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ABSTRACT

Summary: Genotype calling from high-throughput platforms such
as Illumina and Affymetrix is a critical step in data processing, so
that accurate information on genetic variants can be obtained for
phenotype–genotype association studies. A number of algorithms
have been developed to infer genotypes from data generated through
the Illumina BeadStation platform, including GenCall, GenoSNP,
Illuminus and CRLMM. Most of these algorithms are built on
population-based statistical models to genotype every SNP in turn,
such as GenCall with the GenTrain clustering algorithm, and require
a large reference population to perform well. These approaches may
not work well for rare variants where only a small proportion of
the individuals carry the variant. A fundamentally different approach,
implemented in GenoSNP, adopts a single nucleotide polymorphism
(SNP)-based model to infer genotypes of all the SNPs in one
individual, making it an appealing alternative to call rare variants.
However, compared to the population-based strategies, more SNPs
in GenoSNP may fail the Hardy–Weinberg Equilibrium test. To take
advantage of both strategies, we propose a two-stage SNP calling
procedure, named the modified mixture model (M3), to improve call
accuracy for both common and rare variants. The effectiveness of our
approach is demonstrated through applications to genotype calling
on a set of HapMap samples used for quality control purpose in a
large case–control study of cocaine dependence. The increase in
power with M3 is greater for rare variants than for common variants
depending on the model.
Availability: M3 algorithm: http://bioinformatics.med.yale.edu/group.
Contact: hongyu.zhao@yale.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Genome-wide association studies (GWAS) have resulted in the
discovery of numerous genetic variants contributing to major
human diseases (Klein et al., 2005; Sladek et al., 2007; The
Wellcome Trust Case Control Consortium, 2007). These studies
benefit from the success of the International HapMap Project
in cataloging and characterizing millions of single nucleotide
polymorphisms (SNPs) for the purpose of GWAS (The International
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HapMap Consortium, 2007). Another major contributing factor is
the availability of high-density and low-cost SNP arrays, such as
those from Affymetrix and Illumina, which allow researchers to
genotype millions of SNPs.

For any microarray genotyping platform, an accurate genotyping
algorithm is needed to convert the observed probe intensities
into genotypes, and many methods have been proposed for SNP
calling. For example, RLMM (Rabbee and Speed, 2005), BRLMM
(AFFYMETRIX, 2006) and CHIAMO (Chierici et al., 2010;
Marchini et al., 2007) have been developed for the Affymetrix
GeneChip, and Iluminus (Teo et al., 2007), GenoSNP (Giannoulatou
et al., 2008) and GenCall (Illumina Inc., 2005, 2009) for the
Illumina BeadArray. In addition, some algorithms are applicable
to both platforms, such as CRLMM (Carvalho et al., 2007; Ritchie
et al., 2009) and BEAGLE with BEAGLECALL (Browning and Yu,
2009). In this article, we focus on the Illumina platform.

With green–red color single-base extension biochemistry
(Steemers et al., 2006), Illumina microarrays use allele signal
intensity to measure two alleles, A and a, at each SNP for every
individual. One class of calling algorithms considers data from all
study subjects for one SNP at a time. We call these algorithms the
population-based ones. Their basic premise is that the three possible
genotypes from an SNP with alleles A and a, namely AA, Aa and
aa, will form three distinct clusters and each individual’s genotype
can be inferred from its cluster membership. However, this approach
requires every cluster to contain a sufficient number of individuals to
be correctly inferred, so that a large number of samples are needed if
the minor allele frequency (MAF) of an SNP is low. In practice, three
genotype clusters of a fraction of SNPs may be shifted away from
their expected positions (Giannoulatou et al., 2008; Teo et al., 2007),
which will lead to a genotyping error rate of ∼1% from missing
genotypes or miscalled genotypes (Browning and Yu, 2009).

Another algorithm, GenoSNP, is distinguished from the
population-based algorithms in that it genotypes all SNPs within
one individual at a time under the assumption that probes for
different SNPs have similar response features across the genome
(Giannoulatou et al., 2008). That is, instead of genotyping
SNP-by-SNP, this algorithm infers genotypes of all the SNPs for
every individual in turn. We refer to this algorithm as the SNP-based
strategy. Since genotypes are called at the individual level and the
variation within a cluster may be smaller than that between clusters,
there is no need to collect a large number of samples to achieve
high accuracy of genotype calls for low MAF SNPs. However,
compared with the population-based strategy, many more SNPs fail
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the Hardy–Weinberg Equilibrium (HWE) test using this algorithm,
suggesting a possible violation of the assumption that all the SNPs
behave similarly across the genome.

