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ABSTRACT

Motivation: Automated annotation of neuroanatomical connectivity

statements from the neuroscience literature would enable accessible

and large-scale connectivity resources. Unfortunately, the connectivity

findings are not formally encoded and occur as natural language text.

This hinders aggregation, indexing, searching and integration of the

reports. We annotated a set of 1377 abstracts for connectivity rela-

tions to facilitate automated extraction of connectivity relationships

from neuroscience literature. We tested several baseline measures

based on co-occurrence and lexical rules. We compare results from

seven machine learning methods adapted from the protein interaction

extraction domain that employ part-of-speech, dependency and

syntax features.

Results: Co-occurrence based methods provided high recall with

weak precision. The shallow linguistic kernel recalled 70.1% of the

sentence-level connectivity statements at 50.3% precision. Owing to

its speed and simplicity, we applied the shallow linguistic kernel to a

large set of new abstracts. To evaluate the results, we compared 2688

extracted connections with the Brain Architecture Management

System (an existing database of rat connectivity). The extracted con-

nections were connected in the Brain Architecture Management

System at a rate of 63.5%, compared with 51.1% for co-occurring

brain region pairs. We found that precision increases with the recency

and frequency of the extracted relationships.

Availability and implementation: The source code, evaluations,

documentation and other supplementary materials are available at

http://www.chibi.ubc.ca/WhiteText.

Contact: paul@chibi.ubc.ca

Supplementary information: Supplementary data are available at

Bioinformatics Online.
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1 INTRODUCTION

The brain is a vast interconnected network. Each neuron com-

municates with many others through chemical and electrical syn-

apses to integrate information. Groups of neurons (in structures

such as nuclei or layers) make diverse connections across the

brain, forming pathways of information flow. This structural

connectivity is a major determinant of brain function and is

frequently used by neuroscientists and clinicians to interpret

physiological data. Examples include understanding strokes

(Haines, 2004) and interpreting brain imaging results. Evidence

for connectivity abnormalities has been found in bipolar

(Houenou et al., 2007), autism (Koshino et al., 2005),

Alzheimer’s (Stam et al., 2007) and schizophrenia patients

(Karlsgodt et al., 2008). A major goal of modern neuroscience

is to understand the organization of the brain at all levels in as

much detail as possible, and to understand how this networked

organization relates to brain function and ultimately behaviour

and human health (Sporns, 2011).
The characterization of the connectivity network or wiring

diagram of the brain is incomplete (Crick and Jones, 1993).

In part this is due to the complexity of the brain and the difficulty

in collecting data. However, we suggest that informatics technol-

ogies can be used to leverage existing knowledge that has already

been collected to make new discoveries and guide further

experimentation.

In this work, we are primarily concerned with ‘macroconnec-

tions’, or connections that can be identified between small brain

regions (as opposed to microcircuitry, which describes the con-

nections among neurons per se). These macroconnections be-

tween groups of neurons are predicted to number between

25 000 and 100 000 (Bota et al., 2003). This suggests a high

level of complexity, although comfortably placed between the

more gross levels of brain organization and the microarchitec-

ture, which encompasses billions of neurons and quadrillions of

synapses (Sporns et al., 2005). Furthermore, this estimated

number of macroconnections is smaller in scale than estimates

of the human protein interactome at 650 000 interactions among

25 000 proteins (Stumpf et al., 2008).
Connectivity between brain regions can be assayed using tract

tracing or electrophysiology. Tract tracing typically involves

injecting a dye or other tracer (e.g. horseradish peroxidase)

into one brain region and tracking the fate of the tracer as it

follows axonal pathways (Lanciego and Wouterlood, 2011).

Electrophysiological methods use electrical or other stimulation

in one site along with electrical recording at a second site to test

the functional connectivity of regions. Using these methods, a

researcher can determine connections that send signals to the

region (afferent) or away from the region (efferent). Over

many years, thousands of connectivity studies have been per-

formed, each of which typically elucidates, at most, a few con-

nections. The presence of a deep literature on neuronal*To whom correspondence should be addressed.
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connectivity is a major motivation for this work: the data are out
there, they just need to be assembled.
Attempts to turn this huge accumulation of knowledge into an

‘omics’ scale database have been limited, despite the potential
value of such a resource. Previous efforts have primarily used
manual reviews of the literature to laboriously generate connect-

ivity maps for limited parts of the brain. In 1991, Felleman and
Van Essen published a connectivity matrix of the macaque visual
cortex covering 305 pathways between 32 areas (Felleman and

