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ABSTRACT

Motivation: Pathway or gene set analysis has been widely applied to

genomic data. Many current pathway testing methods use univariate

test statistics calculated from individual genomic markers, which

ignores the correlations and interactions between candidate markers.

Random forests-based pathway analysis is a promising approach for

incorporating complex correlation and interaction patterns, but one

limitation of previous approaches is that pathways have been con-

sidered separately, thus pathway cross-talk information was not

considered.

Results: In this article, we develop a new pathway hunting algorithm

for survival outcomes using random survival forests, which prioritize

important pathways by accounting for gene correlation and genomic

interactions. We show that the proposed method performs favourably

compared with five popular pathway testing methods using both syn-

thetic and real data. We find that the proposed methodology provides

an efficient and powerful pathway modelling framework for

high-dimensional genomic data.
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1 INTRODUCTION

High-throughput genomic technologies, such as gene expression
microarrays, single nucleotide polymorphism arrays and

next-generation sequencing have revolutionized biological and
medical research by making it possible to measure thousands

to millions of biomarkers across the genome simultaneously.
However, detecting meaningful signals and making appropriate

inferences from these massive datasets remains challenging be-

cause of the high dimensionality and complex correlation and
interactions that are at play.
To reduce dimensionality, and to increase statistical test

power, pathway (or gene set) analysis has become increasingly

popular. Instead of applying statistical tests to one gene at a
time, pathway analysis takes advantages of previous biological

knowledge and examines the gene expression patterns of a group
of related genes (e.g. grouped by biological functions) for their

associations with disease outcomes. Since the well-known gene
set enrichment analysis (GSEA) method (Mootha et al., 2003;

Subramanian et al., 2005) was published, a number of pathway

analysis approaches have been developed, including parametric

analysis of gene set enrichment (Kim and Volsky, 2005), aver-

aged t-statistic gene set scores (Tian et al., 2005), the maxmean

statistic for improved GSEA (Efron and Tibshirani, 2007), the

random-sets method (Newton et al., 2007), mixed-effects models

(Wang et al., 2008, 2009) and principal components (Chen et al.,

2008; Tomfohr et al., 2005). Web-based pathway tools, such as

DAVID (Huang et al., 2009), GeneTrail (Backes et al., 2007) and

the online GSEA interface at the Broad Institute, are also widely

used.

Although pathway analyses are designed to test effects from

multiple genes in place of single genes, typically they rely on test

statistics based on simple summary statistics (e.g. the mean) of

individual genes that ignore correlation between genes, and more

importantly, gene–gene interactions. Recent genomic studies

have demonstrated the importance of gene–gene interactions

and gene networks for complex diseases (Cordell, 2009;

Horvath et al., 2006; Moore and Williams, 2009; Schadt et al.,

2008) that are not being addressed with these methods.
One recent pathway analysis method for modelling gene–gene

relationships makes use of random forests (RF) (Breiman, 2001)

by constructing RF for genes in each pathway and ranking path-

ways based on prediction accuracy. This method automatically

incorporates two-way or high-order genes interactions effects

with marginal association patterns (Pang et al., 2006, 2010).
However, a limitation of these RF pathway approaches is that

they ignore genes outside of the targeted pathway. Complex dis-

eases often result from multiple pathway disturbances and inter-

actions. A well known example is the Ras pathway, which

activates multiple signalling pathways to drive uncontrolled pro-

liferation in cancer (McCormick, 1999). Therefore, a single path-

way may not fully explain phenotype variations in complex

diseases. Goeman and Buhlmann (2007) discussed the need to

include genes outside the gene sets for pathway testing, and they

indicated these should be dependent on biological hypothesis.

