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ABSTRACT

Motivation: A question that often comes up after applying a motif
finder to a set of co-regulated DNA sequences is whether the
reported putative motif is similar to any known motif. While several
tools have been designed for this task, Habib et al. pointed out
that the scores that are commonly used for measuring similarity
between motifs do not distinguish between a good alignment of
two informative columns (say, all-A) and one of two uninformative
columns. This observation explains why tools such as Tomtom
occasionally return an alignment of uninformative columns which is
clearly spurious. To address this problem, Habib et al. suggested
a new score [Bayesian Likelihood 2-Component (BLiC)] which uses
a Bayesian information criterion to penalize matches that are also
similar to the background distribution.
Results: We show that the BLiC score exhibits other, highly
undesirable properties, and we offer instead a general approach
to adjust any motif similarity score so as to reduce the number
of reported spurious alignments of uninformative columns. We
implement our method in Tomtom and show that, without significantly
compromising Tomtom’s retrieval accuracy or its runtime, we can
drastically reduce the number of uninformative alignments.
Availability and Implementation: The modified Tomtom is available
as part of the MEME Suite at http://meme.nbcr.net.
Contact: uri@maths.usyd.edu.au; e.tanaka@maths.usyd.edu.au
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Research into gene regulation has motivated significant interest
in the bioinformatics community in the computational problem of
motif finding (Das and Dai, 2007). Consequently, numerous tools
have been developed to identify motifs given a set of co-regulated
sequences (Tompa et al., 2005).

More recently, the growth of motif databases such as
JASPAR (Portales-Casamar et al., 2010), TRANSFAC (Wingender
et al., 2000) and a protein-binding microarray (PBM) motif
database (Newburger and Bulyk, 2009) spurred the development
of new tools designed to allow researchers to test whether the motif
returned by a motif finder is ‘significantly similar’ to a known motif
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[e.g. STAMP, Mahony and Benos (2007) and Tomtom, Gupta et al.
(2007)]. Such motif search tools may be viewed as ‘BLAST for
motifs’, and their utility includes identification of newly detected
motifs and automatic clustering of transcription factor into motif
families.

Motif search tools can potentially represent each motif in a
variety of ways. The most detailed representation consists simply
of the complete list of known binding sites. While useful in some
cases, this representation is difficult to work with. At the other
extreme is the consensus sequence representation, which often
glosses over important subtleties of the motif. Motif database search
tools, therefore, typically use a position weight matrix (PWM)
representation of the motif. The PWM is typically a 4×l matrix
where l is the length of the motif and the (i,j) entry of the matrix
contains either the frequency or, alternatively, the count of letter i at
position/column j.

After selecting a motif representation, one of the first steps in
designing a motif database search tool is the choice of a distance or
similarity function between motifs. To the best of our knowledge,
all current tools use a linear similarity function which sums up the
similarities between the aligned columns of the two motifs. Gupta
et al. (2007) performed a comprehensive study comparing the most
popular column similarity functions. Their finding was that while
generally there are very small differences between most of these
functions, the Euclidean distance (ED, Section 7.1 in Supplementary
Material) consistently gives slightly better results than the other
measures.

Habib et al. (2008) made the important observation that ED, as
well as most other scores that are commonly used for measuring
similarity between motifs, does not distinguish between alignments
of columns with identical composition. For example, the ED score
assigns the same perfect score to the two pairs of column alignments
in Figures 1A and 1B. Due to the linearity of the score, it follows
that the alignments in Figures 1C and 1D also share the same
score, even though one is clearly more informative than the other.
This is not merely a theoretical issue. Indeed, we have observed
that Tomtom occasionally includes clearly spurious alignments of
uninformative columns in its reported list of significant alignments
(Fig. 2). While uninformative alignments1 are not the common case,
they do persistently show up, even when using curated databases that
often trim leading and trailing stretches of uninformative columns.

1Throughout this article, we reserve the term uninformative alignment for
such an alignment of uninformative columns.
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Fig. 1. Distinguishability problem of informative and uninformative
columns. The figures above utilize a visual representation of the positional
nucleotide distribution (Crooks et al., 2004), where the height of each letter
is proportional to the nucleotide frequency; in all other figures, the height of
the letter is proportional to the nucleotide frequency times the information
content of the column. Figures (a) and (b) show an alignment of a pair of
columns with identical composition: all ‘A’ in (a) and uniform in (b). Figures
(c) and (d) show two competing alignments between the same pair of motifs.
These alignments would have the same scores under most similarity scores,
including ED, even though one is clearly more significant than the other.

