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ABSTRACT

Motivation: Recent advances in brain imaging and high-throughput
genotyping techniques enable new approaches to study the
influence of genetic and anatomical variations on brain functions
and disorders. Traditional association studies typically perform
independent and pairwise analysis among neuroimaging measures,
cognitive scores and disease status, and ignore the important
underlying interacting relationships between these units.
Results: To overcome this limitation, in this article, we propose
a new sparse multimodal multitask learning method to reveal
complex relationships from gene to brain to symptom. Our main
contributions are three-fold: (i) introducing combined structured
sparsity regularizations into multimodal multitask learning to integrate
multidimensional heterogeneous imaging genetics data and identify
multimodal biomarkers; (ii) utilizing a joint classification and
regression learning model to identify disease-sensitive and cognition-
relevant biomarkers; (iii) deriving a new efficient optimization
algorithm to solve our non-smooth objective function and providing
rigorous theoretical analysis on the global optimum convergency.
Using the imaging genetics data from the Alzheimer’s Disease
Neuroimaging Initiative database, the effectiveness of the proposed
method is demonstrated by clearly improved performance on
predicting both cognitive scores and disease status. The identified
multimodal biomarkers could predict not only disease status but also
cognitive function to help elucidate the biological pathway from gene
to brain structure and function, and to cognition and disease.
Availability: Software is publicly available at: http://ranger.uta.edu/
%7eheng/multimodal/
Contact: heng@uta.edu; shenli@iupui.edu

1 INTRODUCTION
Recent advances in acquiring multimodal brain imaging and
genome-wide array data provide exciting new opportunities to study
the influence of genetic variation on brain structure and function.
Research in this emerging field, known as imaging genetics, holds
great promise for a system biology of the brain to better understand
complex neurobiological systems, from genetic determinants to
cellular processes to the complex interplay of brain structure,
function, behavior and cognition. Analysis of these multimodal
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datasets will facilitate early diagnosis, deepen mechanistic
understanding and improved treatment of brain disorders.

Machine learning methods have been widely employed to predict
Alzheimer’s disease (AD) status using imaging genetics measures
(Batmanghelich et al., 2009; Fan et al., 2008; Hinrichs et al.,
2009b; Shen et al., 2010a). Since AD is a neurodegenerative
disorder characterized by progressive impairment of memory
and other cognitive functions, regression models have also been
investigated to predict clinical scores from structural, such as
magnetic resonance imaging (MRI), and/or molecular, such as
fluorodeoxyglucose positron emission tomography (FDG-PET),
neuroimaging data (Stonnington et al., 2010; Walhovd et al., 2010).
For example, Walhovd et al. (2010) performed stepwise regression
in a pairwise fashion to relate each of MRI and FDG-PET measures
of eight candidate regions to each of four Rey’s Auditory Verbal
Learning Test (RAVLT) memory scores. This univariate approach,
however, did not consider either interrelated structures within
imaging data or those within cognitive data. Using relevance vector
regression, Stonnington et al. (2010) jointly analyzed the voxel-
based morphometry (VBM) features extracted from the entire brain
to predict each selected clinical score, while the investigations of
different clinical scores are independent from each other.

One goal of imaging genetics is to identify genetic risk factors
and/or imaging biomarkers via intermediate quantitative traits (QTs,
e.g. cognitive memory scores used in this article) on the chain
from gene to brain to symptom. Thus, both disease classification
and QT prediction are important machine learning tasks. Prior
imaging genetics research typically employs a two-step procedure
for identifying risk factors and biomarkers: one first determines
disease-relevant QTs, and then detects the biomarkers associated
with these QTs. Since a QT could be related to many genetic or
imaging markers on different pathways that are not all disease
specific (e.g. QT 2 and Gene 3 in Fig. 1), an ideal scenario would
be to discover only those markers associated with both QT and
disease status for a better understanding of the underlying biological
pathway specific to the disease.

On the other hand, identifying genetic and phenotypic biomarkers
from large-scale multidimensional heterogeneous data is an
important biomedical and biological research topic. Unlike
simple feature selection working on a single data source,
multimodal learning describes the setting of learning from
data where observations are represented by multiple types of
feature sets. Many multimodal methods have been developed
for classification and clustering purposes, such as co-training
(Abney, 2002; Brefeld and Scheffer, 2004; Ghani, 2002; Nigam
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Fig. 1. A simplified schematic example of two pathways from gene to QTs
to phenotypic endpoints: the red one is disease relevant while the blue one
yields only normal variation. Traditional two-stage imaging genetic strategy
identifies QT 1 and QT 2 first and then Genes 1, 2, 3. Our new method will
identify only disease relevant genes (i.e. Gene 1 and Gene 2); and Gene 3
would not be identified because it cannot be used to classify disease status

et al., 2000) and multiview clustering (Bickel and Scheffer, 2004;
Dhillon et al., 2003). However, they typically assume that the
multimodal feature sets are conditionally independent, which does
not hold in many real-world applications such as imaging genetics.
Considering different representations give rise to different kernel
functions, several Multiple Kernel Learning (MKL) approaches
(Bach et al., 2004; Hinrichs et al., 2009a; Kloft et al., 2008;
Lanckriet et al., 2004; Rakotomamonjy et al., 2007; Sonnenburg
et al., 2006; Suykens et al., 2002; Ye et al., 2008; Yu et al., 2010; Zien
and Ong, 2007) have been recently studied and employed to integrate
heterogeneous data and select multitype features. However, such
models train a single weight for all features from the same modality,
i.e. all features from the same data source are weighted equally,
when they are combined with the features from other sources. This
limitation often yields inadequate performance.

