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ABSTRACT

Motivation: The invention of next-generation sequencing technology

has made it possible to study the rare variants that are more likely to

pinpoint causal disease genes. To make such experiments financially

viable, DNA samples from several subjects are often pooled before

sequencing. This induces large between-pool variation which,

together with other sources of experimental error, creates over-

dispersed data. Statistical analysis of pooled sequencing data needs

to appropriately model this additional variance to avoid inflating the

false-positive rate.

Results: We propose a new statistical method based on an extra-

binomial model to address the over-dispersion and apply it to

pooled case-control data. We demonstrate that our model provides

a better fit to the data than either a standard binomial model or a

traditional extra-binomial model proposed by Williams and can ana-

lyse both rare and common variants with lower or more variable pool

depths compared to the other methods.
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1 INTRODUCTION

To date, numerous common genetic variants associated with

common disease [e.g. Type 1 diabetes (T1D)] have been success-
fully discovered by genome-wide association studies (Barrett

et al., 2009; Cooper et al., 2008; Smyth et al., 2006; Wellcome
Trust Case Control Consortium, 2007). However, linkage dis-

equilibrium (LD) means these results may only be used to iden-
tify an associated region, which usually encompasses several

genes. To pinpoint the exact causal genes, under the assumption

that there may be multiple variants of common and low fre-
quency which alter disease risk, attention has turned to

low-frequency variants that are unlikely to be in LD with
other variants. Associated low-frequency variants are considered

more likely to be causal. For example, several independent rare
risk variants with implied functional roles were recently asso-

ciated with inflammatory bowel disease using next-generation

sequencing of pooled samples (Rivas et al., 2011), a design

similar to that of Nejentsev et al. (2009) who undertook the

first such study and whose data we re-examine here.

Nejentsev et al. (2009) re-sequenced 144 target regions cover-

ing exons and splice sites of 10 T1D candidate genes that were

previously found to be associated with T1D or related diseases.

The study used 454 sequencing of 20 pools of DNA from 480

patients and 480 healthy controls (48 samples per pool). Four

rare variants, single-nucleotide polymorphisms (SNPs) located in

the interferon induced with helicase C domain 1 (IFIH1) and the

C-type lectin domain family 16, member A (CLEC16A) genes,

displayed different frequencies in cases and controls according

to Fisher’s exact test, and evidence for association of two of these

variants within the gene IFIH1 was replicated in independent

samples. This directly implicates IFIH1 as causal in T1D.
A major concern with this study is that huge variation exists

between pool depths and the variation is especially large for rare

SNPs (Fig. 1). The variation is derived from both the pooling

and the sequencing, and this is not accounted for by Fisher’s

exact test which assumes a binomial variance within pools and

neglects between-pool variation.

The Poisson model has also been employed for sequence

count data as well as analysis of differential gene expression

(Marioni et al., 2008). With only one parameter, the Poisson

distribution assumes the variance of reads is equal to its mean.

However, the variance may exceed the mean, requiring an

over-dispersed model as in our data. A negative binomial

model has been used as an alternative to model the larger vari-

ance, for example in testing differential expression for digital

gene expression data (Robinson and Smyth, 2007), given it has

one more parameter than the Poisson distribution. The addition

of this parameter, however, means the negative binomial model

requires a large number of replicates to estimate the two param-

eters properly.
Another fully mathematically specified over-dispersed model is

the beta-binomial model, which, applied to variants derived from

pooled case-control sequence data, would assume a binomial

distribution within pools and that the expected allele frequency

of each pool is beta-distributed. Crowder (1978) used this model

and calculated maximized log-likelihoods to analyse the effects

from seeds and extracts on germination. Other applications of

this model include the analysis of false discovery rates (FDRs) in

microarray data to model the number of false rejections, yielding

a less biased FDR estimator than the empirical estimator follow-

ing a binomial distribution (Hunt et al., 2009). The advantage of*To whom correspondence should be addressed.
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this approach is obvious: meaningful parameters and a comput-

able likelihood which could be maximized by standard methods

to calculate the relating parameters. However, maximizing a

beta-binomial likelihood can be computationally difficult.
An alternative is to use a model in which only the first two

moments are defined. We propose to use and extend such an

extra-binomial model originally described by Williams (1982).