The ideal solution is to combine all available candidate pathway

gene expression data together for RF modelling. However, find-

ing a reliable gene importance measure for ultra-high-dimen-

sional genomic data and resolving the computational issues in

RF are challenging.
In this article, we propose a new pathway hunting algorithm

for survival outcomes using random survival forests (RSF)

(Ishwaran et al., 2008) that prioritize important pathways by

accounting for transcriptome-wise gene correlations and inter-

actions. In Section 2, we describe the RSF framework, a minimal

depth measure of variable importance, our pathway hunting*To whom correspondence should be addressed.
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algorithm and a testing procedure for pathway analysis. In
Section 3.1, we show that our method performs favourably com-

pared with five popular pathway testing methods using a simu-

lation study. We illustrate the pathway hunting approach in

Sections 3.2 and 3.3 using two microarray survival datasets
involving colon cancer and ovarian cancer. Section 4 presents a

summary discussion.

2 METHODS

2.1 Random survival forests

RF (Breiman, 2001) is a non-parametric ensemble tree learning method

that has become increasingly popular for genetic and gene expression

data analyses (Diaz-Uriarte and de Andres, 2006; Lunetta et al., 2004;

Pang et al., 2006). An RF ensemble comprises randomly grown recur-

sively partitioned binary trees. Each tree is grown from an independent

bootstrap sample. Trees are generally grown deeply, and during the tree

growing process, each node is split using a randomly selected subset of

variables. These features enable RF to reduce both bias and variance.

RSF is a new extension of RF to right-censored survival data settings

(Ishwaran et al., 2008). RSF possesses similar properties to RF. It is a

data adaptive procedure able to model non-linear effects and complex

interactions among features. These properties make it an attractive tool

for the analysis of complex survival data. RSF has been successfully

applied to cancer staging and integrative genomic modelling (Chen

et al., 2010; Ishwaran et al., 2009; Weichselbaum et al., 2008).

In this article, RSF models were constructed using the following four

steps:

(1) A total of ntree independent bootstrap samples are drawn. Each

bootstrap sample excludes on average 36.8% of the original data,

called out-of-bag (OOB) data. For each bootstrap sample, a single

random survival tree is grown.

(2) Whengrowingthetree,ateachtreenode,mtryvariablesarerandomly

selected. A maximum of nsplit split-points are chosen randomly

for each of the mtry variables. The node is split by finding the vari-

able that maximizes the log-rank test across its nsplit randomly

selected split points (in our examples, we used nsplit equal to 10).

(3) Each survival tree is grown to full size under the constraint that the

minimum number of unique event times in a node is no smaller

than the integer nodesize.

(4) The forest ensemble is the tree-averaged cumulative hazard func-

tion. The predicted value mortality is defined as the forest cumu-

lative hazard function summed over the event times.

All RSF models in this article were calculated using the R-package

randomSurvivalForest. Default settings for the software were used except

for nsplit, which was set to 10 (as stated earlier in the text).

2.2 Minimal depth

A useful feature of RF is that it provides a rapidly computable internal

measure of variable importance (VIMP) that can be used for ranking

features. To calculate VIMP for a variable, the given variable is randomly

permuted in the OOB data, and the permuted OOB data are dropped

down the tree. OOB prediction error is then calculated. The difference

between this estimate and the OOB error without permutation (i.e. from

the original tree), averaged over all trees, is the VIMP of the variable. The

larger the VIMP of a variable, the more predictive the variable (Breiman,

2001). VIMP has been widely used to rank predictors in microarray ex-

pression and genetic association data analysis.

Recently, Ishwaran et al. (2010) described a new high-dimensional

variable selection method based on a tree concept referred to as minimal

depth which measures the importance of a variable in terms of its splitting

behaviour relative to the root node. This avoids directly working with

prediction error and is non-randomized, which makes it possible to pro-

vide a theoretical basis for selecting variables (something that is not avail-

able with VIMP). The minimal depth of a variable v is the depth at which

the variable first splits within a tree, relative to the root node. The smaller

the minimal depth, the more predictive the variable.

