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ABSTRACT 

Motivation: Multi-view microscopy techniques such as Light-Sheet 
Fluorescence Microscopy (LSFM) are powerful tools for 3D + time 
studies of live embryos in developmental biology. The sample is 
imaged from several points of view, acquiring a set of 3D views that 
are then combined or fused in order to overcome their individual 
limitations. Views fusion is still an open problem despite recent 
contributions in the field. 
Results: We developed a wavelet-based multi-view fusion method 
that, due to wavelet decomposition properties, is able to combine the 
complementary directional information from all available views into 
a single volume. Our method is demonstrated on LSFM acquisitions 
from live sea urchin and zebrafish embryos. The fusion results show 
improved overall contrast and details when compared with any of the 
acquired volumes. The proposed method does not need knowledge 
of the system's point spread function (PSF) and performs better than 
other existing PSF independent fusion methods. 
Availability and Implementation: The described method was 
implemented in Matlab (The Mathworks, Inc., USA) and a graphic 
user interface was developed in Java. 
The software, together with two sample dataseis, is available at 
http://www.die.upm.es/im/software/SPIMFusionGUI.zip 

1 INTRODUCTION 

1.1 Multi-view 3D microscopy on live embryos 

3D + time images of fluorescently labeled cells in live model 
organisms are essential to developmental biology (Dzyubachyk 
et al., 2010; Muzzey and van Oudenaarden 2009; Truong and 
Supatto 2011). When this kind of images is acquired with enough 

temporal and spatial resolution, tracking of every single cell and 
reconstructing the cell lineage tree becomes possible (Olivier et al., 
2010; Swoger et al., 2010). Typical optical microscopy techniques 
(like confocal or two-photon laser scanning microscopy) provide 
images with resolution along the optical axis considerably worse 
than lateral resolution. Moreover, image quality gets progressively 
worse as light travels deeper inside the specimen, meaning that for 
relatively large specimens (such as zebrafish embryos or larvae) it 
is impossible to get good images of the whole embryo. 

To overcome this kind of limitations other microscopy techniques 
have been developed. Spinning-disk microscopy (Graf et al., 2005), 
for instance, provides much higher imaging speed compared to 
scanned techniques. In theta-microscopy (Stelzer, 1994), separate 
illumination and detection optical paths along orthogonal directions 
are used in order to improve the axial resolution. In a more 
recent approach called Light-Sheet-based Fluorescence Microscopy 
(LSFM) (Huisken et al, 2004; Huisken and Stainier, 2009) wide-
field detection is combined with a lateral light-sheet illumination 
along the focal plane of the detection objective. LSFM is claimed to 
offer several advantages over conventional confocal laser scanning 
microscopy (CLSM) technique: 

• Unlike CLSM where a large part of the specimen is illuminated 
when recording a single point or plane, LSFM illuminates only 
the imaged plane, greatly reducing the overall photo-damage 
of the specimen. 

• The system's point spread function (PSF) is the combination 
of the light-sheet shape and the detection objective's PSF. For 
this reason, when low numerical aperture detection lenses are 
used, LSFM achieves significantly better axial resolution than 
other techniques such as confocal or two-photon fluorescence 
microscopy. 

• In LSFM wide-field detection is used, meaning that a full 
plane of the volume is acquired at once by an array of 
detectors (typically a CCD camera). In contrast, laser scanning 
microscopy (either confocal or two-photon) acquires one pixel 
at a time. This means that, for identical frame rates, LSFM 
has much longer per-pixel measurement time, which translates 
in a higher number of collected photons per-pixel, higher 
signal-to-noise ratio and dynamic range. 
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Fig. 1. A rendering of the fusion of the three different views of a sea urchin 
embryo, acquired at ~20h post-fertilization (hpf) is shown at the center. 
Renders of the individual views are shown in a smaller scale around the 
fusion. 