The extra-binomial model still assumes the allele counts obey a

binomial distribution within pools and also takes the

between-pool variance into consideration. In this article, we

compare the performance of statistical tests assuming simple

binomial variation, Williams’ extra-binomial variation and our

modified extra-binomial model using quantile–quantile (Q–Q)

plots. We also extend our study beyond the original minor

allele frequency (MAF) range used by Nejentsev et al. (1–3%)

to include all observed single-nucleotide variation.

2 METHODS

2.1 Experimental data pre-processing

The experimental data used for the following analysis were drawn from

the article by Nejentsev et al. (2009). The sequencing data were processed

using existing software or R (R Development Core Team, 2010) as

described below. BWA-SW (Li and Durbin, 2010) was used to align

query 454 sequences to the NCBI36 human assembly, yielding sam files

which were processed by SAMtools (Li et al., 2009) to remove duplicate

reads. SNPs were identified and counted by VarScan (Koboldt et al.,

2009), filtered by minimum base quality (�25) and minimum total read

depth (�8).

In the absence of a variant, errors should randomly distribute across

multiple pools while for a genuine rare variant excess reads of the alter-

native allele are expected to concentrate in one or several pools. Thus, to

distinguish the errors from the true SNPs, we first excluded the common

variants with MAF40:05 and then compared the observed pool read

distribution for each remaining rare SNP to that expected under a null

hypothesis of random errors only (Bansal, 2010). We assumed variants to

be true rare SNPs if (i) they were not consistent with a random error

model with a significant P-value less than 10�4 (Bonferroni correction

with a prior significance level equal to 0.05) and (ii) there was at least one

pool with more than two reads for the minor alleles.

For the binomial model only, SNPs and pools were further filtered by

chromosome coverage—only pools with more than 80% probability to

cover (include at least one read from) at least 80 out of 96 chromosomes

were used. This reduced the variation between different pools by dropping

pools with poor PCR or sequencing quality. SNPs were dropped if there

were no valid pools for one group (case or control) at a position.

2.2 Statistical models

Our aim is to identify the SNPs that are associated with T1D status. We

define an observation as a success if it corresponds to the major allele,

otherwise it is a failure. Let �1i and �2i denote the expected major allele

frequency for SNP i in control and case chromosomes, respectively. Then

our hypothesis is written as

H0 : �1i ¼ �
2
i ð1Þ

Ha : �1i 6¼ �
2
i : ð2Þ

In the following models, we assume there is no systematic error in the

sequencing.

2.2.1 Binomial variation For significance testing, Nejentsev et al.

(2009) assumed a simple binomial model within pools, estimated overall

allele frequencies by treating each pool equally and used these estimated

allele frequencies to estimate chromosome counts of each allele. Allele

counts were compared in case and control groups in a 2� 2 table at

each SNP by Fisher’s exact test (see Section A of the Supplementary

Material).

2.2.2 Williams’ extra-binomial variation model (EB1) We can

relax the assumptions above by considering an over-dispersed binomial

model. Here, we applied an extra-binomial model proposed by Williams

(1982) to our data. With the assumption that the variation within each

pool is binomial unchanged, we introduce a continuous variable Pij as the

allele frequency of SNP i in pool j to reflect the discrepancy between

different pools in allele frequency. Pij is independently distributed on

(0,1) and its first two moments are defined as

EðPijÞ ¼ �i ð3Þ

VarðPijÞ ¼ �i�ið1� �iÞ, �i � 0: ð4Þ

As shown below, the variance is over-dispersed when �i40.

Conditionally, in pool j when Pij ¼ pij, the number of reads of the

major allele Rij follow BinðDij, pijÞ where Dij is the depth of the j-th

pool at the i-th SNP and pij is estimated by Rij=Dij. Unconditionally,

deriving from Equation (4), the variance of Rij=Dij can be written as

VarðRij=DijÞ ¼ �ið1� �iÞ
1

Dij
þ �i

Dij � 1

Dij

� �
,

’ �ið1� �iÞ
1

Dij
þ �i

� �
:

