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ABSTRACT

Motivation: Next-generation targeted resequencing of genome-
wide association study (GWAS)-associated genomic regions is a
common approach for follow-up of indirect association of common
alleles. However, it is prohibitively expensive to sequence all the
samples from a well-powered GWAS study with sufficient depth
of coverage to accurately call rare genotypes. As a result, many
studies may use next-generation sequencing for single nucleotide
polymorphism (SNP) discovery in a smaller number of samples, with
the intent to genotype candidate SNPs with rare alleles captured by
resequencing. This approach is reasonable, but may be inefficient for
rare alleles if samples are not carefully selected for the resequencing
experiment.
Results: We have developed a probability-based approach,
SampleSeq, to select samples for a targeted resequencing
experiment that increases the yield of rare disease alleles
substantially over random sampling of cases or controls or sampling
based on genotypes at associated SNPs from GWAS data.
This technique allows for smaller sample sizes for resequencing
experiments, or allows the capture of rarer risk alleles. When
following up multiple regions, SampleSeq selects subjects with an
even representation of all the regions. SampleSeq also can be used to
calculate the sample size needed for the resequencing to increase the
chance of successful capture of rare alleles of desired frequencies.
Software: http://biostat.mc.vanderbilt.edu/SampleSeq
Contact: chun.li@vanderbilt.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on January 29, 2011; revised on May 12, 2011; accepted
on May 24, 2011

1 INTRODUCTION
Genome-wide association studies (GWAS) are based on the premise
that densely genotyped common alleles will have statistical power
to detect causal associations with traits at nearby, ungenotyped
common mutations through short-range linkage disequilibrium
(LD). The basis for this strategy is the common disease common
variant (CDCV) hypothesis (Reich and Lander, 2001). This approach
has been proven to be effective in many scenarios for mapping
small genomic regions to traits (see the National Human Genome
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Research Institute Catalog of Published Genome-Wide Association
Studies) (Manolio et al., 2008; McCarthy et al., 2008). However,
the predominantly small effect sizes encountered thus far in
investigations of most traits have provided no explanation for a
large proportion of the trait variance attributable to heritable factors
(Maher, 2008; Manolio et al., 2009). Some effort to describe this
phenomenon has suggested that hundreds or thousands of SNPs may
each have a very subtle influence on the risk of some psychiatric
traits (Purcell et al., 2009). These observations seem to support an
adjustment of the CDCV model to allow for the possibility that
rare alleles might also exert a major influence on common traits
(Bodmer and Bonilla, 2008; Pritchard, 2001; Schork et al., 2009).
This modification of CDCV, known as common disease rare variant
(CDRV), postulates that alleles with strong effects on traits are
likely to be rare due to purifying selective pressure and recent time
to coalescence due to the rapid expansion of human populations
(Pritchard, 2001). Additionally, it has been shown in simulations
that multiple rare alleles with strong effects can stochastically
aggregate onto the haplotypic background of a common allele and
produce genome-wide significant association signals, a scenario
termed synthetic association (Dickson et al., 2010). Further support
for the CDRV hypothesis comes from observational studies where
the average allele frequency of SNPs with predicted effects on
proteins was smaller than the average allele frequency of intronic
or synonymous variants (Cargill et al., 1999; Gorlov et al., 2008;
Wong et al., 2003). Estimates from human Mendelian traits, human–
chimpanzee divergence data and human genetic variation suggested
that ∼53% of new missense mutations have mildly deleterious
effects, and that up to 70% of low-frequency missense alleles are
mildly deleterious (Kryukov et al., 2007).

Arare trait allele may not be annotated in the databases of common
variants maintained by the International HapMap Organization
or dbSNP, thereby excluding the possibility of detecting that
SNP through imputation and subsequent association analysis. The
constellation of causal alleles may also be unique for each population
of human subjects, where sensitive functional gene or regulatory
regions are perturbed by independent sets of rare mutations that
occurred after geographic or cultural barriers led to increased genetic
distance (Tishkoff et al., 2009). Thus, the same associated allele from
GWAS across multiple ethnic groups does not necessarily imply the
same underlying architecture of causal alleles in LD. Furthermore,
our simulations suggest that rare disease-causing variants may not be
captured at all by the modest samples of each population isolate from
the 1000 Genomes Project, regardless of the high error rates for rare
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genotype calls from that study due to low coverage. Resequencing
is then the best available means of discovering these rare SNPs in
a GWAS sample and ultimately detecting the relationship between
these alleles and traits.