Fig. 2. Example of uninformative alignments in ‘real data’. This alignment
between the query motif DIG1 and the target motif HAP4 is one of
several such spurious alignments reported by Tomtom as significant (P-value
0.00014, q-value 0.0068) when querying the MacIsaac set of yeast motifs
(MacIsaac et al., 2006) against itself (using ED). All these uninformative
alignments are no longer reported when the same experiment is repeated
with the ‘complete-scores’ option turned on (3).

Indeed, Supplementary Figure S5 shows that such stretches are
present in the commonly used motif databases.

Habib et al. (2008) suggested addressing this problem through a
novel column similarity score they termed Bayesian Likelihood 2-
Component (BLiC). The BLiC score takes into account the similarity
of the columns’ nucleotide composition as well as their dissimilarity
to the background distribution, thereby penalizing alignments of
columns that are too similar to the background distribution (Section
2). Although the BLiC score is effective at removing spurious
alignments of uninformative columns, we show below that BLiC
exhibits a strong bias toward motifs with a high number of instances.
This means that the BLiC score will assign a high score to a match
to essentially any ‘deep’ database motif (one comprised of a high
number of instances) irrespective of the query motif. Note that unlike
ED, the BLiC score takes into account the number of instances or
sites that comprise the motif.

The aforementioned bias makes the BLiC score unsuitable
as a general purpose column similarity score. While one could
design several ad hoc post-processing methods to try and remove
uninformative alignments, we aimed instead to design a more
principled way, in the spirit of Habib et al., to address this problem.

We can tackle this problem at two levels. The first is when
choosing the best alignment between a pair of motifs: can we
modify popular column similarity scores such as ED so that they will
prefer the alignment in Figure 1D over the alignment in Figure 1C
The second is when assigning statistical significance to the chosen

alignment. Because real motifs often contain short stretches of
uninformative columns (Xing and Karp, 2004), a more sophisticated
model than the independent and identically distributed (iid) model
employed by Tomtom might better capture and penalize alignments
of uninformative columns.

In the remainder of this article, we examine the combined and
individual effects these two approaches have on reducing the number
of uninformative alignments, keeping in mind that we wish to
avoid compromising the retrieval accuracy. Our results show that
our approach all but eliminates uninformative alignments while
maintaining a retrieval accuracy that is on par with the original
Tomtom.

2 WHAT IS WRONG WITH BLIC?
The BLiC score was introduced in Habib et al. (2008) to address the inability
of scores like ED to distinguish between a good alignment of informative
columns and a good alignment of uninformative columns. BLiC measures
the similarity between the ‘query’ column Q and the ‘target’ column T as

SBLiC(Q,T )=

First Component (S1)︷ ︸︸ ︷
log

P(Q,T |P̂Q,T )

P(Q|P̂Q)P(T |P̂T )
+

Second Component (S2)︷ ︸︸ ︷
log

P(Q,T |P̂Q,T )

P(Q,T |B)
, (1)

where P̂Q, P̂T and P̂Q,T are posterior mean estimates (using a Dirichlet prior
or a mixture of Dirichlet priors) of the nucleotide distribution for the query,
target and combined columns, respectively, and B refers to the background
distribution.

The first component of the BLiC score measures the likelihood that the
observed counts of the two columns are generated by a common distribution
rather than two distinct distributions and is thus a similarity measure in the
spirit of other such scores. The second component penalizes the alignment of
uninformative columns as it compares the likelihood that the two columns
were generated by a common distribution with the likelihood they were
generated by the background distribution. Unfortunately, as we show next,
this second component of the BLiC score creates a distinct bias toward motifs
composed of a large number of sites.

Let NQa be the count of nucleotide a in column Q and let NQ be the
number of sites of the query motif, i.e. NQ =∑

a∈ANQa , where A is the
four-letter alphabet (similar definitions apply to T ). Then, with πa denoting
the background distribution of a∈A we have,

S1 =
∑

a∈A
(NQa +NTa )logP̂Q,T

a −NQa logP̂Q
a −NTa logP̂T

a

S2 =
∑

a∈A
(NQa +NTa )logP̂Q,T

a −(NQa +NTa )logπa.

In Section 1 of the Supplementary Material, we argue that as NT →∞,
assuming P̂T does not converge to the background distribution π, S2 →∞ ,
whereas |S1| remains bounded. This means that the BLiC score prefers target
motifs with large NT regardless of the query motif.Agraphical representation
of this phenomenon is presented in Supplementary Figure S1. The following
experiment demonstrates that this bias is not just a hypothetical mathematical
curiosity.