Another important feature of typical LSFM implementations is their 
ability to perform multi-view imaging, i.e. to obtain several volumes 
of the sample with different orientations. This is usually achieved 
by mounting the specimen under study on a rotating stage, and 
it takes advantage of the large working distance of water dipping 
lens objectives or of relatively low NA objectives, which makes 
the implementation of the rotation stage easier. Each view is a 3D 
volume formed as a stack of planes acquired sequentially. General 
schemes of LSFM can be found in the literature (Huisken and 
Stainier, 2009) and in Supplementary Figure SI . Such multi-view 
acquisition capability is desirable because, despite the previously 
mentioned advantages of LSFM over other fluorescence microscopy 
techniques, single views still show a series of problems (see 
Supplementary Fig. S2), like an axial resolution still worse than 
in plane resolution, slices increasingly dim and blurred with depth, 
etc., which will be further described below. 

1.2 Mul t i -v iew fusion techniques 

The multi-view imaging capability of LSFM provides extra 
information with respect to a single-view approach, as those regions 
of the specimen that are acquired with lower quality in one view will 
appear sharper and brighter in a different view. 

To be fully useful, the information of the sample distributed 
among several volumes by multi-view imaging should be combined 
into a single volume (Fig. 1). Several techniques have been recently 
proposed for this task (Krzic, 2009; Preibisch et al., 2008 ; Swoger 
et al, 2007; Temerinac-Ott et al, 2011). 

One approach is to pose the problem as a multi-view 
deconvolution, which can be solved using extensions of classic 
iterative deconvolution algorithms like Richardson-Lucy (Krzic, 
2009) or Maximum A Posteriori (Swoger et al, 2007) to the 
multi-view situation, by updating the estimate using one view at 
a time. 

This kind of algorithms performs fine when the actual PSF is 
well approximated and used in the deconvolution process. Its main 
drawback is precisely the need for a good estimate of the PSF, which 

is particularly difficult to obtain when the PSF is spatially variant 
as observed in the LSFM imaged volume due to the shape of light 
sheet and thickness of specimens. In (Temerinac-Ott et al., 2011) 
a spatially variant Richardson-Lucy is proposed, where the PSF is 
dynamically estimated based on fluorescent beads embedded in the 
sample. Finally, it is worth mentioning that PSF-based algorithms 
require an extremely precise registration of the views. 

A different approach called content-based fusion (Preibisch et al., 
2008) was recently proposed in which the fused volume is the 
weighted average of all the available views, using the local entropy 
of each view as weights. This method is very fast and the results 
provided show clear improvement with respect to each of the 
acquired views. 

We propose here an alternative method for multi-view fusion 
on the Discrete Wavelet Transform (DWT) (Mallat, 2008) space. 
An advantage of such approach when compared to multi-view 
deconvolution is the fact that it does not require a PSF estimate. 

Moreover, due to the use of multi-band transforms that decompose 
each acquired view onto several scales and orientations, our method 
is able to select the best view independently along each band and can 
thus be considered as a multi-scale and multi-orientation content-
based fusion. 

This enhanced orientation discrimination feature is very valuable 
for LSFM data, as in a given region of the sample two or 
more views often provide useful information, each one along a 
different orientation (an example of such situation is provided in 
Supplementary Figure S3). In this kind of situation, the image-space 
weighted average performed by the content-based fusion method 
is unable to independently discriminate directional information 
components on each view, while the proposed method can do so 
by working in the wavelet-space. 

2 METHODS 

2.1 Problem descript ion 

The proposed method is designed to deal with the multi-view volume 
fusion problem in LSFM. There are mainly two ways in which different 3D 
fluorescence microscopy acquisitions can be complementary in a multi-view 
setting (Swoger et al., 2007): 

• Even though LSFM offers a relatively small axial PSF, due to the 
use of orthogonal illumination and detection axes, axial resolution 
remains usually worse than in-plane resolution. The in-plane and axial 
resolution throughout the specimen's volume change roles while it 
rotates around an axis orthogonal to the detection axis. Two orthogonal 
views offer the most complementary information in terms of PSF. 

For highly diffusive samples (which applies to living tissues even when 
relatively transparent) excitation and emission light far from the excitation 
and detection objective respectively gets severely attenuated/absorbed as it 
travels through the sample, which results in increasingly degraded image 
quality deeper into the sample. For large specimens such as the zebrafish 
embryo or larva, each view will contain useful information for less than half 
of the sample. The complementarity of views taken from different angles to 
compensate for this effect is quite clear. 