Van Essen, 1991). Currently, a large number of collated connec-
tions are stored in the Collations of Connectivity data on the
Macaque brain database (CoCoMac) (Kotter, 2004). CoCoMac

contains detailed information from 413 literature reports regard-
ing 7007 macaque brain regions. A fourth model organism with
large-scale connectivity data is the rat, with more than 40000

formalized reports of connections in the Brain Architecture
Management System (BAMS) (Bota et al., 2005). Information
is added to these databases manually, and therefore, they

are accurate but sparse. Currently, the only complete connec-
tome scale database is the neuron-level wiring diagram of
Caenorhabditis elegans, determined from electron micrographs

(White et al., 1986).
We sought to extend and complement manual efforts with

automated text mining techniques. More than 10 years of efforts

to recognize gene and protein mentions and their interactions
inspire our work (Blaschke et al., 1999; Jensen et al., 2006). In
the gene interaction task, one must extract information from

sentences such as ‘gene A interacts with gene B’ (to give a toy
example). Despite the difficulty of this task, great progress has
been made. A comprehensive evaluation of kernel methods for

extracting protein–protein interactions detailed precision and
recall values ranging from 45 to 70% by varying experiment
design, dataset and method tested (Tikk et al., 2010). At the

second Critical Assessment of Information Extraction systems
in Biology (BioCreAtIvE II), the top team was able to extract
normalized directed interaction pairs from full-text articles, with

precision of 37% and recall of 33% (Krallinger et al., 2008). The
analogy to brain connectivity is tight: we wish to extract infor-
mation from sentences akin to ‘brain region A connects to brain

region B’. This related research gives us hope that the approaches
applied to extracting gene interaction information can success-
fully mine connectivity relations.

To our knowledge, there have been no previous attempts to
extract connectivity information using text mining methods. The
closest work to our own is that of Burns et al. (2007), which was

aimed at extracting information about tract-tracing experiments,
trained and evaluated with a manually annotated corpus of 1047
sentences from 21 documents. Although Burns et al. describe

named entity recognition (e.g. identification of label injection
sites), they did not report extraction of connectivity statements
themselves.

For the work presented here, we have simplified the problem
by limiting our input dataset and output results. We focus on
abstracts from one journal, the Journal of Comparative

Neurology (JCN), because it is enriched for tract-tracing studies.
We used abstracts rather than full-text documents because they
are enriched for high-level summary statements and are more

accessible. We also break our task into several subtasks, isolating
the steps of brain region term recognition and normalization

from the evaluations (French et al., 2009; French and Pavlidis,
2011). We only consider the presence of connectivity relations,
ignoring the type, strength or direction of the connection. These

limitations make the task simpler and set the stage for future
more detailed studies.

Our results show that text mining approaches previously used
to analyse protein networks can be usefully applied to brain
connectivity. Our large manually annotated corpus allowed test-

ing and training of various techniques possible, and we also per-
form extensive manual validation of the results. Beyond the

corpus-based evaluations, we compared a large set of automat-
ically extracted connectivity statements with an existing connect-

ivity database with favourable results. Together with our
previous work on term recognition and normalization, we pre-
sent a completely automated system for extraction of brain con-

nectivity information from abstracts.

2 METHODS

2.1 Annotated data

To train and test text mining algorithms, we created a large gold standard

dataset. This dataset or corpus consists of abstracts manually annotated

by an undergraduate research assistant (S.L.) for connection verbs, spe-

cies of study, brain region mentions and connections between them. We

annotated 1377 abstracts for 4276 connections and 17585 brain region

mentions. Abstracts were randomly chosen from the JCN (years 1975–

2008). This dataset has been previously used to demonstrate automated

brain region recognition and normalization (French et al., 2009; French

and Pavlidis, 2011), without using the connectivity annotations. Each

annotated connection consists of two brain regions, text describing the

connection and the associated organism. This corpus provides sufficient

training examples for machine-learning methods.

We developed guidelines and software for the annotation process.

Briefly, our main guidelines were as follows: (1) annotate all brain

region mentions, regardless of whether they are part of a connection;

(2) annotate all connections and brain regions for all organisms and or-

ganism states; (3) do not annotate mentions of white matter tracts or

nerves; and (4) only annotate monosynaptic or direct connections. We

accepted connections that were stated in titles or introductory sentences

that assume connections between two high-level regions. Example rela-

tionships that were rejected are ‘may be connected’, ‘influences’, ‘invaded’

and ‘alters activity’. The General Architecture for Text Engineering was

used by annotators to highlight and connect brain region mentions in text

(Cunningham et al., 2002).