Denote the minimal depth for a variable v by Dv. In high-dimensional

sparse settings under the assumption that v is noisy (i.e. is unrelated to the

outcome), it was shown (Ishwaran et al., 2010) that for 0 � d � DðTÞ � 1,

where DðTÞ is the depth of the tree T,

PfDv ¼ d j ‘0, . . . , ‘DðTÞg ¼ 1� 1�
1

p

� �‘d" #Yd�1
j¼0

1�
1

p

� �‘j
, ð1Þ

where ‘d equals the number of non-terminal nodes at depth d and p

equals the number of features.

Minimal depth selection selects a variable v if its tree-averaged minimal

depth is less than or equal to the mean of Dv under the distribution (1).

Although Equation (1) is conditional on the tree-node values ‘d, which

are unknown, in practice, ‘d is estimated using forest averaged values.

This makes minimal depth selection easily and rapidly computable in

practice. The performance of minimal depth variable selection was sys-

tematically compared with VIMP in Ishwaran et al. (2011). The results

repeatedly demonstrated superiority to VIMP. Thus, we use minimal

depth to measure importance of a gene in this article.

2.3 Pathway hunting

Although minimal depth is reliable in moderately high-dimensional

settings, it is still difficult to obtain accurate measurements in ultra-

high-dimensional scenarios (Ishwaran et al., 2010). To overcome this

dimensionality problem, we propose a minimal depth pathway hunting

approach adapted from the variable hunting method of Ishwaran et al.

(2010). The algorithm consists of the following steps:

(1) Split the data into training and test sets (we used 80 and 20%,

respectively).

(2) Select P genes randomly from all available genes p. The default

setting is P¼ p/5 when P51000, otherwise P¼ 1000.

(3) Fit a survival forest, F, to the training data using P genes.

(4) Determine the minimal depth for each of the P genes.

(5) Calculate the test set prediction error of F using the test data.

(6) Repeat step 1–5 B times.

(7) Determine the average minimal depth for each of the p genes from

the B RF.

(8) Compute the pathway minimal depth by averaging the minimal

depth of all genes within the given pathway. The smaller the aver-

aged pathway minimal depth measure, the more important the

pathway.

The algorithm breaks the ultra-high-dimensional feature space into

more manageable subspaces to better estimate the minimal depth for

each gene. The number of replicates B generally needs to be large

enough to fully span all genes. In this article, we set B¼ 200 for all ana-

lyses. A pathway-ranked list of genes can be obtained using the ordered

pathway level minimal depth values.

2.4 Pathway significant testing

For significance testing of pathways, permutation tests that permute

sample labels are often used. However, this approach is too computation-

ally extensive with RSF, as it requires that the entire pathway hunting

steps be repeated for each permutation sample. Instead, we shall adopt

the random-set enrichment scoring framework (Newton et al., 2007) to
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analyse pathway minimal depth. Specifically, for a given pathway with m

genes, we calculate its entire set of gene minimal depth values

G ¼ fD1,D2, . . . ,Dmg. We define the enrichment score for the pathway

to be �X ¼
P

v2G Dv=m. We test the null hypothesis that �X is not different

from the mean of a random set of m distinct genes drawn randomly from

a total of p genes representing the genome background. When p is large,

the distribution of minimal depth is approximately Gaussian. Applying

the � method, we obtain

� ¼ Eð �XÞ ¼
1

p

Xp
v¼1

Dv

�2 ¼ Varð �XÞ ¼
1

m

p�m

p� 1

� �
1

p

Xp
v¼1

D2
v

 !
�

1

p

Xp
v¼1

Dv

 !2
2
4

3
5:

The null hypothesis can be tested by comparing the standardized path-

way minimal depth enrichment score Z ¼ ð �X� �Þ=� to a standard

normal distribution. Small values of Z indicate a pathway enriched

with predictive genes.