ð5Þ

Thus, the extra-binomial model allows for between-pool variation by

scaling the variance by a heterogeneity factor, 1þ �iDij, which increases

with read depth. We could choose a specific distribution for Pij such as

the beta-distribution which could induce Rij to follow a beta-binomial

distribution (Zhou et al., 2011). Instead, we adopt a quasi-likelihood

approach and follow Williams’ method to yield an estimator of allele

frequency, �̂i, by first fitting it into a logistic linear model and then max-

imizing the quasi-likelihood by weighted least square iteration

(see Section B of the Supplementary Material). The weighted sum of

squares of residuals yields the goodness of fit statistic

X2
i ¼

X
j2fcontrolg

wij Rij �Dij�̂
1
i

� �2
= Dij�̂

1
i 1� �̂1i

� �n o� �

þ
X

j2fcaseg

wij Rij �Dij�̂
2
i

� �2
= Dij�̂

2
i 1� �̂2i

� �n o� � ð6Þ
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Fig. 1. Variance analysis of the SNPs detected in Nejentsev et al.’s article.

(a) Variance–mean depth comparison. Variance of depth increases with

mean depths. (b) Variance of depth can be extreme, particularly for low

minor allele frequency
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where the weight wij ¼ f1þ �iðDij � 1Þg�1. To test the significance ofH0,

we tested the increase in X2
i when deleting the case-control factor as

suggested by Williams. This is distributed as a �2 variable with one

degree of freedom under the null hypothesis of no association.

2.2.3 Modified extra-binomial model (EB2) In Williams’ extra-

binomial model, the parameter �i is specific to each SNP, which makes it

difficult to estimate �i accurately given only 20 data points for each SNP.

In contrast, we have many SNPs. We adopted two universal parameters a

and b here instead of �i to scale the variance, such that

VarðRij=DijÞ ¼ �ið1� �iÞ
a

s
þ

b

Dij

� �
, ð7Þ

where s is the number of distinct chromosomes sampled in one pool,

namely, 96 in this study. Ideally with no other over-dispersion, as

Dij!1, VarðRij=DijÞ ! �ið1� �iÞ � 1=s. However, sequencing errors

and additional variation described earlier mean a 6¼ 1. We write

D0ij ¼
a

s
þ

b

Dij

� ��1
ð8Þ

and by comparing Equation (7) with a standard binomial variance func-

tion, we see that D0ij may be interpreted as the adjusted depth of pool j for

SNP i.

Considering the quantities of this model,

r2ij ¼
n

n� 1

1

�̂ið1� �̂iÞ

Rij

Dij
� �̂i

� �2

, ð9Þ

where n is the number of pools, namely, 20 in this study, should have

expectation [see Equation (5) in the Supplementary Material]:

Eðr2ijÞ ¼ D0�1ij ¼
a

s
þ

b

Dij
: ð10Þ

We therefore estimate the parameters a and b by linear regression of r2ij on

1=Dij, yielding â=s as the intercept and b̂ as the slope.

Given the interpretation ofD0ij as an adjusted depth, the allele counts in

pool j were estimated as RijðD
0
ij=DijÞ and ðDij � RijÞD

0
ij=Dij. These were

summed over case and control pools to form a 2� 2 table on which a �2

test was performed to test the significance of H0.

2.2.4 Accounting for sequencing error To examine the potential

influence of sequencing errors on the models, a base-specific error rate,

"a, a0 ¼ Pðcalled allele ¼ a0jtrue allele ¼ aÞ, a, a0 2 ðA;T;C;GÞ allele

ð11Þ

where allele a is the reference allele and allele a0 is the alternative allele

was estimated by summing allele counts over all positions in our target

sequence that were either not called as SNPs by VarScan or failed sub-

sequent filtering.

We used these estimated error rates which were of the order 1–10

errors per 100 000 bases (see Supplementary Table S1) to adjust read

counts of the major allele and fitted all models to the adjusted read counts

R0ij ¼
ð1� "a0 , aÞRij � "a0 , aðDij � RijÞ

1� "a0 , a � "a, a0
: ð12Þ

2.3 Simulation studies

To further evaluate the statistical performance of our models, a series of

simulation studies were carried out and both Type 1 error and power

under various situations were examined. The sample size was set as 500

cases and 500 controls divided into 20 pools of 50 people. The allele

counts of SNP i in pool j per person were assumed to follow a gamma

distribution with shape � ¼ 6:3 and scale � ¼ average coverage=� (Sarin

et al., 2008), where the average coverage per person was set at 40�.