2.2 Co-occurrence and rule-based methods

To extract neuroanatomical connections as described by the abstract au-

thors, we must at least link two brain region mentions. Our first method,

acting as a naı̈ve baseline method, predicts a stated connection between

every pair of brain region mentions (Jensen et al., 2006). We evaluate

co-occurrence for single sentences and entire abstracts (including title).

We created two simple rule-based extensions of the co-occurrence tech-

nique. The first simply limits co-occurrence extraction to sentences with

less than a set number of brain region mentions. The second requires

presence of a connectivity-related keyword (‘afferent’, ‘efferent’, ‘pro-

jects’, ‘projection’, ‘pathway’ or ‘inputs’).

2.3 Kernel-based methods

Seven advanced kernel-based methods were applied to the dataset. These

methods were originally designed for extraction of protein–protein inter-

actions. Each technique uses different features, parameters and kernel
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functions. Implementations were brought into a common evaluation

framework by Tikk and colleagues (Tikk et al., 2010). Syntax and de-

pendency trees for the sentences were computed by the Charniak-Lease

re-ranking (McClosky et al., 2006) and Stanford (De Marneffe et al.,

2006) parsers, respectively (same versions used in the Tikk et al. frame-

work). The methods are categorized according to the type of features

extracted. Four syntax tree-based methods use different techniques to

compare the sentence parse trees (Collins and Duffy, 2001; Kuboyama

et al., 2007; Moschitti, 2005; Vishwanathan and Smola, 2002). Going

beyond syntax parsers, the all-paths graph kernel (Airola et al., 2008)

and k-band shortest path spectrum kernel (Tikk et al., 2010) use depend-

ency parse information. Finally, the shallow linguistic kernel (SLK) uses

only shallow parsing information such as word occurrences and

part-of-speech tags (Giuliano et al., 2006). Further details about the ker-

nels are available on the supplement website. We used this framework to

benchmark each of the kernel-based methods on the brain region con-

nectivity task. Of the nine methods described by Tikk et al., we were able

to successfully test seven, including the three top-performing kernels re-

ported by Tikk et al. (2010). The same parameter sets used by Tikk and

colleagues were tested on our corpus.

2.4 Experiment setup

We evaluate connection extraction independently of the previously

described methods for automated brain region recognition (French

et al., 2009). This is done by providing the manually annotated brain

region mentions to the relation extraction algorithm. Under this design,

the extraction task only requires correct linking of brain region mentions.

To find a high-performing method, the different methods and varying

parameters were run on a subset of 1146 abstracts. The top-performing

classifier and parameter set were retested on the full set of 1377 abstracts

to gauge generalizability. Results for the kernel methods were computed

using 10-fold cross-validation. Each sentence became an input instance

for the kernel methods (including article title). Sentences of an abstract

were not split between training and testing sets (document-level split).

2.5 Evaluation

Several evaluations were performed to judge the accuracy of the extracted

connectivity statements. We primarily report the results from the

cross-validation experiments that test predictions against the manually

annotated connections. Detailed evaluation and annotation guidelines

are provided as Supplementary Materials.

Performance is measured against the number of true connectivity re-

lations that are annotated completely within a sentence or an abstract.

The rule- and co-occurrence-based methods can operate at the abstract or

sentence level, whereas the kernel methods are limited to single sentences.

Precision is computed as the proportion of predicted relations that are

correct, and recall is the proportion of true relations that are predicted by

the method. The f-measure is the harmonic mean of these two values,

providing a balance of both. We also compute the area under the receiver

operating curve where applicable (AUC). This measure uses a ranked list

of predictions with descending classification prediction scores that ap-

proximate confidence in the prediction. This ranking allows computation

of the true-positive and false-positive rates for a range of discrimination

thresholds. Previous experiments have found the AUC measure to be

more robust and stable than f-measure for interaction mining (Tikk

et al., 2010).

2.6 Comparison with existing connectivity database

Normalization of brain region mentions to brain region concepts in for-

malized lexicons was targeted to the BAMS atlas (Swanson, 1999).

BAMS was chosen because of its wealth of curated rat-tract-tracing stu-

dies (Bota et al., 2005). In addition, rat is the most commonly studied

species in our corpus. Our previously described Bag of Stems resolver was

applied, with all mention editors used, including those that map region

mentions to larger enclosing brain regions (French and Pavlidis, 2011).