3 RESULT

3.1 Simulation studies

We use simulation studies to assess the effectiveness of the RSF

pathway hunting method for identifying pathways with gene–

gene interactions. We compare our method with several well-

known pathway analysis methods. We focus on a pathway

cross-talk simulation, as it poses a difficult scenario for standard

pathway approaches.

We set n¼ 250 for the sample size and P¼ 500 for the number

of genes. For each observation, expression values for the p genes

ðx1, . . . , xpÞ
T were generated from a multivariate normal distri-

bution with mean zero and autoregressive correlation structure

corrðxi, xkÞ ¼ �
ji�kj for two genes i and k. The 500 genes were

divided into 50 pathways with 10 genes each. The survival time

of each sample was generated based on six randomly selected

causal genes ðx1, :::, x6Þ from an exponential distribution with

mean

� ¼ exp½��ðx1x4 þ x2x5 þ x3x6Þ� ð2Þ

where the coefficient was set at � ¼ 8. Censoring times were

drawn independently from an exponential distribution with

mean ��, the average of � over the samples.
To simulate pathways associated with the survival outcomes,

we designed two scenarios. In the first scenario, there was one

disease associated pathway and three of the six causal genes

(x1,x2,x3) were randomly selected from the 10 genes in

Pathway 1, and genes (x4,x5,x6) were randomly selected from

the remaining 490 genes. Under this simulation set-up,

Pathway 1 was the only disease associated pathway. Note,

genes x4,x5,x6 were disease associated genes, but not located

within the causal pathway (i.e. Pathway 1).
In the second scenario, there were two causal pathways that

included disease associated genes. Genes (x1,x2,x3) were again

randomly selected from Pathway 1, whereas genes (x4,x5,x6)

were randomly selected from another single pathway, which

was drawn randomly from the remaining 49 pathways. Both

pathways were considered as disease associated pathways in

this case. In each of two cases aforementioned, the correlation

parameter � was 0.5, 0.7 and 0.9. We repeated each of the six

simulation scenarios 100 times independently.
We compared the performance of our RSF pathway hunting

approach to five other pathway testing methods. These included

(i) the random-set method (Newton et al., 2007) implemented in

the R-package allez; (ii) Fisher’s exact test, where the threshold

for classifying significant genes was set at a nominal P-value of

0.05 obtained from univariate Cox regression modelling of a

gene; (iii) GSEA (Subramanian et al., 2005) implemented using

the javaGSEA program available from the Broad Institute at

http://www.broadinstitute.org/gsea/downloads.jsp; (iv) the max-

mean test (Efron and Tibshirani, 2007) implemented in the

R-package GSA; and (v) the RSF pathway approach

Pwayrfsurvival of Pang et al. (2010) based on single pathways.
In the first scenario, there was one disease associated pathway

in each simulation dataset (or repetition); therefore, there

were 100 ð¼ 1� 100 repetitionsÞ pathways associated with the

survival outcome and 49 � 100¼ 4900 control pathways. In

the second scenario, there were two disease associated pathways

in each simulation dataset; therefore, there were 200

ð¼ 2� 100 repetitionsÞ survival outcome associated pathways

and 4800 ð¼ 48� 100Þ control pathways. In each scenario, the

P-values obtained for these 5000 pathways were then used to

compute the receiver operator characteristics (ROC) curves.

These show the trade-off between sensitivity and specificity as

the threshold for declaring a significant pathway varies. To com-

pare the overall discriminative abilities of the methods over all

possible cut-offs, we calculated the area under the ROC curve

(AUC). Table 1 records the AUC under all six simulation scen-

arios. We find that our RSF method (denoted simply as RSF)

significantly outperforms all other methods. Figure 1 displays the

ROC curves of all six methods for scenario 2 of Table 1. RSF

sensitivity is better across all levels of specificities.