The goal of our method is to take a set of volumes, each one corresponding 
to a different view of the same sample (e.g. live embryo or larva of chosen 
animal models), and combine the complementary information available in 
all of them to create a new fused volume of a better overall quality than any 
original view alone. 
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Fig. 2. Overview of the pre-processing workflow. On the left (a) and on the right (b) we find the two possible registration methods, while the final step 
is depicted in the middle (c). For gray-level registration (a) two additional steps are performed: automatic cropping and pre-alignment, while bead-based 
registration (b) is directly performed on the acquired volumes. With either registration, the output of this step is a total transformation matrix for each of the 
input volumes, which is then used (c) to create the registered volumes and masks that will be passed to the fusion method. Both the registered volumes and 
the masks are padded as needed so that all of them have the same dimensions and all their information is preserved. 

2.2 Pre-processing 
Several pre-processing steps might be performed before applying the fusion 
method to the data, e.g. cropping the volumes and, for very large datasets, 
down-sampling the in-plane resolution to lower the computation time. 
However, the only necessary step that must be performed before the fusion 
is the alignment or registration of all the acquired views, because any 
miss-registration will lead to artifacts in the final fused volume. 

The rotation angle of the sample mount is known from the acquisition 
setup. But it only provides a coarse estimation of the actual transformation 
between views. Several artifacts including the lack of precision and accuracy 
in the rotation calibration and operation (Krzic, 2009) make a fine registration 
necessary. 

Fine registration of LSFM images is quite challenging, as the depth-
dependent blurring means that the registration procedure is complicated 
by information differences between the views. Furthermore, for large 
specimens, some regions can be totally obscured because of light scattering 
as described above. To face these problems, more views might be required 
to ensure sufficient overlap of usable information and external cues such 
as fluorescent beads in the mounting medium might be required (Preibisch 
et al., 2010). Two different approaches have been used during this work, 
depending on the characteristics of the dataset: 

• A bead-based affine registration algorithm (Preibisch et al., 2010) was 
used for datasets with fluorescent beads embedded in the mounting 
medium around the specimen. 

• A gray-level affine registration algorithm (Thevenaz et al., 1998) for 
datasets with no fluorescent beads, which uses just the information from 
the image intensity values. 

For small embryos such as sea urchin, bead-less sample preparation and 
thus gray-level registration is preferred. However, 3D volumes acquired 
from large embryos like zebrafish show extensive blurring and eventually 
little overlap between views, and we confirm that the bead-based registration 
proposed previously (Preibisch et al., 2010) is a useful strategy. The detailed 
pre-processing scheme used for each of the registration approaches is 
depicted in Figure 2. 

For the gray-level registration, each of the acquired volumes is first 
automatically cropped in order to reduce as much as possible the data size 
and thus the time and memory consumption of the registration. Due to the 
low noise level of LSFM images, their background is quite uniform and 
such automatic cropping works well. Each cropped volume is then pre-
aligned according to the rotation step configured during the acquisition, and 
the pre-aligned volumes are then passed to the gray-level affine registration 
algorithm. The transformation matrices corresponding to pre-alignment and 

fine registration are then composed to produce the total transformation matrix 
of each input volume. 

On the other hand, when bead-based registration is selected no initial 
cropping is used, mainly because it would not make sense to remove the 
beads needed for the registration algorithm to perform its task. No pre-
alignment step is needed either for this kind of registration, as it performs 
well directly on the acquired volumes. Once the total transformation matrix 
has been computed for each of the views (by composing pre-alignment and 
fine registration matrices in the gray-level case, or directly obtained from 
the bead-based registration otherwise) they are applied to the original views 
in order to obtain the registered volumes, which are padded as needed in 
order to make all of them have the same dimensions. In parallel to this 
transformation, binary masks are also computed that indicate which voxels 
of each registered volume contain actual acquired data. These masks will 
be later used to prevent border artifacts, as it will be further explained 
later. 