To successfully discover the mutations that determine trait
susceptibility, detailed assays that directly capture all genetic
variation in a region are required (Cirulli and Goldstein, 2010).
This can be accomplished most efficiently using next-generation
sequencing technology to resequence subjects for the implicated
loci (Service, 2006). While next-generation sequencing technologies
have substantially decreased the financial cost of resequencing
large genomic regions relative to Sanger sequencing technology,
it is still not generally feasible to resequence all the subjects that
were used to isolate a genomic region via GWAS. Thereby, some
strategy is necessary for employing sequencing technology that is
cost-effective. One possibility is to resequence a small number of
cases and controls or persons with extreme trait values and evaluate
the observed genetic variation for association with traits to screen
rare variants prior to larger genotyping experiments; however, this
approach will suffer from low statistical power at the screening step
due to the infrequent exposure rate of rare alleles, and potentially
suffer from inflated type I error rates (Li and Leal, 2009) as a result
of ascertainment bias in cases. An alternative approach is not to
attempt to associate alleles from resequencing data with the trait, but
to discover rare alleles by resequencing, and then assay these SNPs
with conventional genotyping methods in the entire available pool of
study subjects. The effectiveness of this approach will be limited by
the power to capture rare alleles in the targeted loci, which is directly
related to the selection of subjects for the resequencing experiment
(Li and Leal, 2009). For SNP discovery, targeted resequencing study
designs can be tailored for efficient capture of rare disease alleles
in small samples, by using the information available at nearby
trait-associated SNPs.

In this article, we present SampleSeq, an algorithm for enriching
the yield of rare or uncommon disease alleles in a sample of unrelated
study subjects by choosing subjects according to their observed
associated alleles and trait information. When multiple regions
are to be sequenced, SampleSeq selects subjects with a balanced
representation of all the regions. SampleSeq can also estimate the
sample size required to detect a hypothetical disease allele, and
thus can optimize a resequencing study to preserve resources for
subsequent genotyping or other investigations.

2 METHODS
We first describe our method for selecting subjects for sequencing a single
region. We then extend the method to sequencing multiple regions. Finally,
we describe simulation strategies for evaluating our method.

2.1 Sequencing a single region
Let A be a disease-associated common SNP, with alleles A and a and
allele frequencies pA and pa, respectively. Let D be the true disease SNP
close to SNP A, with alleles D and d and allele frequencies pD and pd ,
respectively. SNP D may not have been genotyped in previous stages of the
investigation, and the common SNP A serves as a proxy for SNP D. The
assumption of a single disease SNP simplifies the derivation, but it does
not appear to be necessary as will be shown in our simulation results. As
our method seeks to calculate the expected count of disease variants for
each subject by conditioning on his SNP A genotype and affection status,
we assume genotypes at SNP A are available for all subjects, and further

that resequencing will be performed at sufficient depth to accurately call
rare genotypes in small sample sizes. Suppose allele a is the ‘risk’ allele, in
positive LD with allele d and is either the major or minor allele at SNPA, and
allele d is the real disease variant. When d is a rare variant, it is reasonable
to assume that it originated on the background of allele a and almost no
recombination has since occurred between them; we describe the rationale
for this assumption in Section 4. Then pd <pa, and the four haplotype
frequencies are pdA, pda =pd −pdA, pDa =pa −pd +pdA and pDA =pA −pdA.
Since almost no recombination has occurred between the two loci, it is
reasonable to assume pdA is much smaller than pd , otherwise the LD between
the two loci would be too weak to make SNPA a good proxy and be identified
in a GWAS. When pdA ≈0, we have pda ≈pd , pDa ≈pa −pd and pDA ≈pA.
This assumption is not required for the calculations below, although it is
implemented in the current version of our software for ease of computation.
Our simulations did not have this requirement either (see Section 2.4).
Let Ga and Gd be the genotypes at the loci: Ga =0,1,2 for AA, Aa, aa
and Gd =0,1,2 for DD, Dd, dd, respectively. We assume Hardy–Weinberg
equilibrium (HWE) at the SNPs in the population. Let Y be the disease
status, 1 for cases and 0 for controls. Let fi =P(Y =1|Gd = i) (i=0,1,2) be
the penetrances for genotypes DD, Dd and dd, respectively, and K be the
disease prevalence in the population.