To address the above challenges, we propose a new
sparse multimodal multitask learning algorithm that integrates
heterogeneous genetic and phenotypic data effectively and
efficiently to identify disease-sensitive and cognition-relevant
biomarkers from multiple data sources. Different to LASSO
(Tibshirani, 1996), group LASSO (Yuan and Lin, 2006) and other
related methods that mainly find the biomarkers correlated to each
individual QT (memory score), we consider predicting each memory
score as a regression task and select biomarkers that tend to play an
important role in influencing multiple tasks. A joint classification
and regression multitask learning model is utilized to select the
biomarkers correlated to memory scores and disease categories
simultaneously.

Sparsity regularizations have recently been widely investigated
and applied to multitask learning models (Argyriou et al., 2007;
Kim and Xing, 2010; Micchelli et al., 2010; Obozinski et al., 2006,
2010; Sun et al., 2009). Sparse representations are typically achieved
by imposing non-smooth norms as regularizers in the optimization
problems. From the view of sparsity organization, we have two
types: (i) The flat sparsity is often achieved by �0-norm or �1-norm
regularizer or trace norm in matrix/tensor completion. Optimization
techniques include LARS (Efron et al., 2004), linear gradient search
(Liu et al., 2009), proximal methods (Beck and Teboulle, 2009). (ii)
The structured sparsity is usually obtained through different sparse
regularizers such as �2,1-norm (Kim and Xing, 2010; Obozinski
et al., 2010; Sun et al., 2009), �2,0-norm (Luo et al., 2010),
�∞,1-norm (Quattoni et al., 2009) (also denoted as �1,2-norm, �1,∞-
norm in different papers) and group �1-norm (Yuan and Lin, 2006)
which can be solved by methods in Micchelli et al. (2010) and
Argyriou et al. (2008). We propose a new combined structured sparse

Fig. 2. The proposed sparse multimodal multitask feature selection method
will identify biomarkers from multimodal heterogeneous data resources. The
identified biomarkers could predict not only disease status, but also cognitive
functions to help researchers better understand the underlying mechanism
from gene to brain structure and function, and to cognition and disease

regularization to integrate features from different modalities and to
learn a weight for each feature leading to a more flexible scheme for
feature selection in data integration, which is illustrated in Figure 3.
In our combined structured sparse regularization, the group �1-
norm regularization (blue circles in Fig. 3) learns the feature global
importance, i.e. the modal-wise feature importance of every data
modality on each class (task), and the �2,1-norm regularization (red
circles in Fig. 3) explores the feature local importance, i.e. the
importance of each feature for multiple classes/tasks. The proposed
method is applied to identify AD-sensitive biomarkers associated
with the cognitive scores by integrating heterogeneous genetic and
phenotypic data (as shown in Fig. 2). Our empirical results yield
clearly improved performance on predicting both cognitive scores
and disease status.

2 IDENTIFYING DISEASE SENSITIVE AND
QT-RELEVANT BIOMARKERS FROM
HETEROGENEOUS IMAGING GENETICS DATA

Pairwise univariate correlation analysis can quickly provide
important association information between genetic/phenotypic data
and QTs. However, it treats the features and the QTs as
independent and isolated units, therefore the underlying interacting
relationships between the units might be lost. We propose a new
sparse multimodal multitask learning model to reveal genetic and
phenotypic biomarkers, which are disease sensitive and QT-relevant,
by simultaneously and systematically taking into account an
ensemble of SNPs (single nucleotide polymorphism) and phenotypic
signatures and jointly performing two heterogeneous tasks, i.e.
biomarker-to-QT regression and biomarker-to-disease classification.
The QTs studied in this article are the cognitive scores.

In multitask learning, given a set of input variables (i.e. features
such as SNPs and MRI/PET measures), we are interested in learning
a set of related models (e.g. relations between genetic/imaging
markers and cognitive scores) to predict multiple outcomes (i.e.
tasks such as predicting cognitive scores and disease status). Because
these tasks are relevant, they share a common input space. As a
result, it is desirable to learn all the models jointly rather than
treating each task as independent and fitting each model separately,
such as Lasso (Tibshirani, 1996) and group Lasso (Yuan and Lin,
2006). Such multitask learning can discover robust patterns (because
significant patterns in a single task could be outliers for other tasks)
and potentially increase the predictive power.

i128



Copyedited by: TRJ MANUSCRIPT CATEGORY:

[16:31 29/5/2012 Bioinformatics-bts228.tex] Page: i129 i127–i136

Multidimensional imaging genetics data integration

In this article, we write matrices as uppercase letters and vectors
as boldface lowercase letters. Given a matrix W =[

wij
]
, its i-th row

and j-th column are denoted as wi and wj , respectively. The �2,1-

norm of the matrix W is defined as ||W ||2,1 =∑
i=1 ||wi||2 (also

denoted as �1,2-norm by other researchers).