We simulated three sets of 700 SNPs in each dataset (i.e. 2100 in total).

The first was a set of ‘null’ SNPs, with MAF¼ 0; the second was a set of

‘neutral’ SNPs, with MAF in controls ranging from very rare

(MAF¼ 0.005) to common (MAF¼ 0.5) and equal MAF in cases; the

third was a set of ‘disease’ SNPs, with MAF in controls again ranging

from 0.005 to 0.5 and in cases determined according to the control MAF

and assuming a multiplicative genetic with an allele relative risk (rr) set at

1.5. As we specify our model with rr, we do not need to define the

population disease rate. However, for a rare disease such as T1D, the

rr is approximately equal to the odds ratio. A range of symmetric error

rates (the chance of calling the alternative allele in error) from 0 to 5%

was considered and applied to simulated data assuming a binomial dis-

tribution. We blinded the analysis to which SNPs were truly ‘null’ and

applied the same analysis as described above for the 454 data to identify

false SNPs. From these we estimated the error rates and corrected the

read counts of the remaining SNPs according to Equation (12).

We performed a total of 1000 simulations in this manner, and Type 1

error rates and power were estimated from the results for the ‘neutral’ and

‘disease’ SNPs, respectively.

3 RESULTS

3.1 Simulation studies

The first two moments of our simulated data were examined,

resulting in a mean sequence depth of around 1950 reads per

pool and variance of 12 026.
Figure 2 shows estimated Type 1 error rates and power from

our simulated data at a significance level � ¼ 0:01. Overall, the

EB2 model maintains good control of Type 1 error, across allele

frequencies and error rates although tends to be conservative for

rare SNPs (MAF50:02). On the other hand, under Fisher’s

exact test, nominal Type 1 error rates may be exceeded by a

factor of nine. Note that Fisher’s test is anti-conservative in

this situation, in contrast with the typical behaviour of

non-parametric tests. We found the expected conservative behav-

iour when we simulated under a simple binomial model (data not

shown), so the anti-conservative behaviour shown here appears

to result from the over-dispersion. We can also see that the Type

1 error rate for Fisher’s but not EB2 is affected by the sequencing

error rate. This is likely because our error correction method

does a good job of correcting the simple error on average, but

at the expense of increasing the noise, which is correctly dealt

with by EB2 but not Fisher’s test. Power appears slightly lower

for EB2 compared to Fisher’s, but not substantially so, given the

difference in Type 1 error rate control. Some differentiation in

power can be seen for our EB2 model with changes in sequencing

error rates, with higher error rates having slightly lower power.

However, the effect of sequencing error, once corrected, seems

minimal given the relatively high coverage depth simulated.

3.2 Experimental data

After initial filtering, 473 SNPs were selected for analysis. Our

estimated error rates were of the order of one error per 100 000

bases (see Supplementary Table S1), consistent with previous

observations (Huse et al., 2007), and had a negligible impact

on association results; only the results without error correction

are shown.
Although we expect many SNPs will be associated with T1D,

given their location in established T1D-associated regions, we
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still expect them to show only limited departure from the null

hypothesis due to the sample size available (even for genuinely

associated SNPs, odds ratios for T1D are in the range 1–2). In

contrast, a Q–Q plot of the Fisher’s exact test results (Fig. 3a)

shows a large slope (slope¼ 2.481) and observed maximum �2

value, �2max, around 600 suggesting that the simple binomial

model does not provide a good fit to the data. Although the

slope decreases to 1.285 and �2max to about 150 (Fig. 3b) by fil-

tering pools and SNPs to include only those with higher coverage

(n¼ 431), this improvement was achieved at the cost of discard-

ing data—only pools and SNPs passing the filters were counted

in the test.
Figure 4 shows the Q–Q plot result based on Williams’

extra-binomial model. Despite most observed �2 values dropping
below 30, the slope remained large (slope¼ 24.88). Note that

because variance of reads is required to estimate the

over-dispersion parameter �i, SNPs with total minor allele

counts equal to zero in either cases or controls were excluded,

leaving 420 SNPs to test.
The Q–Q plot in Figure 5a illustrates that EB2 model suits our

data better with slope equal to 1.26, but the maximum sample

quantile, although lower than the EB1 model, is still above 100.