In both approaches, the first view is arbitrarily chosen as a reference, and 
either registration method is used to compute the affine transform matching it 
with the other views. When all the views have been brought to the reference 
frame coordinate system, the fusion process can start. 

2.3 3D wavelet fusion 
There is a family of techniques named image fusion (Piella, 2003), typically 
used on 2D images, which can effectively combine information from 
different sources into a single composite image. 

Among these techniques, wavelet-based image fusion (Li, 1995) is one of 
the most widely used, and has already found some applications in biomedical 
imaging (Rajpoot et al., 2009). 

The main idea behind this approach is to take advantage of the 
properties of multi-band image decomposition schemes like the discrete 
wavelet transform. In this kind of decompositions, an input image (or 
volume) Xo is decomposed onto several bands (each one corresponding 
to a specific scale and orientation, for instance) W (Xo) = í 71 , . . . , YK, XK}, 
where Yk ,k = l...K are the different bands in which the image is decomposed 
and XK is the residual low-pass approximation of Xo. 

Salient features in the input image Xo become high-energy coefficients 
in at least one of the decomposition bands Yk, while smooth regions 
become low- or zero-energy coefficients. So, roughly speaking, by applying a 
common multi-band decomposition to all the input images available, and then 
choosing the highest energy coefficients, a fused image combining salient 
features from all input images is obtained. 

The detailed process is outlined in Figure 3a and the different steps are 
further described below. Before explaining the different steps, we recall the 
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Fig. 3. (a) Overview of the proposed fusion method. The inputs are a set of volumes containing the registered views X¡(i = 1.. .N) and a corresponding set 
of masks Kf(i = 1 ...N). Each of the registered views is then passed to the wavelet transform of choice, generating the wavelet decomposition bands Y¡'m 

(where n = 1...N is the scale index and m = 1... 7 the orientation index) and the low-pass approximation residuals Xf. In parallel the masks are also processed 
to get the multi-level masks Kf(n=\...N) needed later. An activity measure a"'m is computed for each of the wavelet coefficients, and by looking at those 
activity measures together with the multi-level masks the decision maps M"'m are computed. Finally, the wavelet coefficients are combined according to the 
decision maps, giving place to the fusion decomposition I YF' VN,1 YF' ,Xp 1, and by applying the inverse transform we get the fused volume XF as output. 

(b) Wavelet decomposition example of a 2D slice, using three scales and three orientations, resulting in nine bands (N = 3 and K-
we use undecimated wavelet transform, for illustration purposes this figure represents the classical decimated wavelet transform. 

. Although in this work 

inputs of the fusion method: 

• A set of / volumes Xf (i = 1.../), each of them containing a different 
3D view of the specimen, which have already been registered, using 
the first volume X® as reference. 

• The corresponding set of binary masks Kf, each of them indicating 
which voxels on each of the volumes Xf contain relevant information. 
These masks are used, for instance, to tell which voxels of a registered 
volume come from the actual transformed volume, and which ones are 
just padding, allowing us to avoid border artifacts due to incomplete 
specimen coverage in some of the views. 

Transform input volumes: we first apply the wavelet transform of choice 
to each of the input volumes: W(xf) = {Y¡,..., Yf ,Xf}, where i = 1.../ is 
the view index. Depending on the specific wavelet transform chosen, there 
will be a different number and arrangement of the bands. If 3D DWT is 
selected, we get 7 different orientations on each scale, so when N scales are 
used during the decomposition, we end up with K = l -N bands. In this case 
it is more practical to index the bands by scale (n=\...N) and orientation 
(m=1...7): 

wr 
yn,m yN,l ^N 

Figure 3b shows an example of the decomposition of a single slice of a LSFM 
Volume, using a 2D DWT with three scales (N = 3) and three orientations 
on each scale, resulting in K = 3 • N = 9 bands. 

