
Vol. 29 no. 1 2013, pages 1–7
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/bts652

Genome analysis Advance Access publication November 4, 2012

Binary Interval Search: a scalable algorithm for counting interval

intersections
Ryan M. Layer1, Kevin Skadron1, Gabriel Robins1, Ira M. Hall2 and Aaron R. Quinlan3,*
1Department of Computer Science, University of Virginia, Charlottesville, VA 22904, 2Department of Biochemistry and
Molecular Genetics and 3Department of Public Health Sciences and Center for Public Health Genomics, University of
Virginia, Charlottesville, VA 22908, USA

Associate Editor: Alex Bateman

ABSTRACT

Motivation: The comparison of diverse genomic datasets is funda-

mental to understand genome biology. Researchers must explore

many large datasets of genome intervals (e.g. genes, sequence align-

ments) to place their experimental results in a broader context and to

make new discoveries. Relationships between genomic datasets are

typically measured by identifying intervals that intersect, that is, they

overlap and thus share a common genome interval. Given the contin-

ued advances in DNA sequencing technologies, efficient methods for

measuring statistically significant relationships between many sets of

genomic features are crucial for future discovery.

Results: We introduce the Binary Interval Search (BITS) algorithm, a

novel and scalable approach to interval set intersection. We demon-

strate that BITS outperforms existing methods at counting interval

intersections. Moreover, we show that BITS is intrinsically suited to

parallel computing architectures, such as graphics processing units by

illustrating its utility for efficient Monte Carlo simulations measuring the

significance of relationships between sets of genomic intervals.

Availability: https://github.com/arq5x/bits.

Contact: arq5x@virginia.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on August 16, 2012; revised on October 22, 2012; accepted

on October 29, 2012

1 INTRODUCTION

Searching for intersecting intervals in multiple sets of genomic

features is crucial to nearly all genomic analyses. For example,

interval intersection is used to compare ChIP enrichment be-

tween experiments and cell types, identify potential regulatory

targets and compare genetic variation among many individuals.

Interval intersection is the fundamental operation in a broader

class of ‘genome arithmetic’ techniques, and as such, it underlies

the functionality found in many genome analysis software pack-

ages (Giardine et al., 2005; Kent et al., 2002; Li et al., 2009;

Quinlan and Hall, 2011).
As high-throughput sequencing technologies have become

the de facto molecular tool for genome biology, there is an

acute need for efficient approaches to interval intersection.

Microarray techniques for measuring gene expression and chro-

matin states have been largely supplanted by sequencing-based

techniques, and whole-exome and whole-genome experiments

are now routine. Consequently, most genomics laboratories

now conduct analyses including datasets with billions of

genome intervals. Experiments of this size require substantial

computation time per pairwise comparison. Moreover, typical

analyses require comparisons with many large sets of genomic

features (where set size refers to the number of intervals in the

set). Existing approaches scale poorly and are already reaching

their performance limits. We, therefore, argue the need for new

scalable algorithms to allow discovery to keep pace with the scale

and complexity of modern datasets.

In this manuscript, we introduce the Binary Interval Search

(BITS) algorithm as a novel and scalable solution to the funda-

mental problem of counting the number of intersections between

two sets of genomic intervals. BITS uses two binary searches

(one each for start and end coordinates) to identify intersecting

intervals. As such, our algorithm executes in �ðN logNÞ time,

where N is the number of intervals, which can be shown to be

optimal for the interval intersection counting problem by a

straightforward reduction to element uniqueness (known to be

�ðN logNÞ (Mirsa and Gries, 1982). In contrast, counting inter-

sections by enumeration is less efficient, as enumerating intervals

requires time �ðMþN logNÞ, where M is the number of inter-

sections that can be quadratic to the input size. We illustrate that

a sequential version of BITS outperforms existing approaches

and show that BITS is intrinsically suited to parallel architec-

tures. The parallel version performs the same amount of work

as the sequential version (i.e. there is no overhead), which means

the algorithm is work efficient, and because each parallel

thread performs equivalent work, BITS has little thread diver-

gence. Although thread divergence degrades performance on any

architecture (finished threads must wait for overburdened

threads to complete), the impact is particularity acute for graph-

ics processing units (GPUs) where threads share a program

counter and any divergent instruction must be executed on

every thread.

1.1 The interval set intersection problem

We begin by reviewing some basic definitions. A genomic interval

is a continuous stretch of a genome with a chromosomal start

and end location (e.g. a gene), and a genomic interval set is a col-

lection of genomic intervals (e.g. all known genes). Two intervals*To whom correspondence should be addressed.

