all three algorithms (SIMS,
InsPecT and MODmap). Due to the small number of observed
mismatched modification positions among the overlaps between
SIMS and MODmap (14 of 119 matching peptide sequences
(∼12%)), we did not observe any improvement post-processed with
PTMClust. PTMClust consistently, with the exception of SIMS
versus MODmap, is able to improve on the overlap of the identified
modified peptides between the different algorithms. These results
provide additional evidence that our algorithm is producing sensible
results.

3.3 Large-scale PTM analysis of yeast proteome
To test its versatility in detecting diverse PTM groups in a more
complex biological context, we next applied PTMClust to analyze
a large-scale PTM dataset taken from analyses of yeast protein
complexes (LC-MS/MS spectra only) (Krogan et al., 2006) using
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Table 2. Summary of known modifications in the yeast proteome dataset

PTM PTMCIust SIMS

Known PTM
sites (%
improvement
over SIMS)

Peptides with
known PTM
sites (%
improvement
over SIMS)

Known
PTM sites

Peptides with
known PTM
sites

Phosphorylation 66 (∼8%) 115 (∼15%) 61 100
Acetylation 9 (∼13%) 75 (∼42%) 8 72
Cysteine oxidation

(Cysteine sulfinic
acid)

1 (∼0%) 7 (∼17%) 1 6

Others 5 (∼0%) 35 (∼0%) 5 35
Total 81 (∼8%) 232 (∼9%) 75 213

The known set of modifications was taken from Uniprot (Release 2010_11). We matched
the sets of modified peptides produced by SIMS and post-processed with PTMClust to
the set of known yeast modification sites. The results show PTMClust is able to identify
and refine PTMs in a complex dataset.

SIMS. Briefly, the yeast dataset consists of over 2 million ion
trap MS/MS spectra of which 19 560 putatively modified peptides
(estimated false discovery rate of 4.3% based on the number of decoy
peptides identified) were identified by SIMS with modification range
[0, 200] Da. In this experiment, we used a model complexity setting
of αb =0.92, which resulted in a RD of 0.58 and a RFD of 0.16.

Analysis with our algorithm was able to identify 121 PTM groups.
The complete list of modified peptide predictions are provided in
Supplementary Table S2 and a summary of the frequent PTMs
observed are listed in Supplementary Table S3. Within the list of
PTM groups are naturally occurring PTMs such as phosphorylation,
acetylation and oxidation, and in vitro artificial modifications such
as oxidized methionine and sodium/potassium salt adduct. Among
them are many modified peptides not previously annotated to contain
these modifications. In addition to those listed, there are a number
of putative novel modifications types that have not been previously
reported.

To validate that our approach is generally applicable to
any PTM, we compare the results before and after applying
PTMClust to known modified yeast proteins taken from the Uniprot
Knowledgebase (Release 2010_11). A breakdown of our findings is
shown in Table 2. For this analysis, we determined the modification
sites (positions in the corresponding protein where the modifications
occur) for each modified peptide in our results and matched them
against the list of known modification sites from Uniprot. We
found 213 modified peptide matches consisting of 75 unique known
modification sites before and 232 modified peptide matches and 81
unique modification sites after applying PTMClust, for an overall
improvement of ∼9%. In addition to phosphorylation, PTMClust
was able to detect and refine other known PTMs, such as acetylation
and cysteine oxidation (cysteine sulfinic acid).

A novel feature of PTMClust is the ability to consider
modifications at the ends of proteins and peptides. Examples
are modified peptides that exhibit N-terminus glycosylation
(modification mass ∼162 Da) (Tanner and Lehle, 1987). This
modification is a PTM that adds sugar molecules to proteins and is
known to play a vital role in proteolytic resistance, protein solubility,
stability, local structure, lifetime in circulation and immunogenicity
(Lis and Sharon, 1993). Although the original distribution of

modified amino acids did not show any pattern with modifications
mainly found on alanine (A), isoleucine (I), leucine (L) and valine
(V), PTMClust was able to recognize that all the modifications occur
close to the N-terminus of the peptide. This observation is unlikely
to be explained by simple amino acid substitutions or artifacts since
they have a similar initial modification mass and their modifications
were initially observed to occur on different amino acids. In terms of
where the modifications occur, they all share the commonality that
their modifications occur near the N-terminus, which PTMClust is
able to capture.