We also performed another simulation study based on a real

gene expression dataset, GSE17538 (with 250 patients), pulled

from the NCBI GEO database. Three BioCarta and KEGG

pathways with sizes 10, 21 and 43 were selected as the causal

pathways for comparison. These were chosen as all had similar

pairwise gene correlations (�0.17; see the Supplementary

Material). Then 37 pathways were randomly chosen as back-

ground pathways. The number of genes for all 40 pathways

was 987. We designed the following three simulations. Genes

(x1,x2,x3) were randomly selected from 10 genes in Pathway 1,

and genes (x4,x5,x6) were randomly selected from the remaining

977 genes. These represent the x-variables in the simulation.

Then survival times and censoring status for the x-variables

were generated as in Equation (2) with �¼ 15. A similar proced-

ure was applied to Pathways 2 and 3, with the number of causal

genes set to 12 and 26, where half of them were from the causal

pathway and the rest were from other genes. Each simulation

was repeated 100 times. The AUC values from the simulation

results are shown in Table 2. Once again, the RSF pathway

hunting method has the best performance.

3.2 Colon cancer data

For our next example, we applied the RSF pathway hunting

method to a colon cancer gene expression data (Smith et al.,

2010). The data were from 223 colorectal adenocarcinoma
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patients from the Vanderbilt Medical Center and Moffitt Cancer

Center. All patients had disease-free survival outcomes. The gene

expression data comprise 54 675 probes based on Affymetrix

HGU133 plus 2.0 expression chip. The data are available from

the NCBI GEO database (accession no. GSE17538). A collection

of 403 pathways, including 186 KEGG pathways (www.genome.

jp/kegg) and 217 BioCarta pathways (www.biocarta.com), were

used for the analysis.
For each pathway, we calculated a nominal P-value based on

our pathway hunting method, as well as an adjusted P-value

controlled using the false discovery rate (FDR) (Benjamini

and Hochberg, 1995). Table 3 lists the top pathways controlled

at a 0.2 FDR threshold. For comparison, the data were also

analysed using the previous five methods (see Supplementary

Material). It is interesting that several of the listed pathways,

including extracellular matrix (ECM) receptor interaction,

focal adhesion and the transforming growth factor-beta

(TGF-�) signalling, were also ranked as top pathways by the

comparison methods. For GSEA and GSA, the smallest adjusted

P-values were 0.311 and 0.423, respectively. The top path-

ways identified by random-set were those related to central ner-

vous system degenerative disorders, such as Parkinson and

Alzheimer’s disease.

The P53 pathway, vascular endothelial growth factor (VEGF)

pathway and TGF-� signalling pathway listed in Table 3 are

well-known to be involved in cancer development and metastasis.

The most significant pathway identified by RSF is the peroxi-

some-proliferator-activated receptor (PPAR) signalling pathway.

PPARs are ligand-activated transcription factors that belong to

the nuclear-hormone-receptor family, and the PPARs family is

composed of three isotypes, including PPAR�, PPAR�/� and

PPAR�. The association between activation of PPAR� and the

growth and differentiation of colon cancer has been shown in

different experimental models (Gupta et al., 2004; Sarraf et al.,

1998; Yang and Frucht, 2001). The PPAR signalling pathway is

closely linked with other top pathways in carcinogenesis. For

example, the adipocytokine signalling pathway and the leptin

pathway are key mediators in adipose tissue for inflammation

and immune response. It has been shown that the increased in-

cidence of colon cancer with a high-fat diet could be caused by

activation of PPAR� by fatty acids (Wasan et al., 1997). The

level of PPAR� and PPAR� can be controlled by adiponectin

and leptin, which are two adipocytokines (Qian et al., 1998;

Yamauchi et al., 2003). Suppression of the TGF-� signalling

pathway is regulated by PPAR� (Lee et al., 2008). It has been

suggested that p53 mediates the PPAR� ligand-induced apop-

tosis (Nagamine et al., 2003). There is evidence suggesting that

PPAR�/� and PPAR� mediate VEGF induction in colorectal

tumour (Rohrl et al., 2011).
This analysis suggests that the PPAR signalling pathway is not

only associated with survival in colon cancer patients, but that it

may also play a hub-role in connecting with other important

pathways. PPAR� agonists, such as thiazolidinediones, have

been discovered to have anticancer effects for multiple cancer

types (Michalik et al., 2004; Ondrey, 2009).