The size of the bands will depend on the precise wavelet transform used. 
For instance, when using decimated DWT, the bands' size is halved on each 
level, so that the total number of elements in the whole decomposition 
W(xf) is always equal to that of Xf. On the other hand, undecimated 
implementations of DWT, keep the size of each Y¡'m and Xf equal to 
Xf's size, so each additional level increases the total number of elements 

in the decomposition. Undecimated implementations are usually preferred 
for fusion applications due to its shift-invariance property (Amolins et al., 
2007; Gonzalez-Audicana et al., 2004; Redondo-Tejedor, 2007). 

Generate multi-scale masks: parallel to the transformation of the input 
volumes, the corresponding masks are processed in order to prepare adequate 
multi-scale masks: Kf(n = I...N). These multi-scale masks are designed to 
ensure that only valid voxels from the input volumes are taken into account 
when generating the fused volume. 

For this purpose we define the support of any given wavelet coefficient 
(Y"'m(-) ovXf(-)), as the set of voxels in the corresponding input volume 
which get involved in the computation of said coefficient. The size of the 
support will depend on the scale n and on the wavelet family used. When 
using hoar wavelets, for instance, the support will be a 2 x 2 x 2 sub-volume 
for coefficients in scale 1, a 4 x 4 x 4 sub-volume for scale 2, and so on. 

If we denote by S (Xf (•)) the support of the coefficient Xf (•), the multi-
scale masks are built so that Kf(-) takes the value 1 if the original mask Kf 
is equal to 1 at all the voxels v belonging to S (Xf(-)), and otherwise it takes 
the value 0, that is: 

*?(•) = 
1 if K°(v)=l,VveS(Xf (•)) 

0 otherwise 

Supplementary Figure S4 shows an example of how the use of these multi­
level masks prevents the appearance of artifacts when some of the acquired 
views do not fully cover the specimen. 

Measure activity: the next step is to compute an activity or saliency 
measure at every location of each band from all the wavelet decompositions. 
This will later be used to decide which of the wavelet coefficients are related 
to salient features in the input volumes, so that they should be included in the 
fused volume. A common and simple choice, providing very good results, 



is to use the energy or the module of wavelet coefficients. In this context, 
the activity measure for any given wavelet coefficient Y¡'m (•) is: 

n,m f •. \-\/n,m f -.\ 
ai 0)=|7; 0)| 

Computation of decision maps: this is the most important step in the process 
depicted in Figure 3a, and it might be considered the core of the fusion 
method. We mean by decision maps the weights that define how, for each 
location in every band of the wavelet decompositions (including the residual 
low-pass approximation), the coefficients from all the input volumes are 
combined to create the fused volume. 

As already mentioned, these kind of methods aim at keeping the most 
salient features, at different scales and orientations, among the input volumes. 
Having the activity measure from the previous step, a straightforward way 
to implement such behavior is to create decision maps M"'m that, for each 
location, scale and orientation, select the maximum activity measure from 
the different input volumes. The multi-level masks are taken into account in 
order to avoid selecting coefficients whose support includes non-valid voxels 
from the input volumes. This can be achieved with the following decision 
map equation: 

Table 1. Performance evaluation of both registrations and both fusion 
methods 

(:)-K? (-^m^af"1 (-)-KJ (•)} 

However, this definition is not adequate for using on every decomposition 
band. For instance, depending on the size of the objects present in the input 
volumes, some scales of their wavelet decomposition might be dominated 
by noise, so selecting the maximum coefficients on those bands would lead 
to increased noise in the fused volume. As an alternative for bands featuring 
noisy components, selecting the minimum activity coefficients instead of 
the maximum leads to better results. Supplementary Figure S5 shows a 
comparison demonstrating how using minimum activity selection on some 
bands can improve the results. 

In order to take full advantage of the orientation and scale discrimination 
capability of the wavelet transform, it is necessary that the decision maps are 
able to select, in a given region of the image space, information from different 
views for different decomposition bands. In this sense, the local entropy 
maps used in content-based fusion, as seen in figure 6 from (Preibisch et al., 
2008), are too smooth. For this reason, in this work more local decision 
maps like the ones we just defined are preferred. In order to support this 
statement, in Supplementary Figure S6 we show the result of combining 
wavelet decomposition with local entropy maps, which gives results almost 
identical to content-based fusion itself. 