To take advantage of both the population-based and the
SNP-based calling approaches, in this article, we propose a two-
stage SNP calling procedure without a reference population for
the Illumina BeadArray platform. We call this procedure the
‘modified mixture model’ (M3). Generally, this method integrates
the population-based strategy, e.g. GenCall, with the SNP-based
genotyping algorithm, e.g. GenoSNP, to improve call accuracy for
both common and rare variants. M3 is evaluated through comparison
with other genotyping algorithms for Illumina mciroarray data.

2 STATISTICAL METHODS

2.1 Illumina Chip data description
We first describe the features of the Illumina data before introducing our
method. In its probe design, the Illumina array is composed of many
beadpools that consist of hundreds of thousands of beadtypes. With the
dual-color single base extension biochemistry, each bead accommodates a
50mer probe sequence to hybridize near the beadtype site (Steemers et al.,
2006), and 20 beads on average for each beadtype provide 20 pairs of allele-
specific intensities for each DNA sample. Thus, each beadtype assaying two
SNP alleles represents an SNP. In our study, the pair of raw intensities at
each SNP for every individual are measured, and clusters of genotypes are
inferred based on these measured intensities.

2.2 Model
Let xjk=(rjk , gjk) denote the pair of raw intensities at the j-th SNP for the
k-th individual, and its distribution is modeled as a four-component Gaussian
mixture model (McLachlan and Peel, 2000). In fact, each measurement xjk

can be considered as arising from one of these components with probability
πji, where i = 1, 2, 3 or 4. While performing SNP calling, the first three
components in the mixture model correspond to three genotypes (AA, Aa
and aa), and the last one is the null component with zero mean and large
variance. The indicator variable zjk , where zjk=1, 2, 3 or 4, denotes the latent
genotype class for the j-th SNP of the k-th subject. Given the above notations,
the complete likelihood function for the observed data is given by,

zjk ∼Mult4(1,πj)

�(xj|�j,zj)=
nj∏

k=1

4∏
i=1

�(xjk |μji,�ji)
I(zjk=i)

(1)

where k = 1,…,nj , j = 1,…,S, nj is the total number of individuals observed
for the j-th SNP, and S is the total number of SNPs. Given the j-th SNP,
xj=(xj1, xj2,…, xjnj ) collects the raw intensities for all individuals, and
�j=(πj , μj , �j) denotes the unknown parameters of the Gaussian mixture
model where πj=(πj1, πj2, πj3, πj4), μj=(μj1, μj2, μj3, μj4) and �j=(�j1,
�j2, �j3, �j4). These parameters correspond to three genotype clusters and
the null component in the model. Function � denotes the normal density at
xjk with mean μji and variance–covariance matrix �ji. We also assume that
the latent variable zjk follows the multinomial distribution.

We can find the maximum likelihood estimates (MLEs) of these
parameters through solving the following score equation:

∂log�(xj|�j,zj)

∂�j
=0 (2)

In practice, we estimate these parameters through the following
Expectation Maximization (EM) algorithm (McLachlan and Peel, 2000).

The E (Expectation) step calculates the conditional expectation of
Equation (1), given the observed pair of raw intensities xj . When the current

estimates are �t
j for �j in the t-th iteration, the conditional expectation of

the log likelihood function is

T (�j|�t
j)=E�t

j
(log�(�j)|xj). (3)

Since the log likelihood function is a linear function of the unobservable
indicator variable zjk (McLachlan and Peel, 1999), replacing zjk in the above
conditional expectation equation will affect the E-step. At the (t+1)-th
iteration, zjk = i (i=1, 2, 3 or 4) is inferred by

fi(xjk;�t
j)=

πt
ji�(xjk;μt

ji,�
t
ji)∑4

m=1πt
jm�(xjk;μt

jm,�t
jm)

. (4)

The parameters of the normal components are estimated in the M
(Maximization) step. The iterative estimates for the mean μji and variance–
covariance matrix �ji are

μt+1
ji =

∑nj
k=1 fi(xjk;�t

j)xjk∑nj
k=1 fi(xjk;�t

j)
(5)

�t+1
ji =

∑nj
k=1 fi(xjk;�t

j)(xjk −μt+1
ji )(xjk −μt+1

ji )T∑nj
k=1 fi(xjk;�t

j)
. (6)

Note the parameters can be estimated by gmm package in MatLab
(MathWorks, 2009).

After the above EM algorithm converges, the conditional probability that
the pair of intensities (xjk) belong to the i-th cluster is inferred as the Posterior
Rate (PR: pi

jk), which can be estimated through the Bayes Theorem,

pi
jk = P(xjk |i)πji∑4

m=1 P(xjk |m)πjm
(7)

where P(xjk |i) refers to the likelihood of xjk if it belongs to the i-th cluster
with mean μji and variance–covariance �ji, and πji is the probability of the
i-th cluster for the j-th SNP. This measure, PR, is closely related to the SNP
calling result, that is, a larger value of PR implies a higher quality of the
inferred genotype. Thus, the PR can be used to identify the observations
with strong signals of clusters. Based on the PR, the average posterior rate
(APR) for the j-th SNP (pj) is defined by,

pj =
∑4

i=1
∑ni

j
k=1 pi

jk∑4
i=1 ni

j

(8)

Note that the APR is one important criterion applied in the second stage of
our two-stage SNP calling procedure to select good-quality SNPs, and ni

j is
the total number of observations within the j-th SNP for the i-th cluster.