We recognize that despite filtering and improved models, sequen-

cing data are still noisy and a proportion of SNPs identified may

be errors. If we restrict to 270 non-novel SNPs [those in dbSNP

version 128 (Sherry et al., 2001)] which are less likely to be errors,

all sample quantiles drop below 40 (Fig. 5b). The dominance of

the EB2 model does not depend on MAF, as can be seen when

SNPs are divided according to MAF (Supplementary Fig. 1).
Compared with Nejentsev et al.’s results, the exact values of

our Fisher’s P-values were slightly different due to different

alignment software and filters used in this article to process

data. However, Nejentsev et al. identified four SNPs with

Fisher’s P-values50.05, consistent with our results (both
Fisher’s exact test and EB2 model; Table 1).

Apart from the SNPs identified by Nejentsev et al. previously,

there were 85 new SNPs in the EB2 model with P50:05. After
examining the flanking 50- and 30-sequences (to see whether there

were base repeats that are associated with erroneous SNP calls),

read distribution across all pools and base qualities, seven SNPs

listed in Table 2 were considered most likely to be real.
Six of these seven reside in known T1D regions, while

rs1800521 (AIRE) is in a T1D candidate region. rs3184504

(SH2B3) and rs2476601 (PTPN22) are known T1D marker

SNPs and rs28360489 (IL2RA) is in LD with a known T1D

marker SNP (rs12722495, r2¼ 0.62) (http://www.t1dbase.org/

page/Regions). Two of the remaining four, rs8052325

(CLEC16A) and rs1800521 (AIRE), are not in tight LD with
known T1D SNPs (correlation coefficient r2 ¼ 0:0029 � 0:26),
while the final two, rs72650660 (CLEC16A) and rs3827734

(PTPN22), were not found by 1000 genomes presumably

due to the small MAF (Table 2), which prevents us from calcu-

lating LD.

4 DISCUSSION

All statistical analysis models for pooled case-control data are

built on the probability distribution of allele frequency Pij which

depends upon depth (Dij), chromosome number per pool (s) and

treatment group. Different assumptions about the distribution of
Pij lead to different statistical tests. The binomial model used in

Fisher’s exact test assumes Pij is constant across pools within the

same treatment group [see Equation (2) in the Supplementary

Material], while the extra-binomial variation models used in this

article assume Pij is a continuous variable that varies from pool

to pool.
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Fig. 2. Type 1 error rate (left) and power (right) for Fisher’s exact test (Fisher) and our proposed EB2 model with the significance level � ¼ 0:01.
The allelic relative risk is set at rr¼ 1.5 for the power calculation. Sequencing error rates vary from 0% to 5%
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Note that allele frequencies estimated by sequencing pools

of PCR-amplified DNA may be biased, as the PCR may prefer-

entially amplify one allele compared to the other (Sham et al.,

2002). This means that allele frequencies presented in Tables 1

and 2 may deviate from the true population frequency, which

can be an issue when considering the sample size required to

replicate findings for rare SNPs, in particular. As this bias is
likely to affect cases and controls equally when there is no under-
lying difference in allele frequency, it cannot be expected to in-

flate Type 1 error, although it may act to amplify or depress any
true difference between cases and controls depending on which
allele is subject to bias.

Other methods allowing for the variance in pooled sequencing
have been explored. Wang et al. (2010) estimated allele frequen-
cies by weighting sequencing read counts using a weight inversely

proportional to the variance of the allele frequency estimate and
compared these weighted estimates between cases and controls.
However, no published software is available to implement this

approach. An alternative approach adopted by Kim et al. (2010)
is to estimate allele frequency by maximum likelihood and then
use a likelihood ratio test to test the MAF difference between

cases and controls. However, this method is affected heavily by
pool size. As the authors pointed out, their approach is not
applicable to pools with more than five individuals per pool.

Given the main purpose of pooled sequencing is to decrease
the experimental cost, a large pool size may be expected in real
experimental data.