4 CONCLUSION
Accurate identification of protein modifications in protein sequences
is a critical first step in any PTM study, and thus it may benefit
the utility of proteomic profiling to address research problems in
basic biology, as well as biomarker discovery and drug development
in the clinical domain. A recently developed approach for PTM
discovery is to analyze MS/MS data using a blind PTM search
method. Genome-wide studies using SIMS, InsPecT and other blind
PTM search engines have reported numerous PTM candidates (Han
et al., 2005; Liu et al., 2006, 2008; Searle et al., 2006; Tanner et al.,
2005; Tsur et al., 2005). However, these search methods suffer from
two problems: mass measurement inaccuracy and uncertainty in
predicting modification positions, which limit their accuracy and
precision. We developed a novel machine learning algorithm called
PTMClust for post-processing the results of blind PTM search
engines and improving prediction performance, by simultaneously
identifying the positions of the most likely modified amino acids
and grouping peptides with similar modification mass and modified
amino acid side chains. We demonstrated that PTMClust improved
on both true positives (correct modification position predictions)
and false positives (misplaces modification positions) when applied
to the outputs of SIMS, InsPecT, MODmap, and InsPecT post-
processed with PTMFinder, a PTM refinement algorithm. The results
showed that our algorithm was able to detect a number of previously
annotated naturally occurring and artificially induced PTMs, most
notably phosphorylation, but also acetylation (lysine), oxidization
(methionine) and even the formation of non-covalent adducts
(e.g. sodium/potassium salts). In addition, our algorithm facilitates
the identification of terminal modifications, which is a feature not
currently found in common blind PTM search engines. To our
knowledge, this algorithm is the first technique that systematically
and objectively addresses sequence-dependent variation in the PTM
dataset at the PTM level, which can improve the reliability of
individual PTM identification.

For the task of PTM refinement, we have shown that PTMClust
outperforms PTMFinder on the dataset of phosphopeptides.
PTMFinder failed here because only ∼4% (69) of spectra map to
modified peptides already detected in the dataset. This is expected
since it is known that only a small portion of spectra in an experiment
map to modified peptides (Liu et al., 2008; Tanner et al., 2008)
and current MS experimental protocols for genome-wide studies are
designed to sample as many different peptides as possible (through
the use of an exclusion list in the mass spectrometer). Moreover,
many instances of the same modified peptide either share the same
modification position (for both correct and misplaced cases) or
have vastly different modification positions that point to different
phosphorylation sites in the peptide. The former can be explained
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since some missing peaks due to incomplete fragmentation are
generally not detected for different instances of a peptide and
blind PTM search algorithms produce the same modified peptide
prediction for similar looking spectra. For blind PTM searches,
PTMFinder only works when there are multiple instances of the
same modified peptide. On the other hand, our method, PTMClust
is successful even for low abundance modified peptides as long as
there are multiple instances of the same underlying PTM.

We believe PTMClust is complementary to and can benefit from
technological improvements in mass spectrometer instrumentation.
Two of the more prominent advancements in recent years are high
mass accuracy and alternate fragmentation mechanisms. For high
mass accuracy mass spectrometers, such as an Orbitrap (Hu et al.,
2005), mass errors are significantly reduced and peak intensity
signal-to-noise ratios are greatly improved in the observed MS/MS
spectra if they are acquired in high resolution mode. However,
currently the common practice for experiments using Orbitrap is
to generate MS/MS spectra in low resolution mode due to its higher
scan rate. Distinguishing features of electron-transfer dissociation
(ETD), a recently introduced fragmentation mechanism, are its
abilities to preserve the localization of labile PTMs and produce
near complete ion fragmentation (Mikesh et al., 2006). However, it is
limited to peptides with charge state greater than +2 and can identify
significantly less peptides than other fragmentation methods. To
address these issues, a current approach is to use a mass spectrometer
equipped with ETD and another fragmentation method, such as CID,
and switch between them depending on the properties of the peptides
to be fragmented (Hogan et al., 2005; Molina et al., 2008). These
technological advancements can help reduce the issue of misplaced
modification position due to missing peaks and noisy spectra but can
still benefit from using PTMClust in its analysis. Given input data
with higher mass resolution and fewer misplaced modifications due
to cleaner ion fragmentation signals, PTMClust can improve upon its
abilities to refine modification positions and find meaningful PTM
groups. Our algorithm could be used to analyze modified peptides
processed from spectra generated by both low- and high-resolution
mass spectrometers using a variety of fragmentation methods [e.g.
CID, ETD and high-energy collision dissociation (HCD)].

Our current version of PTMClust has a small number of
weaknesses, which can potentially be solved. Although RD and RFD
can provide a confidence estimate for the overall result, we have not
explored how our algorithm can be used to provide a confidence
score per peptide and per modification, which is a feature that can
be found in PTMFinder. However, since our method is based on a
probability model, such a score can be computed. Additionally, our
method cannot detect PTMs that occur only once in the data, since
multiple instances are needed for model building. Moreover, our
method is currently unable to handle multiple modifications per input
sequence. Lastly, depending on the mass resolution in the input data,
PTM groups identified by our algorithm may contain multiple PTMs
with similar modification mass. Despite these limitations, we were
able to obtain results that significantly exceeded the performance of
the state of the art. A noteworthy extension would be to combine
blind search algorithms with our algorithm to jointly analyze MS
data for modified and unmodified peptides. This would enable the
algorithm to take into account ion fragmentation patterns directly.
One advantage to this extension is that it might be able to handle
cases where multiple, equally likely modification positions are
present in the peptide but the modification was originally misplaced.

An example would be multiple serines appearing side by side in
the peptide and the modification (phosphorylation) having been
misplaced on one of the serines. We believe that the utility, reliability
and generality of our approach in refining PTMs indicate that our
probability model and extensions of it can be used to produce higher-
quality datasets and facilitate novel biological discoveries in the
future.
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