For the X chromosome, male samples are only called as homozygote
genotypes, and their calling strategy is quite different from that of female
samples. It might greatly influence the call accuracy if we ignore the
gender information in the model. Thus, a gender-dependent model (M3

dep)
containing two calling algorithms is developed for female and male
subjects, separately. This model contains a four-component model (major
homozygote, heterzygote, minor homozygote and the null component) for
female individuals and a three-component model (two homozygotes and the
null component) for male individuals. Then the relevant APR of each SNP is
the average value of the APR calculated from the female samples and APR
from the male samples.

2.3 Two-stage SNP calling procedure
The two-stage genotyping procedure for SNP calling is designed to integrate
the population-based strategy implemented in GenCall and the SNP-based
approach implemented in GenoSNP. In the first stage, a Gaussian mixture
model is used to call each SNP in turn across the whole genome. This step
is a population-based calling method. In the second stage, a union set of
SNPs with low MAFs (e.g. MAF < 0.05) and poor APR (e.g. APR <

0.9) are selected, and each selected SNP is re-called with the assistance
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of a reference SNP that can provide additional information about shapes,
centers and boundaries of the clusters. This second stage is very much in the
same spirit as GenoSNP to borrow information across SNPs, but it focuses
more on poorly behaving SNPs where calling can be improved by means of
incorporating information from good-quality SNPs.

In our procedure, we choose to apply a population-based strategy in the
first stage. Empirical evidence suggests that a large proportion of SNPs with
high MAF can be more reliably called than those from a SNP-based strategy,
because it has been noted that genotype clusters may differ among the SNPs
(Giannoulatou et al., 2008; Teo et al., 2007). Therefore, the population-based
strategy is preferable for common SNPs. However, as an increasing number
of SNPs are included on a genotyping microarray with a deliberate emphasis
on rare variants, the population-based approach may not be optimal. As we
mentioned in Section 1, a very large number of individuals are required
to ensure that at least one subject is observed in each of the three genotype
classes, and a certain number of individuals within each cluster are needed to
ensure a precise estimate of distribution parameters for every cluster. In this
context, the SNP-based approach, GenoSNP, is more appealing. However,
this approach depends on two critical assumptions: (i) different probes have
the same response features on the array; and (ii) the variation within a cluster
is smaller than that between clusters. Similar assumptions are required for
the second stage analysis of our method, namely that the poor-quality SNP
and the reference SNP have similar patterns, and the within-cluster variation
is less than that between clusters (Giannoulatou et al., 2008).

2.4 Reference SNP selection
A very important component of our proposed procedure is to find an
appropriate reference SNP to improve SNP calling accuracy of SNPs that
are difficult to call accurately on their own. To achieve this objective, a
three-step selection procedure is proposed below. Throughout this section,
we use ‘testing SNPs’ to denote SNPs that need to be re-called (that is,
to have their calling accuracy improved) and ‘reference SNPs’ to denote
good-quality SNPs.

Step I: selecting SNPs with high APR as candidate reference SNPs. In
the first stage, the APR of one SNP is defined as the average value of PR of
all subjects for one SNP. We have found that SNPs with a lower MAF tend
to have a smaller APR than more common ones, so the MAF of an SNP is
highly correlated with its APR. In real data analysis, SNPs having a large
APR near the testing SNP are selected to be the candidate reference SNPs.
We call these SNPs as Ref-1 SNPs.

Step II: selecting SNPs with good clustering properties from Ref-1 SNPs.
Although Ref-1 SNPs have a large APR, some of them may not have high-
quality clusters. The shapes, centers and boundaries of three clusters for these
Ref-1 SNPs may not provide precise distribution parameters of each cluster
as a reference. At the second step, Ref-1 SNPs with each cluster containing
at least 10% of samples are further selected, denoted as Ref-2 SNPs.

Step III: measuring the similarity between the testing SNP and each Ref-2
SNP. We consider three possible criteria to select a reference SNP in this step.