� The Author(s) 2012. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1

https://github.com/arq5x/bits
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1

a and b intersect when ða:start � b:endÞ and ða:end � b:startÞ.
The intersection of two interval sets A ¼ fa1, a2, . . . , aNg and

B ¼ fb1, b2, . . . , bMg is the set of interval pairs:

IðA,BÞ ¼ fha, bija 2 A, b 2 B,

a:start � b:end ^ a:end � b:startg

Intervals within a set can intersect, but self-intersections
are not included in IðA,BÞ. There are four natural

sub-problems for interval set intersection: (i) decision—does

there exist at least one interval in A that intersects an interval

in B?; (ii) counting—how many total intersections exist between
sets A and B?; (iii) per-interval counting—how many intervals in

B intersect each interval in A?; (iv) enumeration—what is the set

of each pairwise interval intersections between A an B? Although

BITS solves all four sub-problems, it is designed to efficiently
count the number of intersections between two sets, and as such,

it excels at the decision, counting and per-interval counting

problems.

1.2 Limits to parallelization

Interval intersection has many applications in genomics, and

several algorithms have been developed that, in general, are

either based on trees (Alekseyenko and Lee, 2007; Kent et al.,

2002) or linear sweeps of pre-sorted intervals (Richardson, 2006).
The UCSC Genome Browser introduced a widely used scheme

based on R-trees. This approach partitions intervals from one

dataset into hierarchical ‘bins’. Intervals from a second dataset
are then compared with matching bins (not the entire dataset)

to narrow the search for intersections to a focused portion of

the genome. Although this approach is used by the UCSC

Genome Browser, BEDTools (Quinlan and Hall, 2011) and
SAMTOOLS (Li et al., 2009), the algorithm is inefficient for

counting intersections, as all intervals in each candidate bin

must be enumerated to count the intersections. As the number

of intersections is at most quadratic, any enumeration-based al-
gorithm is O(N2).

Moreover, these existing approaches are poor candidates
for parallelization. Thread divergence can be a significant

problem for hierarchical binning methods. If intervals are not

uniformly distributed (e.g. exome sequencing or RNA-seq),

then a small number of bins will contain many intervals, whereas
most other bins are empty. Consequently, threads searching full

bins will take substantially longer than threads searching empty

bins. In contrast, BITS counts intersections directly without enu-

merating intersecting intervals; therefore, the underlying interval

distribution does not impact the relative workload of each
thread.

Recent versions of BEDTools and BEDOPS (Neph et al.,
2012) conduct a linear ‘sweep’ through pre-sorted datasets

while maintaining an auxiliary data structure to track intersec-

tions as they are encountered. Although the complexity of such

sequential sweep algorithms is theoretically optimal, the amount
of parallelism that exists is limited, and some overhead is

required to guarantee correctness. Any linear sweep algorithm

must maintain the ‘sweep invariant’ (McKenney and McGuire,

2009), which states that all segment starts and ends, and inter-
sections behind the sweep must be known. A parallel sweep

algorithm must either partition the input space such that each

section can be swept in parallel without violating the invariant or

threads must communicate about intervals that span partitions.

In the first case, parallelism is limited to the number of partitions

that can be created, and threads can diverge when the number of

intervals in each partition is unbalanced. In the second case, the

communication overhead between threads prevents work effi-

ciency and can have significant performance implications. In

BITS, the amount of parallelism depends only on the number

of intervals and not on the distribution of intervals within the

input space, and there is no communication between threads.

2 METHODS

A seemingly facile method for finding the intersection of A and B would

be to treat one set, A, as a ‘query’ set, and the other, B, as a ‘database’.

If all of the intervals in the database were sorted by their starting coord-

inates, it would seem that binary searches could be used for each query to

identify all intersecting database intervals.

However, this apparently straightforward searching algorithm is com-

plicated by a subtle, yet vexing detail. If the intervals in B are sorted by

their starting positions, then a binary search of B for the query interval

end position ai:end ai:end will return the interval bj 2 B, where bj is the

last interval in B that starts before interval ai ends (e.g. interval e in

Fig. 1A). This would seem to imply that if bj does not intersect ai, then

no intervals in B intersect ai, and if bj does intersect ai, then other inter-

secting intervals in B could be found by scanning the intervals starting

before bj in decreasing order, stopping at the first interval that does not

intersect ai. However, this technique is complicated by the possibility

of intervals that are wholly contained inside other intervals (e.g. interval

c in Fig. 1B).

An interval bj 2 B is ‘contained’ if there exists an interval bk 2 B where

bk:start � bj:start and bj:end � bk:end. Considering such intervals, if

the interval found in the previous binary search bj does not intersect

the query interval ai, we cannot conclude that no interval in B intersects

ai because there may exist an interval bj�x 2 B where bj�x:end � ai:start.