Our goal is to calculate the expected count of allele d, E(Gd |Ga, Y ), given
each subject’s genotype at SNP A and affection status, and select subjects
accordingly. To achieve this, we first calculate P(Gd =g|Ga, Y ) for g=0,1,2.
Note that

P(Gd |Ga,Y )= P(Gd ,Ga,Y )

P(Ga,Y )
,

where the denominator is P(Ga,Y )=∑
Gd

P(Gd ,Ga,Y ) and the numerator is
P(Gd , Ga, Y )=P(Gd , Ga)P(Y |Gd , Ga)=P(Gd , Ga)P(Y |Gd ). The genotype
probability P(Gd , Ga) is a function of haplotype frequencies under HWE.
The probability P(Y |Gd = i)= fi when Y =1, and 1− fi when Y =0. We now
show how to obtain fi. Note that

P(Y =1, Ga = i)=P(Ga = i|Y =1)P(Y =1)=P(Ga = i|Y =1)K,

where P(Ga = i|Y =1) is the case frequency for genotype Ga = i. Since

P(Y =1,Ga = i)=
∑

g

P(Y =1,Ga = i,Gd =g)

=
∑

g

P(Y =1|Gd =g)P(Ga = i,Gd =g)

=
∑

g

fgP(Ga = i,Gd =g),

we have⎧⎪⎨
⎪⎩

P(Ga =0|Y =1)K = p2
DAf0 + 2pDApdAf1 + p2

dAf2
P(Ga =1|Y =1)K = 2pDApDaf0 + (2pDApDaf0 +2pDapdA)f1 + 2pdApdaf2
P(Ga =2|Y =1)K = p2

Daf0 + 2pDapdaf1 + p2
daf2

and can solve for f0, f1, f2 using these linear equations.
In the above calculation, the case genotype frequencies P(Ga = i|Y =1)

can be estimated from the data at hand. The haplotype frequencies depend
on the allele frequencies at SNPs A and D. The SNP A allele frequencies
pA and pa can be estimated as weighted averages of case and control allele
frequencies; for example, p̂A =Kp̂A,case +(1−K)p̂A,control, where p̂A,case and
p̂A,control are the frequencies of allele A in the cases and controls, respectively.
When the disease prevalence is very low, p̂A ≈ p̂A,control. The investigator
needs to specify pd , for which we will show that often a range is sufficient. We
also need the information on disease prevalence K , which often is available
from external sources and also can be specified as a range.

Once we have calculated P(Gd |Ga,Y ), the expected count of allele d can
be easily calculated as

E(Gd |Ga,Y )=
∑

g

E(Gd =g|Ga,Y )g

=P(Gd =1|Ga,Y )+2P(Gd =2|Ga,Y ).
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If we focus on a single region, then the subjects can be ranked according
to their expected count of allele d. The top ranked subjects can be selected for
sequencing to ensure the highest chance of detecting rare disease variants.
We will discuss stopping criteria and sample size determination at the end
of the next section.

2.2 Sequencing multiple regions
In practice, investigators may want to fine map multiple regions
simultaneously. Our method can be extended for this scenario. We assume
there are M regions to sequence and they are unlinked to each other. For
subject i and region j (i=1,...,n and j=1,...,M), let Gijd and Gija be the
genotypes at the real disease SNP and the reported associated common SNP,
respectively. Because the regions are unlinked, the above calculations can
be carried out separately for each region, with Eij =E(Gijd |Gija, Yi). One
might want to rank the subjects according to the expected number of disease
variants over all regions,

Ei =
M∑

k=1

Eik,

and select top ranked subjects. However, as the regions can differ in
key characteristics such as risk allele frequency and strength of disease
association, the top ranked subjects may contribute unevenly to the regions.
As a result, this selection strategy may lead to overrepresentation of one
region and lack of representation for another. A more efficient procedure is to
select the top ranked subjects one at a time, each time tallying the cumulative
expected count of disease variants for each region, denoted by Cj for region
j. Once a region j has reached Cj ≥c, a prespecified target number of disease
variants, we re-rank the remaining subjects based on

∑
k:Ck<c Eik , calculated

by excluding the region, and continue to select top ranked subjects. This
process is repeated every time a region reaches C ≥c.