(a) Calculating the APR of each aggregated dataset formed by the testing
SNP with each Ref-2 SNP in turn. For example, an aggregated dataset of size
((nc+nd ) × 1) is made up of the c-th testing SNP (nc × 1) and d-th reference
SNP (nd × 1). The relevant APR of this aggregated data is given by

p∗
d =

∑4
i=1

∑ni
c+ni

d
k=1 pi

jk∑4
i=1(ni

c +ni
d )

(9)

where pi
jk is defined by Equation (7). We select the Ref-2 SNP that gives the

largest APR (p∗
d , d=1,…,tc, tc is the total number of Ref-2 SNPs for the cth

testing SNP) for this aggregated dataset.
(b) Calculating the Mahalanobis distance (McLachlan, 1999) between the

testing SNP and each Ref-2 SNP, and the Ref-2 SNP with the minimum
Mahalanobis distance value is selected. Generally, the Mahalanobis distance
measures the overall similarity between two SNPs.

(c) To explore the detailed resemblance of each cluster between the testing
SNP and each Ref-2 SNP, we further introduce a measure, Cluster Distance

(Sc), in the following to compare the clusters between two SNPs. Both the
testing SNP and Ref-2 SNPs are classified into three clusters corresponding
to three genotypes in the following form,

yjk = rjk −gjk

rjk +gjk

wi∗
j =

⎧⎪⎨
⎪⎩

yjk if yjk <uj1

yjk if uj1 ≤yjk <uj2

yjk if yjk ≥uj2

(10)

where yjk is a simple projection function of xjk . It transforms the 2D vector xjk

into a univariate variable yjk without losing main clustering characteristics
(Teo et al., 2007), and it is easy to group transformed intensity yjk into three
clusters in terms of Equation (10). Note that i∗ denotes the index of clusters
where yjk falls inside the i∗th cluster and i∗=1, 2 or 3. uj1 and uj2 are used to
divide the intensities yj = (yj1,...,yjnj )

T of the j-th SNP into three genotype
clusters with the following two steps.

(i) yj is roughly classified into different clusters, and at least three
observations are in each cluster. In the first step, uj1 and uj2 are given by{

uj1 =−0.5

uj2 =0.5

(ii) Update uj1 and uj2 to find the optimum boundaries to identify distinct
clusters.

If yj is classified into three clusters with means μji∗ (i∗=1, 2 or 3)
corresponding to three genotypes in the first step, uj1 and uj2 are further
defined by, {

uj1 =μj2∗ − μj2∗ −μj1∗
2

uj2 =μj2∗ + μj3∗ −μj2∗
2

If yj is grouped into two clusters in the first step, uj1 and uj2 are given by,{
uj1 =μj1∗ + μj2∗ −μj1∗

2

uj2 =uj1

If only one cluster is generated for yj in the first step, uj1 and uj2 are not
defined.

Once yj is grouped into different clusters in an appropriate way, we define
a measure (Sc), which quantifies the similarity of clusters between the c-th
testing SNP and each Ref-2 SNP,

Sc = min
d;d∈tc

{
3∑

i∗=1

trace{(wi∗
testc −μi∗

ref d
)((�i∗

testc +�i∗
ref d

)/2)−1

(wi∗
testc −μi∗

ref d
)T }},

(11)

where d=1,2, ...,tc and tc is the total number of Ref-2 SNPs for the c-th
testing SNP, wi∗

testc is the transformed intensity vector of the i∗th cluster at

the c-th testing SNP, μi∗
ref d

denotes the mean vector of the d-th Ref-2 SNP for

the i∗th cluster, �i∗
testc and �i∗

ref d
are the variance–covariance matrices of the

c-th testing SNP and d-th Ref-2 SNP, respectively. In general, Sc measures
the minimum distance between the clusters of the c-th testing SNP and each
Ref-2 SNP.

It is desirable to select one reference SNP so that the genotypes of the
poor-quality SNP can be best called based on one of the three criteria
discussed above. Figure 1 displays the comparison results between the
testing SNP (rs1002189) and the reference SNP selected by each of the
three methods, and shows that the three methods are ranked in the order of
Average Posterior Rate < Mahalanobis Distance < Cluster Distance. The
overall comparisons of three methods are evaluated in the Supplementary
Materials. We note that this SNP is not a real testing SNP with low MAF,
because the distinct performance of three methods, APR, Mahalanobis
Distance and Cluster Distance, is difficult to show using low-frequency
testing SNPs that may lack some clusters. Thus, we choose this common
SNP to show the similarity between the testing SNP and the reference SNP.
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Fig. 1. The comparison plots of the reference SNP selected by three methods
(APR, Maholanobis Distance and Cluster Distance) for improving the calling
result of the same testing SNP (rs1002189).

Fig. 2. Illustration of how the reference SNP assists the genotype calling of
three low MAF SNPs using the Cluster Distance measure.

Throughout the following section, we use the third method (Cluster Distance)
to choose the reference SNP for genotype calling on poor SNPs. Figure 2
also illustrates how the reference SNP can assist in accurate calling of three
SNPs, rs10482982, rs1009925 and rs10154218, with low MAF. Although it
is difficult to assign genotypes to some individuals at these three SNPs alone,
we expect that better calls can be made with the help of the reference SNP.