2.1 Heterogeneous data integration via combined
structured sparse regularizations

First, we will systematically propose our new multimodal learning
method to integrate and select the genetic and phenotypic biomarkers
from large-scale heterogeneous data. In the supervised learning
setting, we are given n training samples {(xi,yi)}n

i=1, where xi =
(x1

i ,··· ,xk
i )T ∈�d is the input vector including all features from a

total of k different modalities and each modality j has dj features

(d =∑k
j=1dj). yi ∈�c is the class label vector of data point xi (only

one element in yi is 1, and others are zeros), where c is the number
of classes (tasks). Let X =[x1,··· ,xn]∈�d×n and Y =[y1,··· ,yc]∈
�c×n. Different to MKL, we directly learn a d ×c parameter matrix
as:

W =
⎡
⎣ w1

1 ... w1
c

... ... ...

wk
1 ... wk

c

⎤
⎦∈�d×c, (1)

where wq
p ∈�dq indicates the weights of all features in the q-th

modality with respect to the p-th task (class). Typically, we can use
a convex loss function L(X ,W ) to measure the loss incurred by W
on the training samples. Compared with MKL approaches that learn
one weight for one kernel matrix representing one modality, our
method will learn the weight for each feature to capture the local
feature importance. Since the features come from heterogeneous
data sources, we impose the regularizer R(

W
)

to capture the
interrelationships of modalities and features as:

min
W

L(X ,W )+γR(
W

)
, (2)

where γ is a trade-off parameter. In heterogeneous data fusion,
from multiview perspective of view, the features of a specific view
(modality) can be more or less discriminative for different tasks
(classes). Thus, we propose a new group �1-norm (G1-norm) as a
regularization term in Equation (2), which is defined over W as
following:

‖W‖G1
=

c∑
i=1

k∑
j=1

||wj
i ||2, (3)

which is illustrated by the blue circles in Figure 3. Then the
Equation (2) becomes:

min
W

L(X ,W )+γ1‖W‖G1
. (4)

Since the group �1-norm uses �2-norm within each modality and �1-
norm between modalities, it enforces the sparsity between different
modalities, i.e. if one modality of features are not discriminative
for certain tasks, the objective in Equation (4) will assign zeros
(in ideal case, usually they are very small values) to them for
corresponding tasks; otherwise, their weights are large. This new
group �1-norm regularizer captures the global relationships between
data modalities.

Fig. 3. Illustration of the feature weight matrix W T . The elements in matrix
with deep blue color have large values. The group �1-norm (G1-norm)
emphasizes the learning of the group-wise weights for a type of features
(e.g. all the SNPs features, or all the MRI imaging features, or all the
FDG-PET imaging features) corresponding to each task (e.g. the prediction
for a disease status or a memory score) and the �2,1-norm accentuates the
individual weight learning cross multiple tasks

However, in certain cases, even if most features in one modality
are not discriminative for the classification or regression tasks, a
small number of features in the same modality can still be highly
discriminative. From the multitask learning point of view, such
important features should be shared by all/most tasks. Thus, we
add an additional �2,1-norm regularizer into Equation (4) as:

min
W

L(X ,W )+γ1‖W‖G1
+γ2‖W‖2,1 . (5)

The �2,1-norm was popularly used in multitask feature selection
(Argyriou et al., 2008; Obozinski et al., 2010). Since the �2,1-norm
regularizer impose the sparsity between all features and non-sparsity
between tasks, the features that are discriminative for all tasks will
get large weights.

Our regularization items consider the heterogeneous features from
both group-wise and individual viewpoints. Figure 3 visualizes the
matrix W T as a demonstration. In Figure 3, the elements with deep
blue color have large values. The group �1-norm emphasizes the
group-wise weights learning corresponding to each task and the
�2,1-norm accentuates the individual weight learning cross multiple
tasks. Through the combined regularizations, for each task (class),
many features (not all of them) in the discriminative modalities
and a small number of features (may not be none) in the non-
discriminative modalities will learn large weights as the important
and discriminative features.

The multidimensional data integration has been increasingly
important to many biological and biomedical studies. So far, the
MKL methods are most widely used. Due to the learning model
deficiency, the MKL methods cannot explore both modality-wise
importance and individual importance of features simultaneously.
Our new structured sparse multimodal learning method integrates
the multidimensional data in a more efficient and effective way. The
loss function L(X ,W ) in Equation (8) can be replace by either least
square loss function or logistic regression loss function to perform
regression/classification tasks.

2.2 Joint disease classification and QT regression
Since we are interested in identifying the disease-sensitive and
QT-relevant biomarkers, we consider performing both logistic
regression for classifying disease status and multivariate regression
for predicting cognitive memory scores simultaneously (Wang
et al., 2011). A similar model was used in Yang et al. (2009) for
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heterogeneous multitask learning. Regular multitask learning only
considers homogeneous tasks such as regression or classification
individually. Joint classification and regression can be regarded as a
learning paradigm for handling heterogeneous tasks.