We may stop the process when all regions have reached C ≥c. The
number of selected subjects is the sample size needed to have C ≥c for
all regions. If the number of selected subjects is fewer than planned, the
resources could be preserved for subsequent follow-up. If the investigator
wants to select more subjects, he may either raise the target value c and redo
the selection or continue selecting from the remaining subjects according
to their Ei. Although this algorithm allows investigators to determine the
sample size needed to reach C ≥c for all regions, as the disease variant
frequency pd that is used in calculation of Eik may be different than the
real disease variant frequency, the target value c may be far from the true
number of disease variants in the selected subjects, as will be seen in our
simulation results. However, our simulations also showed that even when
pd was misspecified, SampleSeq performed well compared to the alternative
approaches we simulated.

2.3 Missing and imputed genotypes
In practice, missing genotypes exist due to various reasons. In SampleSeq,
when genotype Gija is unavailable, Eij is calculated as a weighted average

Eij =
∑

g

E(Gijd |Gija =g,Yi)P(Gija =g|Yi),

where P(Gija =g|Yi) is the estimated genotype frequency of g in cases or
controls, depending on the value of Yi. Similarly, a missing genotype may
be imputed from the haplotype distribution of the population and observed
haplotypes in the study subjects. When genotype Gija is imputed, Eij can
be calculated as a weighted average using the posterior probabilities of the
imputed SNP as weights:

Eij =
∑

g

E(Gijd |Gija =g,Yi)P(Gija =g|GF ),

where GF denotes flanking marker genotypes.

2.4 Simulation strategy
We simulated case–control data with one or multiple disease regions, each
harboring one or multiple disease variants with additive effects on trait risk.

For rare variants, additive effect is practically equivalent to dominant effect
as there are mostly only two genotypes, DD and Dd. To simulate realistic
sequence-level genetic data from human populations, we employed the
coalescent simulation software cosi, with parameters developed to calibrate
the LD profile of simulated data to the observed LD profile from human
populations (Schaffner et al., 2005). Additionally, we used the recombination
map from the International HapMap Project to model the probability of
recombination in specified genomic regions. We randomly chose five disease
regions between 125 kb and 250 kb in length, and for each region, we used
cosi to generate a pool of 25 000 haplotypes. It is possible that associations
between rare variants and common proxies might extend over longer physical
distances than 250 kb; however, these simulations were computationally
intensive to perform on a large scale. We note that there is no size limitation
for our method and software.

We simulated three scenarios: (i) CDRV with one rare disease variant per
region; (ii) synthetic association (Dickson et al., 2010) with 10 rare disease
variants per region; and (iii) CDCV with one common disease variant per
region. For the CDRV scenario, we simulated various settings of prevalence
(K =0.01,0.05,0.1,0.2) and disease variant minor allele frequencies (MAFs,
range 0.0025–0.01, denoted as MAFmin and MAFmax), with odds ratios
(ORs) in the range 2–6 (denoted by ORmin and ORmax). The OR of a disease
variant was determined according to its MAF through the following formula:

ORi =ORmin +(1− MAFi −MAFmin

MAFmax −MAFmin
)(ORmax −ORmin).

For the synthetic association scenario, we simulated one level of prevalence
(K =0.01), and placed 10 random rare disease alleles with MAF in the range
0.0025–0.01 in each of five independent genomic regions, with OR in the
range 2–6. For the CDCV scenario, we simulated one prevalence (K =0.01)
with OR in the range 1.1–1.5, and various disease allele frequencies (0.01,
0.05, 0.15, 0.25).

For each combination of prevalence and ORs, a disease model was
established with

P(Y =1|G1,G2,...,GM )= eβ0+β1G1+β2G2+...+βM GM

1+eβ0+β1G1+β2G2+...+βM GM
,

where (G1, G2, ... ,GM ) is an individual’s joint genotype at the M disease
SNPs, and the coefficients βj were determined based on the prevalence and
ORs.