The lexical information in BAMS was expanded with synonym informa-

tion to increase normalization performance. All possible normalized par-

ings are evaluated when a mention maps to more than one region.

Connections in the BAMS connectivity matrices were up-propagated in

the anatomy hierarchy, which ensures that if there is a connection be-

tween regions A and B, then all enclosing regions of A and B are also

connected. Self-connections extracted from literature were ignored. The

Linnaeus species tagger was used to recognize species names in the ab-

stracts (Gerner et al., 2010).

3 RESULTS

Our gold standard is a set of manually annotated 4276 brain

region connectivity relations across a corpus of 1377 abstracts.
To gauge interannotator agreement, a second curator (L.X.)

annotated a random subset of 231 documents. Roughly 80%
of the second curator’s annotations matched the primary curator

(79.5% recall at 82.3% precision). Unlike the automated meth-

ods that predict relations between given brain region mention
spans, this evaluation required both annotators to mark the

same spans and relationships. By removing this restriction and
allowing partially matching spans, the precision and recall reach

93.9% and 91.9%, respectively.
We used a co-occurrence analysis to reveal the proportion of

brain region mention pairs that are co-mentioned and described
as connected. Co-occurrence assumes the relation is a connect-

ivity statement. At the abstract level, this yields a precision of
only 2.2% at 100% recall and a f-measure of 4.3%. Within a

sentence, co-occurrences between all pairs predict connected

pairs at 13.3% precision and 72.4% recall (the remaining rela-
tions span sentences). This level of recall means that more than

¼ of all annotated connectivity relations are formed with regions
in different sentences. Owing to the difficulty in extracting con-

nections spanning sentences, all of our subsequent evaluations
are performed at the sentence level, with the relations spanning

sentences excluded. Under this evaluation framework, sentence-

level co-occurrence recalls 100% of the remaining 3097 relations.
We tested two simple modifications of the sentence-level

co-occurrence technique. The first reduces co-occurrence predic-

tions to sentences with a limited number of brain region men-

tions. By extracting co-occurring pairs from sentences with only
two brain region mentions, precision reaches 23.1% and 17.2%

recall (f-measure¼ 19.7%). This means that an average sentence
with two brain region mentions is reporting a connection in

almost one of four cases. By varying this threshold, the f-measure
increases until sentences with six or more brain region mentions

are included. We observed that some of these larger sentences

merely list brain regions involved in the study and not their re-
lationships. By limiting the threshold at five brain region men-

tions or less per sentence, co-occurrence provides 18.8%
precision and 66.1% recall (Table 1). The second rule tested re-

quires the sentences contain connectivity-related keywords (see
Methods section). This keyword-based rule increases recall to

17.4% and precision to 92.7% (f-measure¼ 29.4%). We created

a new approach named ‘Keyword 5-threshold’ by combining
these two rules. This again provides improvement, with

f-measure reaching 34.1%. As expected, rule-based methods

2965

Automated annotation of neuroanatomy experiments



increase precision at the cost of lower recall when compared with

unrestricted co-occurrence.