We implemented the BLiC score in Tomtom and selected the first motif
in TRANSFAC to search against all the motifs in the TRANSFAC database
(including the query motif). Tomtom reports a list of matches ranked
according to the significance of the alignment score. The alignments are
schematically presented using motif logos (Schneider and Stephens, 1990).
The top three hits in TRANSFAC are shown in Figure 3. For ED, the top hit
is, as expected, the query motif itself. However, the top three hits using the
BLiC score do not look remotely like the corresponding query motif. As it
happens, the top three hits for the BLiC score have a large number of sites
associated with them. The analysis above, as well as further examples below,
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(a) (b)

Fig. 3. Top three TRANSFAC hits to the query TRANSFAC motif
M00001.The figure shows the top three TRANSFAC alignments Tomtom
found in response to the query TRANSFAC motif M00001 using BLiC
(a) and ED (b) similarity scores. The visual alignments clearly show that
using the BLiC score ranked undesirable alignments as top hits, whereas ED
assigns the highest ranks to motifs that appear similar. The top three target
motifs for the BLiC score have 389, 274 and 235 sites, respectively. These
numbers are relatively large when compared with the average number of
sites in TRANSFAC (29.5).

demonstrate that the BLiC score suffers from a significantly compromised
retrieval accuracy. This detrimental effect is particularly pronounced when
querying a database which has a few deep motifs such as TRANSFAC. Thus,
while the BLiC score is effective at reducing the number of uninformative
alignments, it is not suitable as a general similarity score. This motivates
our following, alternative, approach to reducing spurious uninformative
alignments that does not materially compromise the retrieval accuracy.

3 ALIGNMENT SELECTION
How can we prevent Tomtom from selecting the alignment portrayed in
Figure 1C? The current prevailing alignment scoring scheme is linear, that
is, the alignment is scored as the sum of the similarity scores of the aligned
columns. More explicitly, let �S(Q,T,α) denote the similarity score of the
ungapped alignment α between the query motif Q and the target motif T
using the column similarity score S. Then

�S(Q,T,α)=
|Q|∑

i=1

S(Qi,Ti+α), (2)

where Qi,Ti are the columns of Q,T, the alignment α is identified with the
offset between Q1 and T1, |Q| is the width or length of the query and S is
conveniently defined as 0 when i+α /∈[1,|T|].

Because the score is linear in the number of aligned columns, it needs to
be normalized before we can compare alignments. Tomtom normalizes the
alignment score by computing its ‘offset P-value’. The latter is an alignment
specific P-value, which is the probability that a random alignment of the

Table 1. Median scores

A C G T U

ED −1.046 −1.080 −1.080 −1.046 −0.548
PCC 0.243 0.194 0.194 0.243 0.674
SW 0.907 0.834 0.834 0.907 1.699
KLS −0.967 −1.040 −1.040 −0.967 −0.269
ALLR −1.465 −1.640 −1.640 −1.465 −0.419

The median null column scores of an all-A, all-C, all-G, all-T and a uniform column.
The null distribution was generated using Tomtom by scoring, using the specified
column score, the alignment of the corresponding column against every column in
TRANSFAC (as well as its reverse complement). The median null score of the
uninformative column (U, bold) is higher than that of any of the informative columns.
ED stands for Euclidean distance, PCC for Pearson’s correlation coefficient (Section 7.2
in Supplementary Material), SW refers to the Sandelin–Wasserman score (Section 7.4
in Supplementary Material), KLS to the symmetric Kullback–Leibler divergence
(Section 7.5 in Supplementary Material) and ALLR to the average log-likelihood ratio
(Section 7.3 in Supplementary Material).

same length will have a better score. Random here refers to an iid model for
the target motif columns:

pα,Q,T :=P(�S(Q,R,α)≥�S(Q,T,α)),

where R is a random motif whose columns Ri are drawn with replacement
from T, the reservoir of all target columns (note that we only need to draw
the aligned number of columns). After normalizing the alignment scores,
Tomtom selects the one with the optimal, i.e. minimal, offset P-value.

While this approach in general yields a very high retrieval accuracy (Gupta
et al., 2007), when it comes to filtering uninformative alignments as in
Figure 1C, the approach cannot overcome the fact that most scoring schemes
give this alignment a maximal score. One way to address this problem is
to look at the unaligned part of the motif, a segment which is typically
ignored by existing tools, including Tomtom. Specifically, we would like to
assign scores to unaligned columns in such a way that unaligned informative
columns would contribute less than unaligned uninformative columns. Such
a scheme would prefer the alignment in Figure 1D over the one in Figure 1C.