To simulate a control, a pair of haplotypes from each region was randomly
drawn, and a random number in (0, 1) was drawn and compared to the
penetrance from the disease model to determine if the subject is a control. To
simulate cases, the probability of a having a multilocus genotype conditional
on being a case was calculated for all possible genotypes from the M disease
SNPs using the equation:

P(G1,G2,...,GM |Y =1)= P(Y =1|G1,G2,...,GM )P(G1,G2,...,GM )

P(Y =1)
.

A multilocus genotype across all disease SNPs was then randomly selected
according to this conditional distribution, and haplotypes consistent with that
genotype were randomly chosen from the haplotype pools simulated by cosi.

For each scenario and each prevalence level, we generated 100 replicates
of 2000 cases and 2000 controls. We then identified a proxy marker (i.e. SNP
A) for each region with 1.1 < OR < 1.5 and 0.2 < MAF < 0.4. These criteria
were chosen to emulate typical associations from GWAS, and to allow the
association between disease and SNP A to arise naturally as a result of LD
between SNPs A and D, which were calibrated to resemble the LD profile of
European-ancestry populations. On average the D′ between SNPs A and D
was 0.88, with a range of 0.8–1 across all CDRV simulations; in other words,
pdA could be non-zero in our simulated data. For the synthetic association
scenario, we did not impose any restrictions on the relationship between SNP
A and the real trait SNPs, so that some of the risk alleles might fall on the
low-risk background of SNP A.

In addition to SampleSeq, we also considered other approaches to
selecting the same number of subjects, including (i) random selection of
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controls; (ii) random selection of cases; (iii) selection of subjects ranked by
dosage of proxy marker risk alleles; and (iv) selection of cases ranked by
dosage of proxy marker risk alleles. For all these approaches, we counted the
total number of disease variants per region that were captured in the selected
subjects for sample sizes from 50 to 500 in increments of 50 subjects. For the
simulated data, we also counted the maximum number of disease variants
that can be carried for each given sample size.

3 RESULTS
For all simulated scenarios, we calculated the number of rare disease
alleles captured. For the CDRV scenarios, where the allele frequency
of the trait locus is well-estimated, the SampleSeq algorithm
consistently provided higher yields of captured disease alleles
than the other methods for all sample size thresholds (Figs 1–4,
Supplementary Tables S1–4). These results demonstrate the benefit
in efficiency that SampleSeq can provide over the other alternatives.
The yield of rare disease alleles provided by SampleSeq is a little
higher over all sample sizes than by ranking case subjects by their
burden of risk alleles. The other three alternative approaches were
less efficient than SampleSeq by large percentages. Among the
four alternative approaches, those relying on the burden of the
proxy marker risk alleles were better than those not using this
information, and those focusing on cases were better than those not
limited to cases. These results are as expected as both the burden
of marker risk alleles and disease status are informative for the
likelihood of carrying real disease variants. As SampleSeq is able
to appropriately combine these two pieces of information, it often
results in a more efficient selection of subjects than the alternatives.
When only one piece of information was used, using the burden of
proxy marker alleles performed similarly to the random selection
of cases, with the former being slightly better when the prevalence
was K =0.01 and 0.05 and the latter slightly better when K =0.1
and 0.2. We also observed that as trait prevalence increased, the total
number of captured rare disease alleles decreased (Supplementary
Tables S1–4). This was due to the fact that the same number of
disease variants with similar effects would account for a high
fraction of heritability for a low prevalence disease than for a high
prevalence disease, which resulted in a higher likelihood for a patient
of a low prevalence disease to carry a disease variant in the targeted
regions in our simulations. We also simulated a single region of size
1 Mb with a single disease variant; the results followed the same
pattern (data not shown).

We note that SampleSeq is sensitive to very low values of pd as
the algorithm is involved with solving linear equations, for which
the solutions will be highly variable due to nearly singular matrices
at very small values of pd . Our experience is that pd should be at
least 20

2(ncase+ncontrol)
. For example, to select subjects from a pool of

ncase +ncontrol =2000 subjects, setting pd =0.005 is good but the
performance will become less optimal for pd <0.005. This limitation
is computational. Our simulations showed that assuming pd =0.01
was relatively robust to misspecification of the true frequency of d
within the range we simulated, and performed well over all scenarios
(data not shown).