Next, we applied seven previously published methods for ex-

tracting protein–protein interactions to our connectivity relation

dataset. Although the methods were designed for a different type

of biomedical relation, they did not require any modification for

our application. The cross-validation results on the training data-

set (1146 abstracts) are provided in Table 1. For each method,

the parameter set with the highest AUC score is shown. The

parameter sets range in size and were reproduced from Tikk

et al. without modification (primarily grid searches of support

vector machine settings). The f-measure scores for all of the seven

methods outperform unrestricted co-occurrence-based analysis

for at least one parameter set. The simple rule-based methods

outperform the more complex partial tree- and subset tree-based

methods. Although all of the syntax tree-based methods are out-

performed by the Keyword 5-threshold approach, they provide

much higher precision than recall. When ranked by AUC, the

SLK performs best with a 58.3% f-measure and an AUC of

88.9%. The All Paths Graph and k-band shortest path spectrum

kernel methods rank a close second and third, respectively, with

similar scores.
We choose the SLK method for subsequent experiments

owing to its accuracy, speed and single parameter set (global

n-gram¼ 3 and local window¼ 2). Unlike the other kernel meth-

ods, the SLK method uses only shallow linguistic information at

the local (neighbouring words) and global sentence levels to pre-

dict relationships (Giuliano et al., 2006). This information forms

feature vectors that are used to train a support vector machine

classifier (scalar product kernel). The performance of SLK on the

complete set of 1377 abstracts is consistent with the

cross-validation results (f-measure of 0.592). Figure S1 displays

the resulting receiver operating characteristic (ROC) curve

(AUC¼ 0.899).
We applied the SLK classifier to candidate sentences extracted

from a set of 12 557 abstracts from the JCN (covering 1975–

2011), previously unseen by the algorithm. Our automatic

brain region recognizer provided 33 466 sentences that mention

two or more brain regions (French et al., 2009; French and

Pavlidis, 2011). Within these sentences, SLK predicted 18% of

the 156 484 possible brain region pairings to be connectivity re-

lations. Of these predicted relations, 9676 are in an abstract that

mentions rat and can be evaluated against BAMS. Figure 1

shows the progression from abstracts to predicted connectivity

relationships.
To evaluate the precision of the predicted connections, we

manually reviewed a random subset of 2000 abstracts. Each

pair was evaluated by two curators, yielding an interannotator

agreement rate of 85%. Conflicts were resolved by a third cur-

ator or by consensus after discussion. Overall, the SLK predic-

tions were 55.3% precise. Errors from the automated steps

of named entity recognition and abbreviation expansion were

11% and 4%, respectively. These rates suggest a lesser impact

Table 1. Sentence level training set cross-validation results

Kernel Parser type Parameter sets Precision Recall F-measure AUC

Co-occurrence None 1 13.30% 100.00% 23.50%

Subset tree kernel Syntax 12 44.20% 20.80% 28.10% 74.80%

Co-occurrence five threshold None 25 18.80% 66.10% 29.30%

Partial tree kernel Syntax 12 43.30% 23.10% 29.80% 75.20%

Keyword co-occurrence None 1 17.40% 92.70% 29.40%

Spectrum tree kernel Syntax 21 37.40% 26.10% 30.20% 72.90%

Subtree kernel Syntax 12 40.70% 25.20% 30.80% 74.60%

Keyword five threshold None 25 23.70% 60.80% 34.10%

k-band shortest path spectrum Dependency 288 46.80% 70.50% 55.80% 86.70%

Shallow linguistic kernel (SLK) Part-of-speech tagger 1 50.30% 70.10% 58.30% 88.90%

All-paths graph kernel Dependency 4 60.40% 57.90% 58.40% 88.40%

AUC, area under the receiver operating curve; SLK, shallow linguistic kernel.

Fig. 1. Flow chart depicting the processing steps for comparison with the

Brain Architecture Management System
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of named entity recognition errors when compared with assess-

ments in the protein–protein interaction domain (Kabiljo et al.,

2009). Table 2 presents the five most and least confident con-

nectivity relations for the rat brain. Classification confidence is

approximated with the SLK prediction score (distance to clas-

sifying hyperplane), with highest values representing the cases

closest to positive training examples. Two of the most confident

predictions are extracted from an article title and have the same

form (ranks 1 and 5). The sentences containing top predictions

are shorter on average (192 characters) than the sentences with

least confident predictions (282 characters), suggesting sentence

complexity affects the prediction results. Of these 10 examples,

only one is clearly a false-positive prediction (rank 9764), while

several others point to errors in previous automated steps. The

mentions of ‘internal capsule’ (rank 9766) and ‘Met-enkephalin’

(rank 4) are incorrectly predicted as brain region mentions (our

definition of a brain region excludes fibre tracts like the internal

capsule, while enkephalin is a peptide). We manually compared

these 10 results with the BAMS system and found it surprisingly

difficult to map the mentioned regions to those in BAMS. For

example, ‘retrosplenial dysgranular cortex’ and ‘dorsal medullary

reticular column’ were not found in BAMS. In the end, corres-

ponding connections were found in BAMS for several of the

relationships, but only between enclosing regions (ranks 9767

and 5).

Encouraged by these results, we did a comparison of the re-

sults from the 12 557 abstracts with BAMS, to gauge accuracy of

connections and the extent to which our approach might supple-

ment manual curation efforts. Compared with the manual anno-

tations, this is a less precise evaluation because BAMS does not

cover the complete literature and is limited to rat studies (Bota

et al., 2005). In addition, mapping errors resulting from linking

brain region mentions to target regions in BAMS reduces accur-

acy (French and Pavlidis, 2011). For example, 12% of mentions

are mapped to more than one brain region owing to ambiguous

synonyms. To benchmark the BAMS evaluation metric, we first

tested it on the manually curated connectivity relations from our

training corpus of 1377 abstracts. Our process first extracts ab-

stracts that used rat (based on Linneaus analysis) and maps the

brain region mentions to the BAMS lexicon. These rat

Table 2. Top- and bottom-predicted relations from the 12 557 abstract set, ranked by SLK classification score

Rank Sentence Score Reference

1 Trigeminal projections to hypoglossal and facial motor nuclei in the rat. 3.47 Pinganaud, et al., 1999

2 The cortical projections to retrosplenial dysgranular cortex (Rdg) originate primarily in

the infraradiata, retrosplenial, postsubicular and areas 17 and 18b cortices.