3.3 Ovarian cancer data

As another example, we applied RSF pathway hunting to an

ovarian cancer gene expression dataset (Bonome et al., 2008).

The analysis was based on tumour tissues obtained from 185

stage III and IV ovarian cancer patients using Affymetrix

HGU133A expression chip with 22 823 probes (GEO accession

no. GSE26712). We used the same 403 KEGG and BioCarta

pathways as in the colon cancer data analysis. Table 4 lists path-

ways meeting an FDR threshold of 0.1 from our RSF method.

Table 1. Simulation study results comparing RSF, random-set, Fisher’s exact test, GSEA and Pwayrfsurvival (abbreviated as Pwayrfs)

Scenario No. of casual pathway � AUC

RSF Random-set Fisher GSEA GSA Pwayrfs

1 1 0.5 0.805 0.595 0.585 0.512 0.580 0.502

2 1 0.7 0.838 0.590 0.584 0.550 0.607 0.524

3 1 0.9 0.917 0.562 0.575 0.597 0.552 0.555

4 2 0.5 0.809 0.586 0.585 0.540 0.531 0.507

5 2 0.7 0.886 0.587 0.595 0.528 0.570 0.536

6 2 0.9 0.959 0.615 0.586 0.544 0.598 0.522

Note: No. of casual pathway, the number of pathway used for generating survival outcomes; �: Correlation parameter.

Fig. 1. Comparison of performances of RSF, random-set, Fisher’s exact

test, GSEA, GSA and Pwayrfsurvival using simulated expression data.

This figure shows the ROC curves for simulation scenario 2 of Table 1
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For the inositol phosphate metabolism and phosphatidylinositol

signalling system pathways, PIK3CA had been identified as an

oncogene in ovarian cancer, and clinical trial data support that

inositol hexaphosphate (IP6) plus inositol can enhance the antic-

ancer effect of chemotherapy and slow tumour metastasis

(Shayesteh et al., 1999; Vucenik and Shamsuddin, 2003). Extrin-
sic (cytoplasmic) and intrinsic (mitochondrial) pathways are
apoptosis signal transduction pathways in cancer cells and are

targets of variety of anticancer chemotherapies (Fulda and
Debatin, 2006). In contrast, GSA and Fisher’s exact test did
not find any significant pathways associated with survival out-

comes (see the Supplementary Material).
The most interesting findings were the top two pathways:

ECM receptor interaction and focal adhesion, which were also

among our top pathways from the colon cancer analysis. Focal
adhesions are macromolecules that mediate the regulatory effects
of ECM, which connects cells within most tissues. Signalling

between cells and ECM is essential for cell migration, prolifer-
ation and survival. Cross-talk between tumour cells and the
microenvironment of the local host is critical for development

of tumours (Liotta and Kohn, 2001). Knowledge and control of
the microenvironment become more important for understand-

ing the mechanism of carcinogenesis and developing effective
chemotherapy (Albini and Sporn, 2007).
The importance of the ECM pathway agrees well with another

recent study. To increase power for detecting pathway-level per-
turbations, Krupp et al. (2011) conducted a large-scale gene ex-
pression meta-study that combined 649 tumour samples from

41400 experiments and 58 tumour types. Even though there
were only 39 ovarian cancer samples and no colon cancer sam-
ples in this combined dataset, ECM receptor interaction and

PPAR signalling pathway were significantly enriched and con-
served across tumour types.
The important genes within each pathway can be screened

using minimal depth. For the ECM receptor interaction path-
way, the minimal depth of all genes within the pathway from
both colon cancer and ovarian cancer is plotted in Figure 2. The

overlapping genes from the first quartile of each data are labelled
with their gene symbols. These genes can be further evaluated
and used as biomarkers for metastasis risk prediction in multiple

cancer types.