When we simulated the synthetic association (SA) scenario
(Fig. 5, Supplementary Table S5), we observed similar patterns
as for the CDRV scenario, although all methods captured a higher
proportion of the maximum number of possible disease alleles than
the CDRV scenario. SampleSeq captured an average of 75% of

Fig. 1. (CDRV) Percent change of disease alleles captured compared to
SampleSeq using alternative methods. K =0.01, assuming a disease allele
frequency of 0.01 in calculation of Eik .

Fig. 2. (CDRV) Percent change of disease alleles captured compared to
SampleSeq using alternative methods. K =0.05, assuming a disease allele
frequency of 0.01 in calculation of Eik .

Fig. 3. (CDRV) Percent change of disease alleles captured compared to
SampleSeq using alternative methods. K =0.1, assuming a disease allele
frequency of 0.01 in calculation of Eik .

the maximum possible disease alleles over all sample sizes. In our
simulated scenario, the random selection of cases performed much
better than using the burden of proxy marker alleles. This is most
likely due to the large number of disease alleles to be found among
the cases on both allelic backgrounds of SNP A compared to the
number of causal alleles in controls.

For the CDCV scenario, we compared SampleSeq to the
alternative methods when the disease alleles were not rare, but we
assumed that pd =0.01 in our calculations. In these experiments,
SampleSeq was slightly more efficient than the burden of proxy
alleles in cases, and was slightly less efficient than the burden of
proxy risk alleles regardless of case status (Fig. 6, Supplementary
Table S6). This was also true when pd was close to the true frequency
of d.Also notable was the generally smaller magnitude of differences
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Fig. 4. (CDRV) Percent change of disease alleles captured compared to
SampleSeq using alternative methods. K =0.2, assuming a disease allele
frequency of 0.01 in calculation of Eik .

Fig. 5. (SA) Percent change of disease alleles captured compared to
SampleSeq using alternative methods. K =0.01, assuming a disease allele
frequency of 0.01 in calculation of Eik .

Fig. 6. (CDCV) Percent change of disease alleles captured compared to
SampleSeq using alternative methods. K =0.01, assuming a disease allele
frequency of 0.01 in calculation of Eik .

among the other three methods. These results are due to the presence
of many disease alleles in both cases and controls, as a result of the
subtle effect sizes simulated in this scenario.

We further summarized the results of these simulations by
comparing the average expected counts of disease alleles as
determined by SampleSeq, E(d), to the average count of observed
disease alleles, d, for each scenario and sample size (Table 1). As
the calculation of Eik is based on a hypothetical disease variant
frequency (pd =0.01 in our calculations), E(d) may not match the
true number of disease alleles. For the CDRV scenarios, where
the frequency of d was between 0.0025 and 0.01, the ratio of the
average expected to observed alleles across sample sizes were 1.7
for K =0.01, 2.0 for K =0.05, 2.9 for K =0.1, and 2.7 for K =0.2.

When the allele frequency of d was constrained to fall within the
range 0.009–0.011, and pd was set to 0.01, the ratio of E(d) to d
was 1.3 for K =0.01. However, for the SA scenario, the ratio of
average E(d) to d was 0.41, although this value is counting the
observation of all disease alleles in a region, where there were 10
disease alleles in the simulation per region. Also for the CDCV
scenario, the ratio of average E(d) to d was 0.27, demonstrating that
our method is based on finding rare disease alleles, and that if the
disease alleles are common, they will occur much more often than
expected by SampleSeq assuming a rare pd . Although Eik changes
as the hypothetical disease variant frequency changes, using these
estimates to rank subjects when an incorrect allele frequency is used
in the calculation is still an effective means of selecting subjects. To
demonstrate this, we calculated E(d) under pd =0.1, 0.01 and 0.001,
using the simulation parameters from the experiment in Figure 1, and
present their correlation coefficients in Table 2. While the magnitude
of the value of E(d) is proportional to the assumed value of pd , the
ranking of subjects is similar even when pd is misspecified.