3.34 van Groen and Wyss, 1992

3 The thalamic projections to retrosplenial dysgranular cortex (Rdg) originate in the

anterior (primarily the anteromedial), lateral (primarily the laterodorsal) and

reuniens nuclei.

3.33 van Groen and Wyss, 1992

4 Our results indicate that the centromedial amygdala receives Met-enkephalin afferents,

as indicated by the presence of mu-opioid receptor, delta-opioid receptor and

Met-enkephalin fibres in the CEA and MEA, originating primarily from the bed

nucleus of the stria terminalis and from other amygdaloid nuclei.

3.32 Poulin, et al., 2006

5 Thalamic projections to retrosplenial cortex in the rat. 3.28 Sripanidkulchai and Wyss, 1986

. . . 9757 relationships

9763 The sparse reciprocal connections to the other amygdaloid nuclei suggest that the CEA

nucleus does not regulate the other amygdaloid regions, but rather executes the

responses evoked by the other amygdaloid nuclei that innervate the CEA nucleus.

5.46� 10�4 Jolkkonen and Pitkanen, 1998

9764 The majority of the endomorphin 1/fluoro-gold and endomorphin 2/fluoro-gold

double-labelled neurons in the hypothalamus were distributed in the dorsomedial

nucleus, areas between the dorsomedial and ventromedial nucleus and arcuate

nucleus; a few were also seen in the ventromedial, periventricular and posterior

nucleus.

4.36� 10�4 Chen, et al., 2008

9765 Projections from the dorsal medullary reticular column are largely bilateral and are

distributed preferentially to the ventral subdivision of the fifth cranial nerve motor

nuclei in the rat (MoV), to the dorsal and intermediate subdivisions of VII and to

both the dorsal and the ventral subdivision of XII.

2.91� 10�4 Cunningham and Sawchenko, 2000

9766 Two additional large projections leave the MEA forebrain bundle in the hypothalamus;

the ansa peduncularis–ventral amygdaloid bundle system turns laterally through the

internal capsule into the striatal complex, amygdala and the external capsule to reach

lateral and posterior cortex, and another system of fibers turns medially to innervate

MEA hypothalamus and median eminence and forms a contralateral projection

through the supraoptic commissures.

2.87� 10�4 Moore, et al., 1978

9767 In animals with injected horseradish peroxidase confined within the main bulb,

perikarya retrogradely labelled with the protein in the ipsilateral forebrain were

observed in the anterior prepyriform cortex horizontal limb of the nucleus of the di-

agonal band, and far lateral preoptic and rostral lateral hypothalamic areas.

3.36� 10�5 Broadwell and Jacobowitz, 1976

CEA, central; MEA, medial; MoV, the fifth cranial nerve motor nuclei in the rat.
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connectivity relationships were then compared with the BAMS

connectivity matrix. Only 167 manually annotated connectivity

relations were testable by this method, with 70.5% having a con-

nection in BAMS. In the same set of abstracts, the 2617 brain

region pairings not annotated as connections but co-occur in

sentences are connected in BAMS at 49.8%. This is not surpris-

ing because co-occurring regions may be connected, but the

author is not stating that in the sentence. In the larger set of

rat-related abstracts, 2688 computationally predicted connectiv-

ity statements are successfully resolved, and 63.5% are, in fact,

reported as true by BAMS (Fig. 1). For comparison, the remain-

ing set of co-occurring brain region pairs is connected in BAMS

at a rate of 51.1%. We noted that the extracted relationships are

between larger or less specific brain regions than those in BAMS.

Anatomical depth, or the average number of enclosing or parent

brain regions for a connected pair in the BAMS matrix, is 9.6,

whereas the literature-extracted connections had a mean of 7.9,

indicating they are larger and less specific brain regions. Along

the same lines, the literature-based relationships only involve 433

regions, whereas BAMS has connection reports for 633 regions.