First, logistic regression is used for disease classification, which
minimizes the following loss function:

L1(W )=
n∑

i=1

c1∑
k=1

⎛
⎝yik log

c1∑
l=1

ewT
l xi −yik wT

k xi

⎞
⎠. (6)

Here, we perform three binary classification tasks for the following
three diagnostic groups respectively (c1 =3): AD, mild cognitive
impairment (MCI), and health control (HC).

Second, we use the traditional multivariate least squares
regression model to predict memory scores. Under the regression
matrix P ∈�d×c2 , the least squares loss is defined by

L2(P)=
∥∥∥X T P−Z

∥∥∥2

F
, (7)

where X is the data points matrix, P is the coefficient
matrix of regression with c2 tasks, the label matrix Z =[(

z1
)T

,
(

z2
)T

,··· ,(zn)T
]T

∈�n×c2 .

We perform the joint classification and regression tasks, the
disease-sensitive and QT-relevant biomarker identification task can
be formulated as the following objective:

min
V

n∑
i=1

c1∑
k=1

⎛
⎝yik log

c1∑
l=1

ewT
l xi −yik wT

k xi

⎞
⎠

+
∥∥∥X T P−Z

∥∥∥2

F
+γ1‖V‖G1

+γ2‖V‖2,1 ,

(8)

where V =[W P]∈�d×(c1+c2).As a result, the identified biomarkers
will be correlated to memory scores and also be discriminative to
disease categories.

Since the objective in Equation (8) is a non-smooth problem
and cannot be easily solved in general, we derive a new efficient
algorithm to solve this problem in the next subsection.

2.3 Optimization algorithm
We take the derivatives of Equation (8) with respect to W and P
respectively, and set them to zeros, we have

∂L1(W )

∂W
+2γ1

c1∑
i=1

Diwi +2γ2DW =0, (9)

2XX T P−2XZ +2γ1

c2∑
i=c1+1

Dipi +2γ2DP =0, (10)

where Di(1≤ i≤c1 +c2) is a block diagonal matrix with the k-
th diagonal block as 1

2
∥∥vk

i

∥∥
2

Ik (Ik is a dk by dk identity matrix),

D is a diagonal matrix with the k-th diagonal element as 1
2‖vk‖2

.

Since Di(1≤ i≤c1 +c2) and D depend on V =[ W P ], they are
also unknown variables to be optimized. In this article, we provide
an iterative algorithm to solve Equation (8). First, we guess a
random solution V ∈�d×(c1+c2), then we calculate the matrices
Di(1≤ i≤c1 +c2) and D according to the current solution V . After

obtaining the Di(1≤ i≤c1 +c2) and D, we can update the solution
V =[ W P ] based on Equation (9). Specifically, the i-th column of

P is updated by pi = (XX T +γ1Di +γ2D)−1X zi . We cannot update
W with a closed form solution based on Equation (9), but we can
obtained the updated W by the Newton’s method. According to
Equation (9), we need to solve the following problem:

min
W

L1(W )+γ1

c1∑
i=1

wT
i Diwi +γ2Tr(W T DW ). (11)

Similar to the traditional method in the logistic regression
(Krishnapuram et al., 2005; Lee et al., 2006), we can use the
Newton’s method to obtain the solution W .

For the first term, the traditional logistic regression derivatives
can be applied to get the first-and second-order derivatives (Lee
et al., 2006).

For the second term, the first-and second-order derivatives are

∂
c1∑

i=1
wT

i Diwi

∂Wup
=2Dp(u,u)Wup ,

∂
c1∑

i=1
wT

i Diwi

∂Wup∂Wvq
=2Dp(u,u)δuvδpq,

(12)

where Dp(u,u) is the u-th diagonal element of Dp.
For the third term, the first-and second-order derivatives are

∂Tr(W T DW )

∂Wup
=2D(u,u)Wup ,

∂Tr(W T DW )

∂Wup∂Wvq
=2D(u,u)δuvδpq.

(13)

After obtaining the updated solution V =[ W P ], we can calculate
the new matrices Di(1≤ i≤c1 +c2) and D. This procedure is
repeated until the algorithm converges. The detailed algorithm is
listed in Algorithm 1. We will prove that the above algorithm will
converge to the global optimum.

2.4 Algorithm analysis
To prove the convergence of the proposed algorithm, we need a
lemma as follows.

Lemma 1. For any vectors v and v0, we have the following

inequality: ‖v‖2 − ‖v‖2
2

2‖v0‖2
≤‖v0‖2 − ‖v0‖2

2
2‖v0‖2

.

Proof. Obviously, −(‖v‖2 −‖v0‖2)2 ≤0, so we have

−(‖v‖2 −‖v0‖2)2 ≤0⇒2‖v‖2‖v0‖2 −‖v‖2
2 ≤‖v0‖2

2

⇒‖v‖2 − ‖v‖2
2

2‖v0‖2
≤‖v0‖2 − ‖v0‖2

2
2‖v0‖2

, (14)

which completes the proof. �

Then we prove the convergence of the algorithm, which is
described in the following theorem.