In (2) we used the convention S(Qi,∅) :=0 so that only aligned columns
get scored. Instead of that, we now propose to define a ‘complete’ version of
S, denoted as Sc as follows. Sc agrees with S on aligned columns; however,
Sc(Qi,∅) :=mi, where mi is the median of the set {S(Qi,T ) : T ∈T}, i.e. mi is
the median score of randomly aligning a target column to Qi. By assigning
the average null score to any unaligned columns, we place all alignments
scores on the same scale since all the query columns are considered for each
alignment.

Moreover, recall that most column similarity scores such as ED assign
the same perfect score to columns with identical composition, regardless
of whether they are informative or not. It follows that for a typical
target database max{S(U,T ) : T ∈T}=max{S(A,T ) : T ∈T}, where U is an
uninformative uniform column and A is a maximally informative all-A
column. At the same time, these similarity scores also typically satisfy
S(A,X)<S(U,X), where X is an all-X column for X ∈{C,G,T}, and it
follows that min{S(U,T ) : T ∈T}>min{S(A,T ) : T ∈T}. This explains why
in practice mi is higher when Qi =U than when Qi =A (Table 1 and
Supplementary Fig. S6). Therefore, this new approach effectively assigns
a lower score to an unaligned informative column than to an unaligned
uninformative column, guaranteeing that our modified score will rank the
alignment in Figure 1D higher than the one in Figure 1C.

The discussion above motivated and introduced our new scoring scheme.
However, for computational convenience, it is beneficial to introduce the
following twist on our last score. Note that µ :=∑|Q|

i=1 mi is constant for a
given query. Hence, if we subtract µ from our newly defined alignment score,
we get an equivalent score: the ranking of the alignments of the database
motifs to the given query is not affected by a constant shift. This new score is
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formally quite similar to the standard score in (2) and is therefore significantly
easier to incorporate into Tomtom. We refer to it as the ‘complete score’.

�Sc (Q,T,α)=
|Q|∑

i=1

[Sc(Qi,Ti+α)−mi]. (3)

When presented this way, our new score once again ignores unaligned
columns. However, note that now the median null score of an aligned query
column is 0 so this modified scheme is consistent with our original score
motivated above.

Note that the complete score is a transformation of a column similarity
score, rather than a score per se, so for example, ‘complete-ED’ stands for
(3) with ED for S.

4 SIGNIFICANCE ASSESSMENT
Having normalized the alignment score, we now need to assign an overall
statistical significance to the score of the optimal alignment between the given
query and target motifs.As mentioned above, Tomtom relies on an iid column
model to compute the offset P-values for each alignment. Tomtom then
makes the approximating assumption that the scores, and therefore the offset
P-values, of different alignments are independent. Under this assumption, the
optimal offset P-value is essentially distributed as a minimum of uniformly
distributed random variables whose distribution is readily available (Tomtom
refers to this overall P-value of the minimal offset P-value as the ‘motif
P-value’).

Making the same pair of assumptions, we compute an overall query–
target P-value for the optimal alignment score (3) as outlined next. First,
mapping the scores to a lattice, we compute the distribution of the latticed
null alignment similarity score for each alignment using the same dynamic
programming (DP) mechanism that Tomtom uses to compute its offset
P-values. Recall that, unlike Tomtom, we select the best alignment based
on its (complete) score rather than its offset P-value.2 Therefore, at the
second step we need to compute the distribution of the maximal of all
possible latticed alignment scores. Of course, the different alignment scores
are not uniformly distributed; however, adopting the independent alignment
assumption that Tomtom is making, we can still find the distribution of
this maximum using a straightforward DP approach (see Section 3 in
Supplementary Material for discussion of the accuracy of the DP-computed
P-values). This method allows us to assign a P-value to the optimal complete
alignment score in a process that is not significantly slower than the current
one employed by Tomtom.3

Motivated by our goal of reducing uninformative alignments, we also
introduce a hidden Markov model (HMM) of a target motif that is more
appropriate than the iid model for capturing the tendency of uninformative
columns to cluster. The topology of the Markov chain is specified in Figure 4.
A key feature of this model is the partition of the columns to ones with high
versus low information content (Stormo, 2000). Accordingly, each of the
HMM states consistently emits either informative or uninformative columns.