Here, instead of specifying the statistical distribution of Pij, we
propose a ‘quasi-likelihood’ approach which only defines the
mean and variance of Pij. The two EB models in this article

share the same mean functions of Pij with different variance
functions where Williams’ EB1 model adopted one parameter,
�i, for each SNP i and our EB2 model adopted two universal

parameters, a and b, for all SNPs.
The EB models have the advantage of including between-pool

variation, compared to the standard binomial model which

ignores heterogeneity of pools and thus provides a poor fit of
our sequencing data (Fig. 3). However, several shortcomings are
exposed in EB1: (i) the significance test is based on increases in

the �2 statistic, not a statistically powerful approach
(McCullagh, 1983); (ii) parameter estimation is complicated
requiring iteratively re-weighted least squares (see Section C of

the Supplementary Material) and (iii) the small sample size (only
20 data points for each SNP i) means �i cannot be estimated
precisely.
In EB2, we assumed that the parameters in the variance func-

tion are constant across all SNPs tested. By doing this, we
expanded the number of data points for parameter estimation

which allowed more efficient estimation and our use of GLM
means it may be fitted in standard software. This could, of
course, be extended to include other SNP-specific features by

changing the form of Equation (8), but no other features were
found to be predictive of error structure in our 454 dataset.
The improvement of EB2 over EB1 is obvious in the Q–Q

plot—the slope declines to 1.26 (Fig. 4 versus Fig. 5a). Given

the fact that of the 10 re-sequenced genes, 6 were in known T1D
regions, we expect some SNPs would be genuinely associated
with T1D and therefore expect the slope to be greater than one.

The simulation results showed that across different situations,
our preferred EB2 model has an overall excellent control of Type
1 error rate. This is in contrast to Fisher’s exact test, where the

observed Type 1 error rate may be as much as 9-fold the nominal
rate at � ¼ 0:01.
In our 454 data, base error rates were very low. However, we

included a wider range of errors in our simulations to allow us to

0 2 4 6 8

0

10

20

30

40

n= 420 slope= 24.88
Expected

O
bs

er
ve

d

●
●
●
●
●
●●
●●
●●
●●●
●●●●●

●●●●●
●●●●
●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●

●●●●
●●●●●

●●●
●
●●●

●

●

Fig. 4. Q–Q plots were drawn by plotting observed �2 values against

expected quantiles in �2 distribution with df¼ 1 based on Williams’

extra-binomial model (EB1). The triangles in the charts stand for the

SNPs with extremely large �2 values beyond the boundary shown in

vertical axis

0 2 4 6 8

0

100

200

300

400

500

600

n= 473 slope= 2.481
Expected

O
b

se
rv

e
d

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●
●
●●●

●
●●

●
●

●

●(a)

0 2 4 6 8

0

50

100

150

n= 431 slope= 1.285
Expected

O
b

se
rv

e
d

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●

●●●●
●●●●

●●●

●
● ●

●

●(b)

Fig. 3. Fisher’s exact test statistics. The observed �2 values were calcu-

lated by using Fisher’s P-value to calculate quantiles of �2 distribution.

Expected values were random quantiles in �2 distribution with df¼ 1. In

this and subsequent quantile–quantile plots, the shaded region is the 95%

concentration band. (a) 473 SNPs after initial filtering. (b) 431 SNPs after

further filtering by chromosome coverage

0 2 4 6 8

0

10

20

30

40

n= 473 slope= 1.26
Expected

O
b

se
rv

e
d

(a)

0 2 4 6 8

0

10

20

30

40

n= 270 slope= 0.585
Expected

O
b

se
rv

e
d

(b)

Fig. 5. Q–Q plots of the results using EB2 model. (a) 473 SNPs after

initial filtering were employed in the test with estimated over-dispersion

parameters a¼ 0.40, b¼ 13.66. (b) 270db SNPs within our target regions;

a¼ 0.59, b¼ 1.27

2902

X.Yang et al.