Theorem 1. The algorithm decreases the objective value of problem
(8) in each iteration.
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Proof. In each iteration, suppose the updated W is W̃ , and the
updated P is P̃, then the updated V is Ṽ =[ W̃ P̃ ]. From Step 3 in
the Algorithm 1, we know that:

L1(W̃ )+γ1

c1∑
i=1

w̃T
i Diw̃i +γ2Tr(W̃ T DW̃ )

≤L1(W )+γ1

c1∑
i=1

wT
i Diwi +γ2Tr(W T DW ).

(15)

According to Step 4, we have:

∥∥∥X T P̃−Y
∥∥∥2

F
+γ1

c2∑
i=1

p̃T
i Dip̃i +γ2Tr(P̃T DP̃)

≤
∥∥∥X T P−Y

∥∥∥2

F
+γ1

c2∑
i=1

pT
i Dipi +γ2Tr(PT DP).

(16)

Based on the definitions of Di(1≤ i≤c1 +c2) and D, and Lemma 1,
we have two following inequalities:

K∑
k=1

∥∥∥ṽk
i

∥∥∥
2
−

K∑
k=1

∥∥∥ṽk
i

∥∥∥2

2

2
∥∥∥vk

i

∥∥∥
2

≤
K∑

k=1

∥∥∥vk
i

∥∥∥
2
−

K∑
k=1

∥∥∥vk
i

∥∥∥2

2

2
∥∥∥vk

i

∥∥∥
2

⇒
K∑

k=1

∥∥∥ṽk
i

∥∥∥
2
− ṽT

i Diṽi ≤
K∑

k=1

∥∥∥vk
i

∥∥∥
2
−vT

i Divi

⇒ γ1

c1+c2∑
i=1

K∑
k=1

∥∥∥ṽk
i

∥∥∥
2
−γ1

c1+c2∑
i=1

ṽT
i Di ṽi

≤ γ1

c1+c2∑
i=1

K∑
k=1

∥∥∥vk
i

∥∥∥
2
−γ1

c1+c2∑
i=1

vT
i Divi, (17)

and

d∑
k=1

∥∥∥ṽk
∥∥∥

2
−

d∑
k=1

∥∥∥ṽk
∥∥∥2

2

2
∥∥vk

∥∥
2

≤
d∑

k=1

∥∥∥vk
∥∥∥

2
−

d∑
k=1

∥∥∥vk
∥∥∥2

2

2
∥∥vk

∥∥
2

⇒ γ2

d∑
k=1

∥∥∥ṽk
∥∥∥

2
−γ2Tr(Ṽ T DṼ )

≤ γ2

d∑
k=1

∥∥∥vk
∥∥∥

2
−γ2Tr(V T DV ). (18)

Note that the following two equalities:

c1+c2∑
i=1

vT
i Divi =

c1∑
i=1

wT
i Diwi +

c2∑
i=1

pT
i Dipi,

Tr(V T DV )=Tr(W T DW )+Tr(PT DP),

(19)

Algorithm 1 An efficient iterative algorithm to solve the optimization
problem in Equation (8).

Input: X =[x1,x2,··· ,xn]∈�d×n, Y =[(
y1

)T
,
(

y2
)T

,··· ,(yn)T
]T

∈{0,1}n×c1 and Z =
[(

z1
)T

,
(

z2
)T

,··· ,(zn)T
]T

∈�n×c2 .

Output: W ∈�d×c1 and P ∈�d×c2 .
1. Initialize W ∈�d×c1 , P ∈�d×c2 . Let V =[ W P ]∈
�d×(c1+c2).
repeat

2. Calculate the block diagonal matrices Di(1≤ i≤c1 +c2),
where the k-th diagonal block of Di is 1

2
∥∥vk

i

∥∥
2

Ik . Calculate the

diagonal matrix D, where the k-th diagonal element is 1
2‖vk‖2

.

3. Update w by w−B−1a, where the d ∗(p−1)+
u(1≤u≤d ,1≤p≤c1)-th element of a∈�dc1×1 is

∂

(
L1(W )+γ1

c1∑
i=1

wT
i Diwi+γ2Tr(W T DW )

)

∂Wup
, the (d ∗(p−1)+

u,d ∗(q−1)+v)(1≤u,v≤d ,1≤p,q≤c1)-th element of

B∈�dc1×dc1 is
∂

(
L1(W )+γ1

c1∑
i=1

wT
i Diwi+γ2Tr(W T DW )

)

∂Wup∂Wvq
.

Construct the updated W ∈�d×c1 by the updated vector
w∈�dc1 , where the (u,p)-th element of W is the
(d ∗(p−1)+u)-th element of w.
4. Update the i-th column of P by pi = (XX T +γ1Di +
γ2D)−1X zi .
5. Update the V by V =[ W P ].

until Converges

then by adding Equations (15–18) in the both sides, we arrive at

L1(W̃ )+L2(P̃)+γ1

c1+c2∑
i=1

K∑
k=1

∥∥∥ṽk
i

∥∥∥
2
+γ2

d∑
k=1

∥∥∥ṽk
∥∥∥

2

≤ L1(W )+L2(P)+γ1

c1+c2∑
i=1

K∑
k=1

∥∥∥vk
i

∥∥∥
2
+γ2

d∑
k=1

∥∥∥vk
∥∥∥

2
.