3 RESULTS

3.1 Dataset and SNP calling methods
We consider an Illumina Omni 1M dataset that consists of 3258
samples, and 141 out of 3258 samples were from 38 distinct
HapMap samples with some individuals genotyped multiple times.
The overall performance is evaluated by comparing the SNP calls
for these HapMap samples by different methods to those available
from the International HapMap Project database (The International
HapMap Consortium, 2007). In this article, we focus on the

942 313 SNPs in the whole genome with the exception of the
sex chromosome. The X chromosome SNPs (24 717) are analyzed
alone. The null genotypes in the HapMap project are ignored. The
performance of our proposed method, M3, and other existing calling
algorithms is evaluated based on this Illumina dataset.

It has been demonstrated that the call rate and call accuracy of
both GenoSNP and CRLMM are better than those of Illuminus when
a small number of samples are collected (Ritchie et al., 2011). As for
CRLMM, its implementation depends on the reference population
and its calculation strongly hinges on computer configuration
(Ritchie et al., 2011; Zhang et al., 2010). Based on these
considerations, we compare M3 with GenCall as a representative
of the population-based method and GenoSNP as the SNP-based
method. For the Illumina GenCall approach, genotypes with good
GenCall scores (GC score ≥ 0.15) are used as the inferred genotypes.
As discussed earlier, GenoSNP is built on a SNP-based mixture
model without a reference population to genotype every individual
in turn, and this model may be good at genotyping rare variants. It
calculates the posterior probability of each sample at a specific SNP,
and we use a cut-off value of 85% to select SNPs and samples with
good quality. Samples and SNPs having poor clustering properties
(low posterior probability) are treated as missing data. As discussed
in the model section, the two-stage M3 approach aims to take the
advantage of GenCall and GenoSNP. We use the PR of 0.85 as a
cut-off to filter samples at a particular SNP in our analysis, and a
union set of SNPs with MAF < 0.05 and APR < 0.9 are selected to
be re-called in the second stage of our proposed method.

3.2 Comparisons
We first evaluate the SNP calling results by evaluating the call rate
of each method and the concordance among them. The call rate is
defined as the ratio of genotypes passing the calling threshold to the
total number of genotypes that need to be inferred. The concordance
rate between two algorithms refers to the percentage of agreement of
inferred genotypes between two algorithms. The relevant results are
summarized in Table 1. In brief, there is high consistency among
these three methods (M3, GenCall and GenoSNP) overall. But,
there are some discrepancies among these three algorithms. We note
that the major homozygote calls by GenCall are more frequently
called heterozygote by M3 and M3 more likely genotypes null
components by GenCall and GenoSNP (Supplementary Materials).
This is partially due to the fact that M3 gives the largest call rate
(99.64%), followed by GenoSNP (99.22%) and GenCall (98.16%)
(Table 1).

Since the true genotypes are unknown, the above concordance
comparisons do not reveal which method performs better. In the

Table 1. The comparisons of call rate and concordance rate among GenCall,
GenoSNP and M3

Algorithm 1 Algorithm 2 Call rate (%) Concordance (%)
Algorithm 1 Algorithm 2

GenCall M3 98.16 99.64 99.87
GenoSNP M3 99.22 99.64 99.64
GenCall GenoSNP 98.16 99.22 99.80

The unit of call rate and concordance rate is percentage %; M3: the modified
mixture model.
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Table 2. The comparisons of call rates and concordance on HapMap samples
for overall SNPs

Criterion E (Error) Item GenCall GenoSNP M3

(%) (%) (%)

GenCall, GenoSNP < 50 Call rate 98.03 99.13 99.75
and M3 Accuracy 97.85 98.45 99.11

< 10 Call rate 98.03 99.20 99.76
Accuracy 97.87 98.68 99.20

< 1 Call rate 98.03 99.21 99.77
Accuracy 97.87 98.74 99.23

M3: the modified mixture model; call rate: the percentage of valid genotypes; accuracy:
the percentage of consistent genotype; criterion: which algorithm is selected to count E
values between this algorithm and HapMap project due to the mis-assignment of major
allele. E: the average error caused by the mis-assignment of the major allele under three
criterions, GenCall, GenoSNP and M3, and three E cutoffs, E < 50, 10 and 1 are set.