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts553/DC1


examine the potential for our model to be applied to other tech-

nologies. Because our model only deals with increased variance,

and not systematic bias induced by base calling errors, we under-

take a separate error correction step which should correct the

error in expectation, but may itself increase variance. This can be

seen in the dependence of Type 1 error rate on the sequencing

error for Fisher’s exact test, whereas our model appears to have a

good control of Type 1 error rates across the range of sequencing

errors considered, despite both methods being applied to the

same, error-corrected, data. Note that any estimates of error

rates are likely to be uncertain. Our experience is that the

effect of correcting for a poorly estimated error rate in simulated

data depends on MAF, the magnitude of the true error and how

poorly it is estimated. In the case of our 454 data, we are lucky to

be dealing with low estimated error rates which are consistent

with previous estimates for this technology. Correction for these

estimated error rates made no substantial difference to our con-

clusions. However, if the estimated error rates in other applica-

tions were larger, it might be wise to conduct some sensitivity

analysis, varying the estimated error rate by factors of two or

more, to examine whether associations identified are robust to

misspecification of error rates.

A shortage of any model used here is the assumption of bino-

mial error within each pool, which allows a zero count for major

alleles. This is in contrast to our SNP detection principle which

requires at least two supporting reads at a position to call a SNP

(i.e. we should model Rij � BinðDij, pijjRik � 2;Rik5Dik � 1Þ for

some k, k 2 ½1, 20�). When we removed our detection criteria and

instead examined all SNPs in dbSNPs version 128 (Sherry et al.,

2001) within our 144 target regions, the Q–Q plot showed further

improvement (Fig. 5b). Additionally, a much smaller maximum

sample quantile was observed in dbSNP Q–Q plot, indicating

there are still errors among the full set of 473 called SNPs.

Overall, extra-binomial models appear to have better proper-

ties than the naive binomial model. They could analyse a larger

range of variants with lower or more variant pool depths and our

new EB2 model is more appropriate and easier to apply com-

pared with the EB1 model proposed by Williams (1982). Work

such as this is used as the basis for further confirmatory experi-

ments and we intend to follow up the four new SNPs identified in

Table 2. More accurate results lead to better targeting of these

experiments and thus faster and more efficient progress to iden-

tify the causal genes in T1D.
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Table 2. The SNPs identified by EB2 model after initial filtering

SNP Gene Alleles MAF P-value OR T1D SNP r2

Control Case Fisher’s EB2

rs3184504 SH2B3 T4C 0.53 0.41 4:74� 10�7 5:98� 10�9 0.62 rs3184504 1

rs72650660 CLEC16A C4T 0.043 0.011 4:57� 10�5 5:01� 10�6 0.25 – –

rs8052325 CLEC16A A4G 0.13 0.082 2:2� 10�3 5:02� 10�5 0.60 rs12708716 0.26

rs2476601 PTPN22 G4A 0.093 0.15 3:5� 10�4 1:9� 10�4 1.72 rs2476601 1

rs3827734 PTPN22 A4T 0.0025 0.020 2:56� 10�6 1:5� 10�3 8.14 – –

rs1800521 AIRE T4C 0.23 0.32 1:08� 10�5 3:8� 10�3 1.58 rs760426 0.04

rs11594656 0.0029

rs28360489 IL2RA C4T 0.11 0.084 0.039 8:7� 10�3 0.74 rs2104286 0.10

rs12722495 0.62

OR is odds ratio of minor allele for T1D. r2 is the correlation coefficient with the most associated independent T1D SNPs (marker SNPs that have been identified associated

with T1D before) in each region (http://www.t1dbase.org/page/Regions).

Table 1. Comparison of different approaches on the four SNPs identified in Nejentsev et al.’s article of which the first two SNPs within IFIH1 gene were

replicated in their follow-up genotyping experiment

SNP Location Chr. Alleles P-value

Nejentsev’s Fisher’s Our Fisher’s Our EB1 Our EB2

rs35337543 IFIH1, intron 8 chr2 G4C 0.000044 0.0032 0.0029 0.016

rs35667974 IFIH1, exon 14 chr2 A4G 0.0049 0.076 0.017 0.011

ss107794688 CLEC16A, intron 23 chr16 C4T 0.016 0.045 0.0047 0.034

ss107794687 CLEC16A, intron 11 chr16 C4T 0.023 0.000046 0.00021 0.000005

Since different alignment software and filters were used, our Fisher’s exact results were slightly different from Nejentsev et al’s. Overall, all the four SNPs still showed

significance in our preferred EB2 model (� ¼ 0:05).
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