The LL and TL states are designed to capture the occasional leading or
trailing stretches of uninformative columns. Because the transitions between
the states are learned from a reference motif database,4 the transitions
can capture phenomena such as leading, trailing or internal stretches of
uninformative columns (LL/TL/L).

STAMP (Mahony and Benos, 2007) uses a somewhat similar model,
originally introduced by Sandelin and Wasserman (2004), to estimate the

2Selecting the optimal alignment based on the offset P-value for the complete
score yields exactly the same alignment as the one selected by Tomtom.
3More precisely, the complexity of computing the new significance
evaluation only changes by a constant factor, and, in practice, we did not
perceive any significant change in the runtime in any of our tests.
4In Tomtom the reference database, from which the distributions of column
scores are estimated, is identified with the target database but this can be
loosened here.

Fig. 4. Topology of the null target motif HMM. The LL (leading), L and
TL (trailing) states emit low information content columns before, within
and after the ‘core’, respectively. The H state emits columns with high
information content. The I and T state are the silent initial and terminal
states, respectively.

significance of the match between motifs. There are two notable differences
between the latter and our HMM. First, Sandelin and Wasserman only model
the first and last columns rather than leading and trailing stretches. Second,
their model is an iid mixture model so it cannot model dependencies between
columns which are crucial to the modeling of clusters of uninformative
columns. See also Piipari et al. (2010) for a related, albeit more complex,
approach.

In our analysis, we used a cutoff of 0.5 to determine whether a column has
a high or low information content. Using this cutoff, we could unambiguously
label each motif in the reference database, i.e. infer the hidden states.
Thus, training becomes trivial: we used a simple maximum likelihood
estimation for estimating the transition probabilities, while the column
emission distributions were set to the observed empirical distributions of
each state. In other words, new columns emitted from state X are sampled
from the set of reference motif columns that were annotated as emitted from
state X .

Once trained, we use our HMM to estimate the significance of an
optimal query–target match through a Monte Carlo (MC) sampling scheme.
Explicitly, we use the HMM to generate N random motifs of exact length
|T| (target motif length), and we find the optimal alignment score for each.
This procedure gives us a sample of size N from the null distribution of the
optimal query–target match score (conditioned on the given query as well
as on the target length). If N is sufficiently large, then the derived empirical
distribution can be used to assign a P-value for the observed match score.

Note that while generating a null target motif of a specified length can be
done through rejection—reject any path that does not end at state T at step
|T|+2—a more efficient sampling can be achieved by conditioning on the
last event (Durbin et al., 1998). See Section 2 in Supplementary Material for
more details.

5 RESULTS
In this section, we compare the performance of various combinations
of methods for selecting an optimal query–target alignment with
methods for assigning an overall motif P-value. Each such ‘target
function’ (alignment-selection and motif P-value evaluation) is
assessed with respect to two criteria: reduction of uninformative
alignments and retrieval accuracy. We begin with the former
criterion.
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Table 2. Reduction of uninformative alignments and retrieval accuracy

Column Optimal alignment Overall (motif) Uninformative alignments Mean AUC
score selection P-value % at FPR of 0.05

ED iid offset P-value ind alignments (TT) 22.9 0.9994
PCC iid offset P-value ind alignments (TT) 24.9 0.9994
KLS iid offset P-value ind alignments (TT) 22.1 0.9997
SW iid offset P-value ind alignments (TT) 23.3 0.9995
ALLR iid offset P-value ind alignments (TT) 6.2 0.9984
ED HMM offset P-value HMM (MC) 13.7 0.9754
Complete-ED Motif score HMM (MC) <0.1 0.9869
Complete-ED Motif score iid (MC) <0.1 0.9791
Complete-ED Motif score ind alignments (DP) <0.1 0.9994
Complete-PCC Motif score ind alignments (DP) <0.1 0.9994
Complete-KLS Motif score ind alignments (DP) <0.1 0.9996
Complete-ALLR Motif score ind alignments (DP) <0.1 0.9985
Complete-SW Motif score ind alignments (DP) <0.1 0.9990