Therefore, the algorithm decreases the objective value of problem
(8) in each iteration. �

In the convergence, W , P, Di(1≤ i≤c1 +c2) and D satisfy the
Equation (9). As the Equation (8) is a convex problem, satisfying the
Equation (9) indicates that V =[ W P ] is a global optimum solution
to the Equation (8). Therefore, the Algorithm 1 will converge
to the global optimum of the Equation (8). Since our algorithm
has the closed form solution in each iteration, the convergency is
very fast.

3 EMPIRICAL STUDIES AND DISCUSSIONS
Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). One goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical
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and neuropsychological assessment can be combined to measure
the progression of MCI and early AD. For up-to-date information,
see www.adni-info.org. Following a prior imaging genetics
study (Shen et al., 2010b), 733 non-Hispanic Caucasian participants
were included in this study. We empirically evaluate the proposed
method by applying it to the ADNI cohort, where a wide range
of multimodal biomarkers are examined and selected to predict
memory performance measured by five RAVLT scores and classify
participants into HC, MCI and AD.

3.1 Experimental design
Overall setting: our primary goal is to identify relevant genetic
and imaging biomarkers that can classify disease status and predict
memory scores (Fig. 2). We describe our genotyping, imaging and
memory data in Section 3.1; present the identified biomarkers in
Section 3.2; discuss the disease classification in Section 3.3; and
demonstrate the memory score prediction in Section 3.4.

Genotyping data: the single-nucleotide polymorphism (SNP) data
(Saykin et al., 2010) were genotyped using the Human 610-Quad
BeadChip (Illumina, Inc., San Diego, CA, USA). Among all SNPs,
only SNPs, belonging to the top 40 AD candidate genes listed
on the AlzGene database (www.alzgene.org) as of June 10, 2010,
were selected after the standard quality control (QC) and imputation
steps. The QC criteria for the SNP data include (i) call rate check
per subject and per SNP marker, (ii) gender check, (iii) sibling
pair identification, (iv) the Hardy–Weinberg equilibrium test, (v)
marker removal by the minor allele frequency and (vi) population
stratification. The quality-controlled SNPs were then imputed using
the MaCH software to estimate the missing genotypes. After that,
the Illumina annotation information based on the Genome build 36.2
was used to select a subset of SNPs, belonging or proximal to the top
40 AD candidate genes. This procedure yielded 1224 SNPs, which
were annotated with 37 genes (Wang et al., 2012). For the remaining
3 genes, no SNPs were available on the genotyping chip.

Imaging biomarkers: in this study, we use the baseline structural
MRI and molecular FDG-PET scans, from which we extract
imaging biomarkers. Two widely employed automated MRI analysis
techniques were used to process and extract imaging genotypes
across the brain from all baseline scans of ADNI participants
as previously described (Shen et al., 2010b). First, voxel-based
morphometry (VBM) (Ashburner and Friston, 2000) was performed
to define global gray matter (GM) density maps and extract local GM
density values for 86 target regions (Fig. 4a). Second, automated
parcellation via freeSurfer V4 (Fischl et al., 2002) was conducted to
define 56 volumetric and cortical thickness values (Fig. 4b) and to
extract total intracranial volume (ICV). Further information about
these measures is available in Shen et al. (2010b). All these measures
were adjusted for the baseline age, gender, education, handedness
and baseline ICV using the regression weights derived from the
healthy control participants. For PET images, following Landau
et al. (2009), mean glucose metabolism (CMglu) measures of 26
regions of interest (ROIs) in the Montreal Neurological Institute
(MNI) brain atlas space were employed in this study (Fig. 4c).

Memory data: The cognitive measures we use to test the proposed
method are the baseline RAVLT memory scores from all ADNI
participants. The standard RAVLT format starts with a list of 15
unrelated words (List A) repeated over five different trials and

Fig. 4. Weight maps for multimodal data: (a) VBM measures from MRI,
(b) FreeSurfer measures from MRI, (c) glucose metabolism from FDG-PET,
and (d) top SNP findings. Weights for disease classification were labeled
as Diag-L (left side), Diag-R (right side) or Diag; and weights for RAVLT
regression were labeled as AVLT-L, AVLT-R or AVLT. In (a–c), weights
were normalized by dividing the corresponding threshold used for feature
selection, and thus all selected features had normalized weights ≥1 and were
marked with ‘x’. In (d), only top SNPs were shown, weights were normalized
by dividing the weight of the 10th top SNP, and the top 10 SNPs for either
classification or regression task had normalized weights ≥1 and were marked
with ‘x’

Table 1. RAVLT cognitive measures as responses in multitask learning

Task ID Description of RAVLT scores

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled
TOTB List B total number of words recalled
T30 30 minute delay total number of words recalled
RECOG 30 minute delay recognition score

participants are asked to repeat. Then the examiner presents a second
list of 15 words (List B), and the participant is asked to remember
as many words as possible from List A. Trial 6, termed as 5 min
recall, requests the participant again to recall as many words as
possible from List A, without reading it again. Trial 7, termed as
30 min recall, is administrated in the same way as Trial 6, but after
a 30 min delay. Finally, a recognition test with 30 words read aloud,
requesting the participant to indicate whether or not each word is on
List A. The RAVLT has proven useful in evaluating verbal learning
and memory. Table 1 summarizes five RAVLT scores used in our
experiments.
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Table 2. Multimodal feature sets as predictors in multiview learning

View ID (feature set ID) Modality No. of features

VBM MRI 86
FreeSurfer MRI 56
FDG-PET FDG-PET 26
SNP Genetics 1244

Participant selection: In this study, we included only participants
with no missing data for all above four types (views) of features and
cognitive scores, which resulted in a set of 345 subjects (83 HC,
174 MCI and 88 AD). The feature sets extracted from baseline
multimodal data of these subjects are summarized in Table 2.