We evaluated the 899 connections that are predicted by our

method but not listed as connected in BAMS (provided in

Supplement). Similar to the previous evaluation of 2000 connec-

tions, approximately one-half of these connections are false-

positive text mining errors (52.1% precision). The remaining

468 connections that are true positives at the sentence level

could be used to expand BAMS coverage (although curation

guidelines differ). Within these 468 true positives, we selected a

subset of 250 for further review by a domain expert (C. Krebs).

Only nine of the predicted connections were rejected (3.6%). Five

were rejected because a protein (pituitary adenylate cyclise-

activating polypeptide) was incorrectly recognized as a brain

region (pituitary gland). This agreement between the curators

and an expert suggests our annotation guidelines are consistent

and accurate.
We hypothesized that owing to improvements in tracing meth-

ods, more recent reports of connectivity would be of higher qual-

ity. This was suggested by a study of different eras of

tract-tracing techniques that revealed large improvements in

accuracy (Bota et al., 2003). Bota and colleagues found that

limbic system connections observed using an old method, axon

degeneration (Nauta, 1952), are 60% accurate. In contrast,

methods first applied in 1987 to exploit axonal transport are

much more accurate with more than 90% considered valid. By

splitting our corpus into documents published before and after

1987, we tested for a similar signal that separates eras of experi-

mental techniques. In agreement with the manually quantified

trend, we observe an increase from 59.4 to 65.6% in the rate of

connectivity statements validated in BAMS (P¼ 0.00071, hyper-

geometric test). We note the specificity of regions involved in the

connections also increases, whereas the proportion of mapped

terms is unchanged.
Connections predicted more than once might be more likely to

be valid because of the effect of ‘confirmation’. This was feasible

to study because, on average, each connection was predicted

more than twice. The number of extracted connections per

brain region (degree) provides a simple comparison with

BAMS. For the 344 common brain regions, the degree vectors

are strongly correlated (Pearson¼ 0.769, Spearman¼ 0.433).

Counting unique predicted connections, 54.7% are in BAMS

(Table 3, the value of 63.5% previously cited counts occur-

rences). From a recall perspective, 3.2% of BAMS connections

are connected in our predictions. By thresholding our connec-

tions to those predicted at least twice, precision reaches 65.9%,

whereas recall drops to 1.4% (Table 3). This accuracy is near the

67.5% precision of the hand-annotated set of connections.

Precision gradually increases as the threshold increases, eventu-

ally reaching 100% for nine connections that were extracted at

least 12 times. Further, we note the anatomical specificity of the

connections increases with the average number of enclosing re-

gions reaching 10.2 when thresholded at 12 occurrences. The

region pairs not predicted to form connectivity relations have

precision of 33.7% and recall of 9.3%. Again, this level of pre-

cision results from co-mentioned regions that are connected in

BAMS, but the author is not specifying that in the sentence.

Further, the higher recall value results from the much larger

set of pairings (6079 compared with 1286 SLK-predicted par-

ings). From a co-occurrence perspective, we found that brain

Table 3. Aggregate connectivity results from several methods and relation sets

Relation set Method Threshold Anatomical depth Connections Precision Recall F-measure

Positive annotated Curation 1 8.7 200 67.50% 0.61% 1.22%

Negative annotated Curation 1 8.7 1606 41.91% 3.06% 5.71%

Positive predictions SLK 1 8.4 1286 54.70% 3.20% 6.05%

Positive predictions SLK 2 8.4 454 65.90% 1.40% 2.74%

Positive predictions SLK 12 10.2 9 100.00% 0.04% 0.08%

All pairings Co-occurrence 1 8.3 6474 34.00% 10.01% 15.47%

All pairings Co-occurrence 2 8.3 2865 44.96% 5.86% 10.37%

All pairings Co-occurrence 8 8.2 515 66.41% 1.56% 3.04%

All pairings Co-occurrence 16 8.4 189 71.43% 0.61% 1.22%

This table presents the analysis of the extracted binary connectivity matrices. The first two rows are from connectivity matrices derived from the 1377 annotated abstract set.

The remaining rows are from the 12557 abstract set and are split between the SLK predictions and the co-occurrence technique. The threshold column displays the required

count of reported connections to be marked as connected in the matrix. Anatomical depth measures how specific the connections are by averaging the number of enclosing

brain regions for each connected region.
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regions that co-occur in eight or more sentences recall 1.6% of
the BAMS connections at 66.4% precision. Interestingly, this
naive co-occurrence-based method performs at par to the SLK

method that extracts direct connectivity statements. As the
threshold is increased from eight co-occurrences, precision con-
tinues to gain, suggesting a large number of co-occurring men-

tions can be used to predict connectivity, as well as a smaller
number of more carefully analysed connectivity statements
(Table 3).