Comparison of several target functions (a combination of alignment selection and an overall P-value estimation) in terms of reduction of uninformative alignments and retrieval
accuracy. The first column specifies the column similarity method (see Table 1 for the meaning of ED, PCC, KLS, ALLR and SW). All these scores were originally implemented
in Tomtom and were modified here to their complete versions (3) where the prefix ‘Complete’ is used. The second column specifies how the optimal alignment is chosen. Tomtom
selects the optimal alignment based on the offset P-value computed relative to an iid null model. We also tested computing the offset P-values relative to our HMM (sixth row)
and selection based on the maximal complete score (starting from the seventh row). The third column specifies how the overall P-value is computed. Tomtom uses an independent
alignments assumption (ind alignments’), ‘MC’ refers to Monte Carlo estimation where the P-value is estimated by generating 10 000 samples for each target motif using either
the HMM or the iid null target model. ‘ind alignments (DP)’ refers to our DP calculation of the P-value of the optimal complete score using an independent alignment assumption.
The fourth column specifies the percentage of the significant alignments that are uninformative. An alignment is considered significant if its overall P-value computed using the
indicated method is below the 0.05 threshold. The alignment is considered uninformative if the information content of all aligned columns is less than 0.5. The fifth column specifies
the average of the AUC over all queries. Note that the first row is the current default in Tomtom. All experiments were done using the mouse PBM database. For comparison, using
the BLiC score yields the same reduction in uninformative alignments as any of the complete scores but also the worst AUC of 0.9645. While this retrieval accuracy might still be
acceptable when the database contains deeper motifs the BLiC AUC drops significantly (see Supplementary Table S2 and Section 2).

5.1 Reduction of uninformative alignments
To keep our benchmarks realistic, we chose to study the number of
uninformative alignments in the context of a real motif database:
the mouse PBM database consisting of 386 motifs (Newburger
and Bulyk, 2009). In summary, for each target function we noted
the percentage of uninformative alignments among all significant
alignments reported when the mouse PBM database was queried
against itself.

We define an alignment as uninformative if all the aligned columns
of both the query and the target have an information content less than
0.5. An alignment is called significant if its P-value is less than a pre-
determined false positive rate (FPR). In Supplementary Figure S4,
we compare the performance of several target functions by plotting
the percentage of uninformative alignments out of all significant
alignments as we vary the significance threshold. Table 2 provides a
similar comparison of the ability of several target functions to filter
out uninformative alignments only with the significance threshold
fixed at the canonical FPR of 0.05.

The results show that there is a drastic reduction in the percentage
of uninformative alignments when the optimal alignment is selected
using complete scores, regardless of which column similarity score
or overall P-value method is used. This effect is most readily
observable in Table 2, where we can see a reduction in uninformative
alignments from 22.9% for Tomtom using ED to nearly zero
uninformative alignments for any complete score.

How much reduction do we get by replacing Tomtom’s iid target
null model with the more complex HMM? To gauge that we kept
the ED similarity score but used MC sampling from the HMM to
estimate the offset, or alignment specific, P-values. Then, selecting

the alignment with the optimal P-value we estimated the overall
P-value again using MC sampling from the HMM. The result
shows that while the HMM generates a substantial reduction in
the percentage of uninformative alignments (down from 22.9% to
13.7%), it is far less striking than the reduction obtained by using
any of the complete scores.

The performance of theALLR score merits some discussion as it is
significantly more effective at filtering out uninformative alignments
(6.2%) than any of the other column similarity scores Tomtom
offers. Consistently, ALLR is the only such non-complete column
similarity score which can differentiate between perfect alignments
of informative and of uninformative columns. Still, when ALLR is
compared with any of the complete scores, including a complete-
ALLR, the results show that there is room for further reduction in the
number of uninformative alignments. This observation is not only
a benchmark issue. The same uninformative alignment depicted in
Figure 2 comes up as significant when using the ALLR, but is not
reported as such if either complete-ED or complete-ALLR are used.

5.2 Retrieval accuracy results
To study the retrieval accuracy of the various combinations that
make our target functions, we adopted a framework inspired by the
ones used in Habib et al. (2008) and in Gupta et al. (2007). The
general idea is to repeatedly sample motifs from the database to
create a query database and then quantify, using each of the studied
target functions, how many queries are correctly paired with the
target motif from which they were sampled.

While the details of our experimental setup are given below,
Table 2 summarizes the retrieval accuracy of all the target functions
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we consider. The table shows that all the methods yield a very high
meanAUC (area under the receiver operating characteristic, or ROC,
curve), so there is little to choose from in that sense. This observation
is consistent with the results reported in Gupta et al. (2007). Having
said that, we note that all the methods that use MC sampling to
estimate the P-values have a slightly lower mean AUC. This is most
evident in the decline of mean AUC when using MC sampling versus
the DP computation to estimate the P-values of alignments selected
using complete-ED: mean AUC of 0.9791 and 0.9994, respectively
(rows 8 and 9). See more on this in Section 6.