3.2 Biomarker identifications
The proposed heterogeneous multitask learning scheme aims to
identify genetic and phenotypic biomarkers that are associated
with both cognition (e.g. RAVLT in this study) and disease
status in a joint regression and classification framework. Here we
first examine the identified biomarkers. Shown in Figure 4 is a
summarization of selected features for all four data types, where the
regression/classification weights are color-mapped for each feature
and each task.

In Figure 4a, many VBM measures are selected to be associated
with disease status, which is in accordance with known global brain
atrophy pattern in AD. The VBM measures associated with RAVLT
scores seem to be a subset of those disease-sensitive markers,
showing a specific memory circuitry contributing to the disease,
as well as suggesting that the disease is implicated by not only this
memory function but also other complicated factors. Evidently, the
proposed method could have a potential to offer deep mechanistic
understandings. Shown in Figure 5 is a comparison between RAVLT-
relevant markers and AD-relevant markers and their associated
weights mapped onto a standard brain space.

Figure 4b shows the identified markers from the FreeSurfer data.
In this case, a small set of markers are discovered. These markers,
such as hippocampal volume, amygdala volume and entorhinal
cortex thickness, are all well-known AD-relevant markers, showing
the effectiveness of the proposed method. These markers are also
shown to be associated with both AD and RAVLT. The FDG-PET
findings (Fig. 4c) are also interesting and promising. The AD-
relevant biomarkers include angular, hippocampus, middle temporal
and post cingulate regions, which agrees with prior findings e.g.
Landau et al. (2009). Again, a subset of these markers are also
relevant to RAVTL scores.

As to the genetics, only top findings are shown in Figure 4d. The
APOE E4 SNP (rs429358), the best known AD risk factor, shows the
strongest link to both disease status and RAVLT scores. A few other
important AD genes, including recently discovered and replicated
PICALM and BIN1, are also included in the results. For those newly
identified SNPs, further investigation in independent cohorts should
be warranted.

3.3 Improved disease classification
We classify the selected participants of ADNI cohort using the
proposed methods by integrating the four different types of data.

Fig. 5. VBM weights of joint regression of AVLT scores and classification
of disease status were mapped onto brain (a) Overall weights for disease
classification; (b) Overall weights for AVLT regression

We report the classification performances of our method. We
compare our methods against several most recent MKL methods that
are able to make use of multiple types of data including SVM �∞
MKL method (Sonnenburg et al., 2006), SVM �1 MKL (Lanckriet
et al., 2004), SVM �2 MKL method (Kloft et al., 2008), least
square (LSSVM) �∞ MKL method (Ye et al., 2008), LSSVM
�1 MKL method (Suykens et al., 2002) and LSSVM �2 MKL
method (Yu et al., 2010). We also compare a related method,
Heterogeneous Multitask Learning (HML) method (Yang et al.,
2009), which simultaneously conducts classification and regression
like our method. However, because this method is designed for
homogenous input data and is not able to deal with multiple types
of data at the same time, we concatenate the four types of features
as its input. In addition, we report the classification performances
by our method and SVM on each individual types of data as
baselines. SVM on a simple concatenation of all four types of
features are also reported. In our experiments, we conduct three-
class classification, which is more desirable and more challenging
than binary classifications using each pair of three categories.

We conduct standard 5-fold cross-validation and report the
average results. For each of the five trials, within the training
data, an internal 5-fold cross-validation is performed to fine
tune the parameters. The parameters of our methods [γ1
and γ2 in Equation (8)] are optimized in the range of{

10−5,10−4,...,104,105
}

. For SVM method and MKL methods,

one Gaussian kernel is constructed for each type of features[
i.e.K(

xi,xj
)=exp

(
−γ

∥∥xi −xj
∥∥2

2

)]
, where the parameters γ are

fine tuned in the same range used as our method. We implement
the MKL methods using the codes published by Yu et al. (2010).
Following Yu et al. (2010), in LSSVM �∞ and �2 methods,
the regularization parameter λ is estimated jointly as the kernel
coefficient of an identity matrix; in LSSVM �1 method, λ is set to 1;
in all other SVM approaches, the C parameter of the box constraint is
set to 1. We use LIBSVM (http://www.csie.ntu.edu.tw/ cjlin/libsvm/)
software package to implement SVM. We implement HML method
following the details in its original work, and set the parameters to be
optimal. The classification performances measured by classification
accuracy of all compared methods in AD detection are reported in
Table 3.