With respect to the low-pass approximations corresponding to each input 
volume, they should contain similar information after extracting the relevant 
features into the different bands. For this reason it is usually preferred to 
average all the low-pass approximations, taking into account only those 
coefficients whose associate multi-level mask equals 1, which can be 
implemented by defining a different decision map equation, which is simply: 

Mn,m(}= Kf(-) 

E/=i*ro) 
Other possible strategies are easy to incorporate into the framework by just 
creating alternative definitions of the decision maps. 

Combination of wavelet coefficients: once the decision maps are ready, 
the next step is to combine the coefficients from all the input volume 
decompositions, generating the wavelet decomposition of the fused volume: 

r„, E^ro)-*ro)) 
As for the residual low-pass approximation of the fused volume Xp, it is 
computed in the same way by averaging the low-pass approximations of all 
the available volumes Xf, i = 1.../. 

Inverse transform: finally, the wavelet decomposition generated in the 
previous step is inverted to get the final fused volume. 

Step Method Time (min/view) Fixed Time (min) 

Registration 

Fusion 

Gray-level 
Bead-based 
Wavelet 
Content-based 

24.5 
1.8 

64.7 
1.5 

0 
0 

19.2 
0 

W~ 'F • ...,y; n,m VN,1 yN 
--x 

All tests were performed on a Intel® Xeon® E5506@2.13 GHz with 48 GB RAM. 

Table 2. Acquisition parameters for the two datasets used for this work 

Animal Objective Volume size Voxel size (/¿m) No. of No. of 
[Dataset ID] (voxels) views time 

[angle] steps 

Seaurchin Zeiss 972x972x82 0.185x0.185x1.85 3 [120°] 406 
[090916eS] 40x/1.0NAW 
Zebrafish Zeiss 600x600xllll.48xl.48x5.55 5 [72°] 281 
[100728aS] 10x/0.3NAW 

2.4 Algorithm implementation and performance 
The whole algorithm has been implemented in MATLAB®, using a custom 
3D extension of its undecimated discrete wavelet transform implementation 
(swt and iswt functions). 

Table 1 summarizes the time consumed by the two main parts of the overall 
process: registration and fusion. Times are provided for the two registrations 
used and for both the proposed fusion method and the content-based fusion 
included in the 'SPIM Registration' plug-in of Fiji (http://www.fiji.se). 

The results are averages based on several timesteps from each dataset, 
and to allow comparison despite different volume sizes, times have been 
normalized to a common volume size of 600 x 600 x 600. For wavelet-based 
fusion, the final inverse transform step is independent of the number of views, 
so the time has been split in a per-view time plus a fixed time. 

The current implementation of the proposed method is quite more time-
consuming than content-based fusion. We expect a 5- to 10-fold reduction in 
computation time when the method is recoded in C. Besides all the process 
is based on filters implemented as convolutions with rather small kernels, so 
the code should greatly benefit from parallelization schemes. 

2.5 Dataset description 
Datasets used in this work were acquired using a Digital Scanned Light-Sheet 
(DSLM) version of the LSFM microscope (Keller et al, 2008) where the light 
sheet is generated by scanning a light beam instead of using a cylindrical 
lens as in the Selective Plane Illumination Microscope (SPIM) (Huisken 
et al., 2004). Our method was applied to various kinds of datasets. The 
results presented here correspond to two datasets obtained from developing 
sea urchin (Paracentrotus lividus) and zebrafish (Danio rerio) embryos. 
Acquisition parameters are summarized in Table 2. 