The specific experimental design is as follows. We randomly
select from the mouse PBM database 80 motifs which will serve
as templates for generating randomized queries of the same width
w as that of the template motif. Each randomized query is generated
by first setting the number of sites, N , to 5, then 10 and then
20. Then, each of the w columns of the template motif PWM is
associated with a Dirichlet distribution on R

4 parameterized by the
vector obtained from multiplying the column’s frequencies by N .
We then sample each column of the randomized query from the
corresponding Dirichlet distribution.

We further add variation to these motifs by varying the ‘coverage’
of the sites. Specifically, we either take the full site or remove up
to 0.3w columns from a randomly chosen end of the motif. The
number of columns to be removed and which end to remove it from
are chosen uniformly. Finally, we add additional noise to some of
the query motifs by either adding an informative column for motifs
with full sites or adding 1 or 3 uninformative columns at an end
of a motif that was not previously truncated. This process yields a
total of 1680 motifs to query against the target of the mouse PBM
database.

For each query motif, we rank the target motifs according to the
overall P-value of their match to the query. The query–target pairs
that are from the same motif are labeled ‘true’, and those that are
not from the same motif are marked ‘false’. A ROC curve plots the
fraction of the true positive pairs as a function of the fraction of
false positive pairs. The area under this curve (AUC) corresponds
to the probability that a score function will rank a randomly chosen
positive pair higher than a randomly chosen negative pair. A perfect
score function will have an AUC of 1.0, whereas a random score
function will have an AUC of 0.5. The AUC is calculated for each
query motif against the target database, and the mean AUC (over all
queries) is reported in Table 2 for different score functions.

We repeated a similar experiment using the TRANSFAC database
(see Section 5 in Supplementary Material). The findings there largely
repeat the ones observed in the mouse data: for each of Tomtom’s
similarity scores, the retrieval accuracy of our complete version
combined with the DP-computed P-values is essentially the same as
that of Tomtom. At the same time, using MC methods to estimate
the P-value slightly compromises the retrieval accuracy.

The experiments above were asymmetric in that mostly the query
motifs were randomly missing key motif columns (by truncation).
In addition, the query motifs were generated by sampling columns
using a Dirichlet distribution. Therefore, to broaden the scope of
the tests of our complete scores we designed an additional set of
experiments where (i) we generated queries by sampling sites and
(ii) to simulate cases where the target motifs miss a growing number
of key columns of the motif, but without resorting to truncation
which would create artificially short target motifs, we added an
increasing number of randomly selected target database columns to

the query motifs. The precise protocol and the results are described
in Section 6 in Supplementary Material. Qualitatively, we noticed
that as the percentage of added query columns was increased from
10% to 100%, the complete scores showed very little loss in retrieval
accuracy when compared with the raw scores. More precisely, for
the experiments using the mouse PBM and TRANSFAC databases,
the loss was negligible throughout the entire range, whereas for
experiments based on the MacIsaac yeast database, the loss was
negligible when no >50% columns were added to the query and
increased after that to ∼1% loss in mean AUC when adding up to
100% columns. See Section 6 below for further analysis.

6 DISCUSSION
Habib et al. (2008) offered a possible explanation for the
phenomenon of uninformative alignments, wherein a motif database
search tool such as Tomtom reports as significant an alignment
consisting of uninformative columns. They pointed out that most
similarity scores do not distinguish between good alignments of
informative and of uninformative columns.

Habib et al. then introduced the BLiC score to address this issue.
Our analysis shows that while the BLiC score is effective at reducing
the number of uninformative alignments, it can significantly reduce
the retrieval accuracy. While one can design post-processing tools to
filter out uninformative alignments, we preferred the more principled
approach in the spirit of Habib et al. This is not only a question
of elegance and deeper understanding of the issues; indeed, post-
processing tools tend to compromise the statistical significance
analysis in a way that is very difficult to fix. Therefore, we tested
a two-pronged approach to reducing the number of uninformative
alignments: by modifying the way, we select the optimal query–
target alignment, and by testing with respect to a more sophisticated
null model.