Table 3. Comparisons of call rates and concordance on HapMap samples
for rare variants

SNPs E (Error) Item GenCall GenoSNP M3

MAF < 0.1 < 50 Call rate 97.79 99.11 99.67
Accuracy 97.52 98.49 99.12

< 10 Call rate 97.81 99.12 99.67
Accuracy 97.57 98.54 99.16

< 1 Call rate 97.84 99.13 99.68
Accuracy 97.62 98.59 99.20

MAF < 0.05 < 50 Call rate 97.73 99.13 99.64
Accuracy 97.42 98.44 99.00

< 10 Call rate 97.74 99.14 99.64
Accuracy 97.48 98.50 99.06

< 1 Call rate 97.73 99.15 99.65
Accuracy 97.54 98.56 99.11

MAF < 0.01 < 50 Call rate 96.64 99.04 99.56
Accuracy 96.11 97.80 98.47

< 10 Call rate 96.67 99.06 99.57
Accuracy 96.29 97.98 98.65

< 1 Call rate 96.71 99.08 99.58
Accuracy 96.43 98.10 98.77

M3: the modified mixture model; call rate: the percentage of valid genotypes; accuracy:
the percentage of consistent genotype; E: the average error caused by the mis-assignment
of the major allele under three criterions, GenCall, GenoSNP and M3, and three E
cutoffs, E < 50, 10 or 1 are set. The different values in parentheses indicate the number
of SNPs whose MAFs are < 0.1, 0.05 or 0.01, respectively.

following, we focus on the genotype calls of 141 out of 3258 samples
from 38 distinct HapMap samples using the genotypes of these
individuals obtained from the HapMap project as a gold standard in
our comparisons. One issue in using the SNP calls from the HapMap
data is differentiating the major allele between two alleles at an
SNP. In our comparisons, we count the discrepancy in homozygote
calls, denoted by E (Error), between each of the three algorithms
and HapMap data, and vary the cut-off level at 1, 10 and 50 to
remove SNPs with different major allele assignments between each
of the three algorithms and HapMap data. With a more stringent
threshold, e.g. E < 1, fewer SNPs with inconsistent major allele

Table 4. Comparisons of HWE test among GenCall, GenoSNP and M3

Population Num-Sample Algorithm No. of failed SNPs

AA I 2005 GenCall 14 447
GenoSNP 50 860
M3 27 288

AA II 83 GenCall 1450
GenoSNP 14 432
M3 5155

EA I 867 GenCall 32 209
GenoSNP 63 170
M3 44 123

EA II 158 GenCall 2801
GenoSNP 20 342
M3 7631

AA I: African-Americans not of Hispanic origin; AA II: African-Americans of Hispanic
origin; EA I: European Americans not of Hispanic origin; EA II: European Americans
of Hispanic origin; Num-Sample: the number of subjects within each population;
Algorithm: three algorithms in this table, that is, GenCall, GenoSNP and M3;
Num-Failed SNP: the number of SNPs fail the HWE test within each population.

assignment are compared. The results are summarized in Table 2.
We note that M3 has the best average call accuracy and average call
rate by three criterions (GenCall, GenoSNP and M3) under all three
E cut-offs, followed by GenoSNP and GenCall. For example, when
the threshold level for E is set at 1, the highest call rate and the
best SNP calling accuracy are achieved by M3 (99.77%, 99.23%),
followed by GenoSNP (99.21%, 98.74%) and GenCall (98.03%,
97.87%). With a less stringent cutoff, fewer accurate genotypes by
M3 are obtained with average call accuracy 99.20% at E < 10 and
99.11% at E < 50. This is likely due to more consistent major allele
assignments with a more stringent cut-off.Asimilar trend also occurs
for GenoSNP and GenCall when the E cut-off becomes increasingly
stringent.

When more SNPs are added to the genotyping arrays, a larger
proportion of the newly identified SNPs will have lower MAFs
than those already on the arrays. It has been demonstrated that
GenoSNP performs better than other algorithms in calling rare
variants (Giannoulatou et al., 2008; Ritchie et al., 2011). Since
M3 tries to take advantage of both the population-based strategy
and the SNP-based approach, we expect it to perform well for
rare SNPs. Table 3 summarizes the comparison results for SNPs
with MAF < 0.1, 0.05 and 0.01. We use HapMap data from four
populations to estimate the MAF for each SNP, because the 38
HapMap samples in our Illumina data come from JPT (116), CHB
(139), YRI (209) and CEU (174). We calculate the MAF of each SNP
by the weighted value of the MAF of each population. The weight
of each population is determined by its population proportion in the
38 HapMap samples. In general, M3 yields the best SNP calling
accuracy and highest call rate under three E cut-offs for SNPs with
MAF < 0.1, 0.05 and 0.01. For SNPs with very small MAF (<0.01),
M3 (98.47% ∼98.77%) provides large average call accuracy by
three criterions, followed by GenoSNP (97.80% ∼98.10%), GenCall
(96.11% ∼96.43%). Overall, when considering both common and
rare variants, M3 yields the best SNP calling among the three
methods.