3 RESULTS 

3.1 Live sea urchin embryo 

A live sea urchin embryo was imaged for 20 h, from 5 h post 
fertilization (hpf) until 25 hpf. The whole acquisition time was 
divided in 180 s intervals, leading to over 400 time steps. At each 
time step 3 volumes (i.e. views) were acquired, using a 120° 
rotation of the sample between consecutive views. On all the 
acquired volumes, signal intensity relates to the local concentration 
of fluorescent protein accumulated in the cell nucleus. 

mailto:E5506@2.13
http://600x600xllll.48xl.48x5.55
http://www.fiji.se


Fig. 4. Results of the proposed method on a sea urchin embryo, imaged at 20 h post-fertilization (hpf). Each column shows three orthogonal slices from a 
single volume. Columns 1-3 contain slices from each of the three acquired views, while column 4 contains slices from the volume obtained by our fusion 
method. Rows 1-3 show slices along XY, XZ and YZ planes, respectively. At the bottom of the figure, three line profiles compare each of the individual 
views with the fusion. On each profile, the blue plot represents intensity values on the corresponding view, while the yellow line follows intensity on the fused 
volume. Line segments have been overlaid to the XZ slices (middle row), in parallel to the group of five cells represented by the profiles. 

The sample did not contain fluorescent beads in this study, 
so the image registration method used before the fusion is the 
aforementioned gray-level affine registration (Thevenaz et al., 
1998). 

After views registration, we applied the wavelet fusion method 

as described in Section 2.3. A 3D undecimated DWT was used 

as W ( X t ), with hoar wavelet filters and three scales (N = 3). 

Regarding the different possibilities for computation of decision 

maps (as discussed in Section 2.3), the following configuration 

parameters were used for this dataset: 

• Minimum activity selection for bands in scale 1 (the finest) 
which is dominated by noise. 

• Maximum activity selection for bands in scales 2 and 3, which 
contain the most relevant detail information. 

• Averaging of the low-pass approximations. 

Figure 4 shows an example of the fusion performance, by comparing 
slices and profiles of the fused volume and the acquired views 
corresponding to a time step around 20 hpf. 

Each of the three views provides an incomplete picture of the 
embryo, with some regions showing sharp and bright nuclei, while 

others exhibit heavy blurring and even some missing nucleus. 
Nevertheless, slices from the fused volume present overall sharp 
nuclei with good contrast. At the bottom of the figure line profiles 
show that the fusion provides the best representation of cell 
populations, because even though each view might show increased 
brightness and contrast for some cells, they might completely miss 
other ones that are indeed recovered in the fused volume. 

The whole dataset (406 time steps) was processed similarly. A 
complete view of the results for this dataset is showed in the video 
displaying the evolution of the embryo during the 20 h of the imaging 
procedure (Supplementary Movie S l l ) 1 . Supplementary Movie S l l 
shows the improvement of individual cell identification in the fused 
volume that becomes even more obvious as the embryo grows and 
the individual views are unable to properly capture the details of the 
whole embryo. 

3.2 Live zebrafish e m b r y o 

The second example is a live zebrafish embryo imaged for 12h, 
starting at 5 hpf. The whole acquisition time was divided in 

'Direct download available at http://www.die.upm.es/im/videos/SPIM/ 
Movie_Sll.avi (last accessed date November 27, 2011). 

http://www.die.upm.es/im/videos/SPIM/


155 s intervals, leading to over 280 time steps. At each time step 
five volumes (i.e. views) were acquired, using a 72° rotation of 
the sample between consecutive views. In all the acquired volumes, 
signal intensity correlates with the fluorescent protein concentration 
in the cell nucleus. 

Fluorescent beads were added to the mounting medium, so that 
the bead-based registration method could be used. This means that 
the five acquired views show little overlapping information as shown 
in Supplementary Figure S7. For this reason, standard gray-based 
registration would be very challenging for this dataset, and bead-
based registration is preferred. 

The last column in Supplementary Figure S7 shows the result of 
fusing the five available views (columns 1-5). The configuration 
parameters used for this dataset, including wavelet family, number 
of scales and decision maps computation scheme, were identical to 
the ones described in Section 3.1 for the sea urchin dataset. 

The fusion represents the full embryo better than any of the 
individual volumes, and, while some regions of the embryo are 
brighter in one specific view, the fusion captures all the relevant 
information, keeping good contrast whenever such contrast exists in 
any of the views (Supplementary Movie S12)2 It is worth mentioning 
that, due to the size of this embryo, each view appears highly blurred 
in some regions, but the fusion method is able to deal with this 
situation and gives preference to non-blurred information from other 
views. 