The evidence presented above indicates that our initially designed
two-pronged approach is somewhat of an overkill. Indeed, our
general approach to selecting the optimal alignment using complete
scores (3) has proven quite effective on its own at removing
uninformative alignments for all similarity scores we looked at.
At the same time, the new version of Tomtom that uses the
complete scores exhibits a retrieval accuracy which is essentially
as good as the original method employed by Tomtom (see
comment below) with no significant runtime penalty. Taken together,
our new recommended settings for Tomtom is to use the new
–complete-scores option available in the MEME Suite. More
generally, our complete scores can in principle assist any motif
database search tool, which uses a linear similarity score (2), to
reduce the number of uninformative alignments.

The complete scores exhibit negligible loss or indeed some gain in
retrieval accuracy when applied to reasonably well curated databases
where the target motifs do not lack more than a third of the motif
columns. Even when the database motifs were simulated to be
missing up to 50% of the motif columns the complete score’s
loss of retrieval accuracy was negligible when we used the mouse
PBM and TRANSFAC. A similar experiment at this extreme setting
but using the MacIsaac yeast database showed a loss of 1% in
retrieval accuracy. There are a couple of possible explanations for
this difference. First, the yeast database is significantly smaller than
the other two: 1218 columns in total versus 6295 (mouse PBM)
and 10 642 (TRANSFAC). Because we estimate from the target
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database the significance as well as the medians that are crucial for
the complete scores, a significantly smaller database implies a much
larger variability in the results. Second, the median motif length of
the yeast database is 9, whereas it is 16 for the mouse PBM data and
12 for TRANSFAC. Again, the smaller motif length could imply
more variability when testing for partial matching.

We were puzzled by the slight decline in retrieval accuracy
when using the more sophisticated HMM, when compared with
the iid model (Table 2). One possible explanation lies in the MC
simulations which we use to evaluate the P-value under the null
HMM. Indeed, when we increased the number of MC simulations
per target motif from 1000 to 10 000 we observed an increase in
retrieval accuracy (mean AUC of 0.9785 to mean AUC of 0.9869
under the same experiment described in Section 5.2 using HMM
P-values for complete-ED).

Furthermore, we compared the retrieval accuracy of the complete
scores (3) combined with the iid null target model with P-values
computed in two different ways: using MC simulations versus
using the DP approach described in Section 4. In this case, the
DP computed P-values consistently demonstrated better retrieval
accuracy than the MC generated P-values (using 10 000 samples).
If we can make the leap of faith that a similar principle is at work
for the null HMM, then that would again point to the MC sampled
P-values as the cause of the inferior retrieval performance of the
HMM compared with the iid model.

Finally, on this issue, we suspect that ties, in particular,
compromise the power of MC sampled P-values. Using 10 000
samples to evaluate the P-values, we observed a non-negligible
number of cases where the selected target motif shared the same
P-value with a few other target motifs.5 Our analysis showed that,
had all these ties been broken in favor of the correct target, then the
retrieval accuracy would have been at least as good as Tomtom’s.

The HMM described in Figure 4 proved redundant here: its
retrieval accuracy was slightly lower when compared with the
complete scores or the raw scores, and the MC significance
evaluation made it significantly slower as well. As explained in
detail above, we believe that we could address both drawbacks
by developing a DP algorithm to compute the significance under
the HMM null model. However, currently, we are not motivated to
design such an algorithm because the complete score achieved our
stated goal. We might revisit this issue in the future. For example,
in order to effectively apply the complete score one must verify, as
in Table 1, that the median null score of an uninformative column is
higher than the median of an informative column. While we cannot
at the moment imagine a scoring system for which that would not
be the case, one could still use the HMM for such a score. Similarly,
the experiments with the MacIsaac yeast motif database suggest that
when querying against a rather small database that includes many
motifs that are missing a significant number of key columns, there
is a small price to pay when using the complete scores.

The complete scores defined in (3) assign the median of the
null target column similarity score to each unaligned column.
This approach is akin to randomly selecting a target column to
align to the unaligned query column. We considered quantiles other
than the median, and we found that both in terms of reducing

5In which case, we ranked the target motifs based on the complete score.

uninformative alignments and in terms of retrieval accuracy the
method is quite robust to the exact value of the quantile (Section 4
in Supplementary Material).

Finally, the ALLR score is unique among the (incomplete or
raw) column similarity scores considered here in the sense that
it can differentiate between perfect matches of informative and
of uninformative columns. Undoubtedly, this property contributes
to the ALLR score being the most effective at filtering out
uninformative alignments. Still, as we showed, any complete
score (including complete-ALLR) does a significantly better job at
removing such alignments. Moreover, our findings and to a larger
extent the ones in Gupta et al. (2007) show that ALLR is not optimal
as far as retrieval accuracy is concerned.
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