4 DISCUSSION

We reported a complete system for extracting connectivity
statements from biomedical abstracts. The method provides
high recall of manually annotated connectivity relations

described in single sentences. Precision from two separate evalu-
ations reached 50.3% and 55.3%. By comparing with an inde-
pendent source of rat connectivity, we found that precision

increases with the recency and frequency of the extracted
relationships.
A limitation of our work is that we did not consider the

direction of connectivity, although most of the relationships we
extracted have a direction described in the sentence. In addition,
we did not consider negation (region A does not project to

region B). Extracting this information by extracting key-
words such as ‘afferent’, ‘not’ or ‘input’ will require additional

work. These relationship modifiers are manually annotated
in our training corpus and can be used to design more complex
rules.

Our methods also did not attempt to extract the large number
of relations that span multiple sentences. When these connections
are taken into account, the SLK method provides only 51.7%

recall of annotated connections. Application of advanced natural
language-processing techniques may be necessary to bridge the
sentences (e.g. anaphora resolution).

The comparison of seven previously published kernel-based
approaches mirrored the previous results from the protein inter-
action relationship extraction domain (Tikk et al., 2010).

Further, we note that the SLK parser was applied to the drug–
drug interaction domain with similar results (Segura-Bedmar
et al., 2011). Several of the kernel methods have lower perform-

ance than our simple rule-based technique. Effort spent crafting
more complex rules may yield higher precision at the cost of
lower recall. The top three kernel methods (SLK, all-paths

graph, k-band shortest path spectrum kernel) all have similar
accuracy (AUC and f-measure scores) but vary in precision

and recall. This difference suggests higher performance may be
achieved by combining the methods.
Our results suggest a larger set of input abstracts will yield a

larger number of precise connections. The largest extension set is
Medline with more than 10 million abstracts and 120 million
sentences. Tikk and colleagues calculated that the SLK parser

could process all of Medline in 141 days (Tikk et al., 2010). A
two-step process may reduce runtime and increase accuracy by
first identifying abstracts with connectivity statements and then

by extracting the specific connections with SLK (Poulter et al.,
2008).
In natural language processing, it has been observed that

simple statistical models (e.g. co-occurrence) can outperform

more complex models based on less data (Halevy et al., 2009).

Our experiments confirm this. We found that brain region pairs

with many co-mentions tend to be connected. This simple tech-

nique produces a larger set of potential connections with reason-

able precision. Although this will produce a larger set of results

than the SLK method, it does not target connections that can be

directly curated in light of experimental evidence because the

co-mentions may or may not describe connectivity. Further,

such co-occurrences may result from region proximity or biases

(i.e. popularity) that may influence research attention both in the

literature and in BAMS. However, such co-occurrence networks

show valuable areas of focus when combined with comentions of

genes and diseases (Hayasaka et al., 2011; Voytek and Voytek,

2012).
One of the most serious challenges we encountered was in

mapping extracted brain region mentions to standardized lexi-

cons. In our previous work, we reported resolution rates of 63%,

with the major limitation being gaps in the lexicons (French and

Pavlidis, 2011). For the current work, the resolution rate is

greatly reduced, as both brain region mentions of a connect-

ivity relation must be mapped. It also appears that regions form-

ing connectivity relations are harder to resolve or map, on

average. For this work, we managed to double the resolution

rate to the BAMS lexicon by adding synonyms. Additional

work to improve the lexicons will lead to better resolution of

connectivity statements, allowing validation and linking to

other resources.

For our evaluation to an outside database, we focused on

BAMS (Bota et al., 2005). Although rat is the most frequent

mentioned organism, other evaluations could compare the con-

nectivity results with the CoCoMac (Kotter, 2004) or the Avian

Brain Circuitry Database (Schrott and Kabai, 2008). Beyond

evaluation, our dataset and method can provide a large set of

extracted connectivity relationships for other species-specific

databases.
In conclusion, we provide the first application of large-scale

text mining to neuroanatomical connectivity extraction. We

demonstrated that machine-learning tools designed for extrac-

tion of protein–protein interactions are generalizable to mining

brain region connections. From an information retrieval perspec-

tive, our large set of predicted connections can aid neuroscientists

in forming hypotheses and models. Future work will be aimed at

further evaluating and disseminating the results before extending

the analysis.
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