Supplementary Figure S8 shows snapshots of the renders 
available in the video, with the five original views around the 
resulting fused volume. For both Supplementary Figure S8 and 
Movie S12, a hard threshold was applied to the original and fused 
volumes in order to reduce the number of visible beads in the renders. 

3.3 Comparison with existing methods 

For both datasets, we have also compared our results with those 
of the previously mentioned content-based weighted averaging 
(Preibisch et al., 2008), which is also PSF independent and freely 
available as part of Fiji open-source image processing package. 

The comparison between our method and Preibisch et a/.'s method 
is shown in Supplementary Figure S9 for the sea urchin embryo, 
and in Figure 5 for the zebrafish. The results of the wavelet-based 
fusion method look less blurred, and more individual nuclei can be 
distinguished. The latter is supported by the line profile comparison 
through a group of three nuclei in a blurred region (Fig. 5). For 
the sea urchin, the difference is less striking, but the line profiles in 
Supplementary Figure S9, reveals slightly better peak contrast with 
our wavelet fusion method (in blue) compared to the content-based 
fusion (in yellow). 

Additionally, a quantitative comparison was carried out on two 
different timesteps for both datasets, by measuring the contrast 
of several line profiles, each one passing through two adjacent 
nuclei. An overall 31 % improvement was measured for the proposed 
method in comparison to content-based fusion. The details are 
provided in Supplementary Figure S10. 

2Direct download available at http://www.die.upm.es/im/videos/SPIM/ 
Movie_S12.avi (last accessed date November 27, 2011). 

Fig. 5. Comparison of content-based fusion (left column) and our fusion 
method (right column) for the zebrafish embryo, same slices as in 
Supplementary Figure S7. At the bottom, a line profile comparison of both 
(content-based fusion in yellow and our fusion in blue) across a group of 
three cells in a blurred region, surrounded by insets showing more detail of 
the areas where the line profile was obtained. 

4 DISCUSSION 
We propose a novel methodology to fuse multi-view images, such 
as those obtained from light-sheet-based fluorescence microscopy, 
but not limited to that particular technique. Almost any imaging 
technique in which several volumes of the same object are acquired, 
each of one providing incomplete and complementary information, 
could benefit from the proposed fusion scheme, including recent 
light-sheet techniques like DSLM using structured illumination 
(Keller et al., 2010). 

Our method is based on wavelet multi-scale and multi-orientation 
decomposition of the input volumes, and does not rely on a priori 
knowledge of the system PSF. While PSF-aware methods have more 
potential for reducing PSF-related artifacts, the proposed method can 
be used on those situations in which such knowledge is not available 
as is the case with LSFM acquisition where the PSF varies over the 
volume due to light sheet shape and to distorsión caused by the 
specimen itself. 

With respect to the other PSF-independent method mentioned 
in this work, content-based weighted averaging, the new method 

http://www.die.upm.es/im/videos/SPIM/


has improved orientation and scale discrimination as a direct 
consequence of performing the fusion in the wavelet domain instead 
of the intensity space. This improved discrimination is useful for 
instance in regions of the sample where two views contribute sharp 
details in different orientations. 

This work focuses on the fusion method itself, and does not 
consider the effect of other complementary methods like denoising 
techniques which could be used in a pre-processing step. For 
instance wavelet denoising (Chang et al., 2000; Donoho and 
Johnstone 1994) and bilateral filtering (Paris et al., 2009; Yang 
et al., 2009) seem good choices for future tests. Some variations 
(cross/joint and dual bilateral filtering) have been used for image 
fusion in certain situations (Bennett et al., 2007), but they are not 
adequate in situations where different views do not cover the full 
specimen, as uniform regions in the image being filtered will stay 
uniform regardless of the information provided by the other views. 

A possible way to further improve the usefulness of the proposed 
method would be to automatically adapt the wavelet fusion 
parameters, e.g. number of scales and fusion scheme, to the content 
of the input volumes. 

Moreover, the general scheme can be accommodated to any kind 
of wavelet transform (different base wavelet basis, non-separable 
decompositions, etc.), making the proposed method highly flexible 
and thus adaptable to any kind of input volumes. 
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