The HWE test (P<0.0001) is a commonly used criterion to
examine the quality of genotype calling of each SNP. We compare
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Fig. 3. The average power to detect risk alleles for overall SNPs by HapMap,
GenCall, GenoSNP and M3. Red solid line: the ideal power measured by the
HapMap project; blue dash line: the average power measured by the GenCall;
purple dot line: the average power measured by GenoSNP; green dot dash
line: the average power measured by M3; cutoff: 5×10−8.
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Fig. 4. The average power to detect risk alleles for less common SNPs by
HapMap data, GenCall, GenoSNP and M3. Less common SNPs: the SNPs
with MAF < 0.05; cutoff: 5×10−8.

different SNP calling algorithms based on the proportion of SNPs
failing the HWE test. As mentioned above, our Illumina dataset
includes 3258 individuals, consisting most of African-Americans
(AA) and European-Americans (EA), who are either Hispanic or
non-Hispanic. We perform the HWE test on these four populations
separately. The results are summarized in Table 4. Since GenoSNP
is a SNP-based calling algorithm that does not consider HWE in
SNP calling, a large number of SNPs (50860, 14432, 63170 and
20342 corresponding to the four populations, respectively) failed the
HWE test. In contrast, for GenCall, the population-based strategy,
fewer SNPs (14447, 1450, 32209 and 2801 for the four populations,
respectively) failed the HWE test. Since M3 is largely a population-
based approach, it performs relatively well on the HWE test with
quite fewer SNPs (27288, 5155, 44123 and 7631 for the four
populations, respectively) failing. Therefore, M3 performs well at
both calling rare variants and generating calls that are more likely
to pass the HWE test.

The higher call rate and more accurate genotype calls of M3

may help to increase statistical power to detect disease-associated
variants, especially those with low MAFs. To quantify the power

gain, we compare the average power to detect disease-associated
variants based on the three calling algorithms using the HapMap
sample data [ASW (87) and CEU (174)]. We consider a case–control
scenario for AA and EA separately and assume a similar genotyping
characteristic for the collected data. We assume a disease prevalence
of 0.05, and the relative risk λ varies from 1.5 to 4 under
the multiplicative model. The allele frequencies are based on
empirical data from the HapMap project. We consider the statistical
significance level by Bonferroni correction (5×10−8), and fix
the number of cases and controls for both populations (AA:
case:control=1250:758; EA: case:control = 749:239). The power to
detect the risk alleles based on the correct calls for all individuals and
all SNPs is measured as a standard. For the three calling algorithms,
we assume that the observed allele frequencies at each SNP and the
number of cases or controls are similar to those observed from the
HapMap samples collected in our study. The power comparisons
for the overall SNPs and rare SNPs are summarized in Figures 3
and 4, respectively. In brief, compared with GenCall and GenoSNP,
M3 has the largest power for both common variants and rare variants
in both populations. When the relative risk increases, we observe
a larger improvement of M3 versus GenCall or GenoSNP. The
ratio of M3 versus GenCall or M3 versus GenoSNP measures
this improvement, and it has been found that the power of M3

increases 1.46% and 1.03% compared with GenCall for AA and
EA, respectively. Similarly, the increase in power of M3 versus
GenoSNP is ∼ 0.12% and 0.16% for both populations. In particular,
the improvement of M3 versus GenCall or GenoSNP for rare
variants is more noticeable than that for common variants. (The
increase in power of M3 versus GenCall: 1.84% and 1.12% for both
populations; the increase in power of M3 versus GenoSNP: 0.43%
and 0.34% for both populations.) In general, the power achieved
by M3 is closer to the ideal power when the genotypes of all study
subjects are correctly inferred.

We also evaluate the performance of three algorithms on the X
chromosome SNPs. The average call accuracy is compared with
the HapMap project calls under three E(Error) cutoffs, E < 50,
10 or 1. Table 5 summarizes the overall concordance result on the
X chromosome among three algorithms. Again, M3 provides the
best call rate and accuracy on the sex chromosome SNPs, compared
with GenCall and GenoSNP. It has been demonstrated that the
model incorporating the gender information will perform better than
methods (GenCall and GenoSNP) ignoring this gender information
(Ritchie et al., 2011). We further exam the gender-dependent model
in M3, denoted as M3

dep, on the X chromosome. Compared with M3

without incorporating the gender information, a higher call accuracy
is achieved by the model M3

dep involving the gender information
(Table 5). The higher call accuracy on the male subjects results in
the great improvement of calls. We suggest that the X chromosome
SNPs should be called separately using a gender-dependent model
(M3

dep) in practice.