4 DISCUSSION

Complex diseases are generally the consequences of interactions
from multiple genes and pathways. Although pathway enrich-

ment and association testing approaches have been developed,
because of computational and statistical modelling challenges,
the information from gene–gene interactions are either ignored

or restricted to within an individual pathway.
In this article, we presented a novel RSF pathway hunting

method for identifying and ranking the importance of pathways
for their association with survival outcome. The proposed
method is based on a new measure of variable importance,

termed minimal depth, which has been shown to be an efficient
and effective method for variable selection in high dimensions
(Ishwaran et al., 2010, 2011). Our RSF pathway hunting ap-

proach is capable of capturing both marginal gene effects and
gene–gene interactions at the genome level, and it approximates
the complexity of the transcriptome by taking advantage of

a priori biological knowledge.
In our simulation studies, we specifically designed scenarios

where censored survival outcomes were associated with gene

interactions and pathway cross-talk. The RSF approach

Table 4. Top pathways for ovarian cancer data identified by RSF using a

0.1 FDR cut-off

Pathway term Size P-value FDR

ECM receptor interaction 81 1.29E-09 5.20E-07

Focal adhesion 190 5.74E-06 0.00088

Inositol phosphate metabolism 49 6.55E-06 0.00088

Phosphatidylinositol signalling system 70 2.48E-05 0.002

Endocytosis 163 2.70E-05 0.002

Intrinsic pathway 23 2.54E-03 0.014

Regulation of actin cytoskeleton 195 2.56E-03 0.026

Fc gamma R-mediated phagocytosis 88 5.34E-03 0.026

Adipocytokine signalling pathway 63 8.88E-03 0.039

Acute myeloid leukaemia 57 0.001 0.057

Par1 pathway 36 0.002 0.063

Leukocyte transendotheial migration 106 0.003 0.089

Extrinsic pathway 13 0.003 0.095

AMI pathway 20 0.003 0.098

Table 3. Top pathways for colon cancer data identified by RSF using a

0.2 FDR cut-off

Pathway term Size P-value FDR

PPAR signalling pathway 68 6.82E-11 2.75E-08

Adipocytokine signalling pathway 66 2.08E-06 0.00042

Leptin pathway 11 6.91E-06 0.00092

ECM receptor interaction 83 8.78E-05 0.00884

mTOR signalling pathway 23 0.00046 0.037

TGF-� signalling pathway 83 0.001 0.068

Focal adhesion 196 0.002 0.101

P53hypoxia pathway 22 0.004 0.179

Tryptophan metabolism 39 0.005 0.179

P53 pathway 16 0.005 0.179

VEGF pathway 29 0.005 0.179

Table 2. Simulation study results comparing RSF, random-set, Fisher’s

exact test, GSEA and Pwayrfsurvival using real microarray data

Pathway AUC

RSF Random-set Fisher GSEA GSA Pwayrfs

1 0.868 0.608 0.537 0.554 0.653 0.628

2 0.856 0.527 0.534 0.581 0.511 0.624

3 0.861 0.560 0.501 0.505 0.510 0.606
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outperformed standard well-known procedures. In our real data

analyses involving colon and ovarian cancer, RSF identified key

pathways. These findings indicate that the RSF pathway hunting

algorithm can identify essential cancer signalling pathways with a

relatively small sample size.
In summary, we have described a new method to model com-

plex gene–gene interactions and multiple interactions between

pathways, integrated within a traditional pathway analysis

framework. It can be further extended to model different pheno-

types, such as categorical or continuous outcomes. This new ap-

proach helps to expand the scope of current pathway analysis to

understand the complexities underlying diseases.
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