A first glance at the results shows that our methods consistently
outperform all other compared methods, which demonstrates the
effectiveness of our methods in early AD detection. In addition,
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Table 3. Classification performance comparison between the proposed
method and related methods for distinguishing HC, MCI and AD

Methods Accuracy (mean + SD)

SVM (SNP) 0.561 ± 0.026
SVM (FreeSurfer) 0.573 ± 0.012
SVM (VBM) 0.541 ± 0.032
SVM (PET) 0.535 ± 0.026
SVM (all) 0.575 ± 0.019
HML (all) 0.638 ± 0.019

SVM �∞ MKL method 0.624 ± 0.031
SVM �1 MKL method 0.593 ± 0.042
SVM �2 MKL method 0.561 ± 0.037
LSSVM �∞ MKL method 0.614 ± 0.031
LSSVM �1 MKL method 0.585 ± 0.018
LSSVM �2 MKL method 0.577 ± 0.033

Our method (SNP) 0.673 ± 0.021
Our method (FreeSurfer) 0.689 ± 0.029
Our method (VBM) 0.669 ± 0.031
Our method (PET) 0.621 ± 0.028

Our method 0.726 ± 0.032

the methods using multiple data sources are generally better than
their counterparts using one single type of data. This confirms
the usefulness of data integration in AD diagnosis. Moreover, our
methods always outperform the MKL methods in these experiments,
although both take advantage of multiple data sources. This
observation is consistent with our theoretical analysis. That is, our
methods not only assign proper weight to each type of data, but also
consider the relevance of the features inside each individual type of
data. In contrast, the MKL methods address the former while not
taking into account the latter.

3.4 Improved memory performance prediction
Now we evaluate the memory performance prediction capability of
the proposed method. Since the cognitive scores are continuous,
we evaluate the proposed method via regression and compare it
to two baseline methods, i.e. multivariate linear regression (MRV)
and ridge regression. Since both MRV and ridge regression are for
single-type input data, we conduct regression on each of the four
types of features and a simple concatenation of them. Similarly, we
also predict memory performance by our method on the same test
conditions. When multiple-type input data are used, as demonstrated
in Section 3.2, our method automatically and adaptively select the
prominent biomarkers for regression. For each test case, we conduct
standard 5-fold cross-validation and report the average results. For
each of the five trials, within the training data, an internal 5-fold
cross-validation is performed to fine tune the parameters in the range

of
{

10−5,10−4,...,104,105
}

for both ridge regression and our

method. For our method, in each trial, from the learned coefficient
matrix we sum the absolute values of the coefficients of a single
feature over all the tasks as the overall weight, from which we pick
up the features with non-zero weights (i.e. w>10−3) to predict
regression responses for test data. The performance assessed by
root mean square error (RMSE), a widely used measurement for
statistical regression analysis, are reported in Table 4.

Table 4. Comparison of memory prediction performance measured by
average RMSEs (smaller is better)

Test case TOTAL TOT6 TOTB T30 RECOG

MRV (SNP) 6.153 2.476 2.168 2.201 3.483
MRV (FreeSurfer) 5.928 2.235 2.039 2.088 3.339
MRV (VBM) 6.093 2.289 2.142 2.137 3.394
MRV (PET) 6.246 2.514 2.237 2.215 3.615
MRV (all) 5.909 2.232 1.992 2.032 3.306

Ridge (SNP) 6.076 2.416 2.147 2.117 3.368
Ridge (FreeSurfer) 5.757 2.203 2.004 2.017 3.237
Ridge (VBM) 5.976 2.147 2.038 2.129 3.249
Ridge (PET) 6.153 2.443 2.186 2.107 3.515
Ridge (all) 5.704 2.143 1.989 1.994 3.193

Our method (SNP) 5.991 2.201 2.008 2.001 3.107
Our method (FreeSurfer) 5.601 2.106 1.947 1.886 3.015
Our method (VBM) 5.715 2.011 1.899 1.974 3.041
Our method (PET) 6.013 2.241 2.017 2.017 3.331
Our method (all) 5.506 1.984 1.886 1.841 2.989

From Table 4 we can see that the proposed method always has
better memory prediction performance. Among the test cases, the
FreeSurfer imaging measures and VBM imaging measure have
similar predictive power, which are better than those of PET imaging
measures and SNP features. In general, combining the four types of
features are better than only using one type of data. Since our method
adaptively weight each type of data and each feature inside a type
of data, it has the least regression error when using all available
input data. These results, again, demonstrated the usefulness of our
method and data integration in early AD diagnosis.

4 CONCLUSIONS
We proposed a novel sparse multimodal multitask learning
method to identify the disease-sensitive biomarkers via integrating
heterogeneous imaging genetics data. We utilized the joint
classification and regression learning model to identify the
disease-sensitive and QT-relevant biomarkers. We introduced a
novel combined structured sparsity regularization to integrate
heterogeneous imaging genetics data, and derived a new efficient
optimization algorithm to solve our non-smooth objective function
and followed with the rigorous theoretical analysis on the
global convergency. The empirical results showed our method
improved both memory scores prediction and disease classification
accuracy.
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