4 DISCUSSION
A number of algorithms have been developed and are commonly
used for SNP calling of Illumina genotyping arrays. One general
strategy is the population-based approach where each SNP is
analyzed individually and the data from all the study subjects
at this SNP are used to define genotype clusters for calling.
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Table 5. The comparisons of call rates and concordance on HapMap samples for X chromosome SNPs

Criterion E (Error) Item GenCall GenoSNP M3 M3
dep

(%) (%) (%) (%)

GenCall, GenoSNP, < 50 Call rate 97.67 99.00 99.31 99.75
M3, M3

dep Accuracy 97.38 98.41 98.65 99.60
< 10 Call rate 97.77 99.01 99.32 99.76

Accuracy 97.48 98.45 98.69 99.63
< 1 Call rate 97.91 99.03 99.33 99.77

Accuracy 97.63 98.49 98.72 99.65

M3
dep: the gender-dependent modified mixture model; M3: the modified mixture model; call rate: the percentage of valid genotypes; accuracy: the percentage of consistent genotype;

criterion: which algorithm is selected to count E values between this algorithm and HapMap project due to the mis-assignment of major allele. E: the average error caused by the
mis-assignment of the major allele under four criterions, GenCall, GenoSNP, M3 and M3

dep, and three E cutoffs, E < 50, 10 and 1 are set.

Since the performance of these population-based methods (such
as GenCall) depends on well-defined genotype clusters, a large
reference population is needed to achieve good accuracy. However,
with an increasing number of less common SNPs on the arrays, the
calling accuracy may not be as high due to the lack of information
needed to define each of the three possible genotype clusters well.
GenoSNP is an SNP-based approach that addresses this challenge,
but it relies on the critical assumption that all the SNP probes
perform similarly. This assumption is certain to be violated in
practice. As a result, many more SNP calls than population-based
calls fail the HWE test (P < 0.0001). To exploit the advantage of
these two separate approaches, we have proposed a two-stage SNP
calling procedure to improve the call accuracy of rare variants while
retaining the accurate results for common SNPs. In the first stage
of our procedure, we use a mixture model to call every SNP in
turn, and then focus on a small fraction of poor-quality SNPs in the
second stage by borrowing information from one reference SNP that
matches well with the characteristics of the poor-quality SNPs in the
genome.

This two-stage approach, named the modified mixture model
(M3), was tested on an Illumina dataset with 3258 samples. In
general, we observed good agreement between the M3 calls and
those from GenCall and GenoSNP. Using 141 out of 3258 samples
from 38 distinct HapMap samples in our data that have been
genotyped, we were able to investigate the accuracy of different
methods using the genotypes reported by the International HapMap
Project. Our results show that M3 provides the highest call rate
and the best genotyping accuracy. M3 performs better than GenCall
on rare variants and generated fewer SNP calls that fail the HWE
test than GenoSNP. In addition, M3 can increase statistical power
to detect disease-associated variants compared with GenCall and
GenoSNP, especially for rare variants.

The essence of M3 is to integrate the population-based statistical
model with the SNP-based strategy (GenoSNP), to yield good call
accuracy and a high call rate at each SNP without requiring a
large reference population, especially for rare variants. An important
aspect of M3 is that it searches for the appropriate SNP to assist
in calling a poor-quality SNP. In practice, it is computationally
prohibitive to search the reference SNP across the whole genome,
thus we proposed to select a reference SNP near the testing SNP.
Under the Illumina chip design, each bead accommodates a 50mer
probe sequence that is made up of A, T, C and G near the SNP
(Steemers et al., 2006), and it has been shown that the larger

proportion of CG in this probe sequence of one SNP leads to the
stronger intensity signal at this SNP (Carvalho et al., 2007). Thus,
incorporating this probe sequence in the reference SNP selection
procedure may help to find the most appropriate reference SNP.
Additionally, empirical results suggest that our proposed selection
procedure may be effective and the assumption that probes have
similar response characteristics may hold at least for some of the
probes. However, when some probes selected as the testing SNPs
produce unusual variation in probe responses, the reference SNP
cannot provide good cluster information to be used with these poor
SNPs. In studies where certain samples with known genotypes,
e.g. the HapMap samples in our dataset, the explicit consideration
of these gold-standard samples may also help in the selection of
reference SNPs. Our proposed method is a data-driven approach. In
the future, we may borrow HapMap data information about genotype
clusters to improve the quality of genotype calling of the illumina
data. It remains to be determined whether there are better ways
to identify a reference SNP or whether to include more than one
reference SNP in the second-stage analysis.

The efficiency of M3 is strongly dependent on the assumption of
the homogeneity of probe measurements. Since this condition may
not be satisfied for some SNPs, it is desirable to develop a statistical
model without the second-stage analysis to achieve more accurate
genotyping results for both common and rare variants. Moreover,
M3 fits the Gaussian mixture model on the raw intensities that may
violate the assumptions of this mixture model. Thus, an additional
normalization step (Illumina Inc., 2005; Teo et al., 2007) can be
added to remove outlier SNPs and normalize intensities at each
SNP before performing cluster analysis. This algorithm focuses on
the analysis of Illumina arrays, and applicability of this idea to
Affymetrix is worth investigating.
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