4 DISCUSSION
Targeted resequencing using next-generation sequencing technology
allows investigators to fine map regions identified in GWAS to
localize true variants. Since it is generally not feasible for an
investigator to sequence everybody in a large GWAS, questions arise
as to the optimal design of follow-up studies aimed at identifying
novel, particularly rare, variants that may explain the GWAS
signals: the optimal balance between numbers of subjects, depth
of sequencing and sizes of regions; follow-up by further sequencing
of selected variants or imputation; whether to use DNA pooling or
family-based designs; choice of specific subjects for sequencing, etc.
(D.Thomas and F.Yang, personal communication). We developed
SampleSeq to address the last issue.

We have conducted a simulation study of several scenarios that
have been postulated to represent the genetic architecture of common
complex traits in human populations. We explored individual rare
variants with strong effects, the synthetic association scenario with
multiple rare variants per region and the CDCV model to evaluate
our approach for capturing causal alleles. We demonstrated that
SampleSeq can estimate the count of rare causal alleles in a sample of
subjects from a case–control study, estimate the sample size required
to capture a specified number of alleles in each region of interest and
select subjects to optimize and balance the capture of alleles across
an arbitrary number of regions.

When designing a next-generation resequencing study, a
compromise must be struck between read depth and sample size.
Regardless of the balance between these parameters, the allele
frequency in the sample will be the primary determinant of whether
genotypes are called accurately. By increasing the frequency of a
disease allele in a sample of subjects, the accuracy of genotype calls
and the chance that any resequencing study design will detect the
presence of that allele will be improved. To increase the chance
of detecting disease variants in a targeted resequencing study, an
intuitive strategy is to select cases according to the dosage of
risk alleles at the reported associated SNP (Thomas et al., 2009).
Our results showed that this is indeed a good strategy compared
to random selection of cases or controls. However, because of
incomplete penetrance, a control subject homozygous for risk alleles
at several loci may have a higher chance of carrying a real disease
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Table 1. The average cumulative expected count of disease alleles, denoted E(d), and the actual observed average count of disease alleles, denoted d, for
each scenario in Figs 1–6, denoted F1–F6, for each of 10 sample sizes

Size CDRV SA CDCV

F1 E(d) F1 d F2 E(d) F2 d F3 E(d) F3 d F4 E(d) F4 d F5 E(d) F5 d F6 E(d) F6 d

50 60.61 33.01 57.77 27.37 54.19 17.02 41.11 13.29 126.25 250.83 91.49 326.19
100 112.43 61.4 106.16 50.73 100.19 32.44 76.66 26.24 236.61 499.71 171.66 617.27
150 159.77 88.14 150.05 73.62 142.48 47.04 109.77 38.45 339.02 747.42 249.07 892.26
200 203.92 113.85 190.93 93.46 182.28 61.19 140.98 49.65 433.72 994.22 318.45 1159.36
250 245.86 138.59 229.21 113.05 219.95 75.08 170.25 61.00 523.99 1240.19 385.29 1421.55
300 286.01 162.67 266.24 131.73 256.05 88.91 197.91 72.24 611.43 1485.35 449.50 1678.27
350 323.93 186.10 302.01 150.83 290.30 102.26 225.60 83.32 696.42 1729.79 509.24 1926.32
400 360.35 208.67 335.85 168.82 322.98 114.54 252.02 94.1 779.41 1972.88 569.92 2170.27
450 394.54 230.64 367.42 187.19 353.79 127.4 276.51 104.51 859.65 2215.47 634.62 2405.16
500 429.20 253.22 398.36 203.89 385.89 138.76 300.98 114.68 936.72 2459.95 676.23 2632.34

Table 2. Correlation coefficient between E(d) from three settings of pd

pd =0.1 pd =0.01 pd =0.001

pd =0.1 – 0.908 0.841
pd =0.01 0.938 – 0.988
pd =0.001 0.928 0.999 –

Five regions, one rare disease variant per region, K =0.01. Correlations for cases are
in the upper triangle and those for controls are in the lower triangle.

variant than a case subject who is heterozygous for some of those
risk alleles. SampleSeq allows us to quantify their probabilities of
carrying real disease variants and then select subjects accordingly.

We observe that compared to random controls, samples of random
cases have much better performance for discovering rare disease
alleles, which is consistent with previous studies (Li and Leal, 2009).
Some investigators may choose to evaluate a set of controls in
order to perform screening with association tests before proceeding
to large-scale variant-based genotyping. This is likely the most
effective strategy when resources are abundant for resequencing
studies and sample sizes are large. However, when sample sizes
are small, we would expect most of the ability to detect the presence
of rare disease alleles in the population to come from the cases. As
the majority of samples selected by SampleSeq will be cases, in
some situations, it may be reasonable to resequence some controls
to augment the SampleSeq selection. The control subjects could
then be used to screen variants for frequency differences and
prioritize for genotyping. This comparison would be biased due to
the frequency enrichment achieved by SampleSeq, but could help
discern the SNPs that should be tested for association with the trait
with unbiased approaches, such as genotyping in the full cohort.
However, reallocating resources to sequence additional controls
would also lower the chance of seeing real disease variants in the
cases. If the number of subjects that can be resequenced is small,
we advocate also using the sequence context and putative biological
impact of variants to prioritize SNPs for genotyping, as there will
not be a large amount of statistical information for comparing rare
variant frequencies in small samples.

Some recent research has shown that association testing from
sequence data may provide slightly more statistical power than

variant-based genotyping on a per-subject basis (Liu and Leal,
2010) using two recently developed tests of association (Li and
Leal, 2008; Madsen and Browning, 2009). However, we note that
due to the large difference in the cost of resequencing to the
cost of variant-based genotyping, on a per-unit of resources basis,
many more subjects could be genotyped with variant-based methods
than could be resequenced. Thereby, the statistical power to detect
an association might be considerably better in a large sample of
variant-based genotypes than in a small sample of sequence-based
genotypes, utilizing the same resources. The goal of this work
is to optimize the resources expended for resequencing studies,
preserving DNA samples and financial assets for subsequent steps
in investigations.

The key element of the model that provides SampleSeq with a
performance advantage over counting common risk alleles is the
assumption of rare ancestral recombination between SNPs A and
D. We assumed that disease variant d originated on the ‘risk’ allele
a background, which resulted in three haplotypes, AD, aD and ad.
To break up the LD between the SNPs through recombination, the
recombination event needs to occur in the double heterogyzotes,
for which the frequency is quite low as d is rare. Moreover, if
the two SNPs are close enough to have very low recombination
fraction between them, then the chance of breaking up the LD
between the SNPs will be small. This is supported by our simulation
data; the recombinant haplotype frequency averaged 3.7×10−4

across all our CDRV haplotype pools, suggesting pdA ≈0 is a
reasonable assumption. It is implemented in our software for the
ease of computation. In simulations where this assumption was badly
violated, such as the CDCV scenario, the performance of SampleSeq
was still competitive with the burden of risk alleles in cases.

We also noted that as the prevalence in our simulations increased,
but the ORs of rare disease variants was held constant, the proportion
of cases not carrying any risk alleles at any of the target disease loci
increased. This observation is a result of our simulation strategy,
but it is perhaps worthy of note that high-prevalence traits may
require many more rare risk alleles than low-prevalence traits for
the CDRV model to account for most of the trait heritability for
a highly heritable common trait. Thereby, if there are not a large
number of associated regions identified for a high-prevalence trait,
it is possible that the yield of rare disease alleles from a resequencing
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study of that trait may be small, as additional trait variation may be
due to untargeted regions or environmental influences.

As next-generation sequencing technology matures, the need
for targeted resequencing of association study-implicated regions
for fine-mapping of mutations may eventually expire. However,
for researchers who do not have access to tremendous financial
resources or the most current sequencing platforms, targeted
resequencing followed by variant-based genotyping of candidate
SNPs is likely the most direct and cost-efficient means of fine-
mapping of causal rare mutations. Additionally, this approach
capitalizes on previous discoveries, rather than pursuing agnostic
resequencing of whole genomes or exomes. While agnostic
approaches to discovery will and should be taken, we believe there
is also a role for hypothesis-based resequencing studies in human
genetic epidemiology in the foreseeable future. The SampleSeq
software is available at http://biostat.mc.vanderbilt.edu/SampleSeq
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