Furthermore, if bj does intersect ai, then the subsequent scan for other

intersecting intervals cannot stop at the first interval that does not inter-

sect ai; it is possible that some earlier containing interval intersects ai.

Therefore, the scan is forced to continue until it reaches the beginning of

the list. As contained intervals are typical in genomic datasets, a naı̈ve

binary search solution is inviable.

2.1 Binary Interval Search algorithm

We now introduce our new Binary Interval Search (BITS) algo-

rithm for solving the interval set intersection problem. This algo-

rithm uses two binary searches to identify interval intersections while

avoiding the aforementioned complexities caused by contained

intervals. The key observation underlying BITS is that the size of the

intersection between two sets can be determined without enume-

rating each intersection. For each interval in the query set, two binary

searches are performed to determine the number of intervals in the

database that intersect the query interval. Each pair of searches is in-

dependent of all others, and thus all searches can be performed in

parallel.

Existing methods define the intersection set based on inclusion, that is,

the set of intervals in the interval database B that end after the query

interval ai begins, and which begin before ai ends. However, we have seen

that contained intervals make it difficult to find this set directly with a

single binary search.

2

R.M.Layer et al.

Our algorithm uses a different, but equivalent, definition of interval

intersection based on exclusion, that is, by identifying the set of intervals

in B that cannot intersect ai, we can infer how many intervals must inter-

sect ai. Formally, we define the set of intervals IðB, aiÞ 2 B that intersect

query interval ai 2 A to be the intervals in B that are neither in the set of

intervals ending before (‘left of’, set L below) ai begins nor in the set of

intervals starting after (‘right of’, set R below) ai ends. That is:

LðB, aiÞ ¼ fb 2 Bjb:end5ai:startg

RðB, aiÞ ¼ fb 2 Bjb:start4ai:endg

IðB, aiÞ ¼ BnðLðB, aiÞ [RðB, aiÞÞ

Finding the intervals in Iðai,BÞ for each ai 2 A by taking the differ-

ence of B and the union of LðB, aiÞ andRðB, aiÞ is not efficient. However,

we can quickly find the size of LðB, aiÞ and the sizeRðB, aiÞ and then infer

the size of IðB, aiÞ. With the size of IðB, aiÞ, we can directly answer the

decision problem, the counting problem and the per-interval counting

problems. The size of IðB, aiÞ also serves as the termination condition

for enumerating intersections that were missing in the naı̈ve binary search

solution.

The BITS algorithm is based on one fundamental function,

ICOUNTðBS,BE, aiÞ ¼ jIðB, aiÞj (Algorithm 1), which determines the

number of intervals in the database B that intersect query interval ai.

As shown in Figure 1C, the database B is split into two integer

lists BS ¼ ½b1:start, b2:start, . . . bM:start� and BE ¼ ½b1:end, b2:end, . . .

bM:end�, which are each sorted numerically in ascending order. Next,

two binary searches are performed, last ¼ BSEARCHðBE, ai:startÞ and

first ¼ BSEARCHðBS, ai:endÞ. As BE is a sorted list of each interval end

coordinate in B, the elements with indices less than or equal to last in BE

correspond to the set of intervals in B that end before ai starts (i.e. to the

‘left’ of ai). Similarly, the elements with indices greater than or equal to

first in BS correspond to the set of intervals in B that start after ai ends

(i.e. to the ‘right’ of ai). From these two values, we can directly infer

the size of the intersection set IðB, aiÞ (i.e. the count of intersections in

B for ai):

jBj � first ¼ jRðB, aiÞj

last ¼ jLðB, aiÞj

jBj � ðlastþ ðjBj � firstÞÞ ¼ jIðB, aiÞj

Using the subroutine ICOUNTðBs,BE, aiÞ, all four interval set intersec-

tion problem variants can be solved. Pseudocode for the decision,

per-interval counting and enumeration sub-problems can be found in the

Supplementary Material.

2.1.1 The BITS solution to the counting problem As BITS

operates on arrays of generic intervals (hstart, endi), and input files are

typically chromosomal intervals (hchrom, start, endi), the intervals in each

dataset are first projected down to a 1D generic interval. This is a

straightforward process that adds an offset associated with the size of

each chromosome to the start and end of each interval. The resulting

interval arrays A and B are input to the COUNTER (Algorithm 2) that

sets the accumulator variable c to zero; then for each ai 2 A, accumulates

c ¼ cþ ICOUNTðBS,BE, aiÞ. The total count c is returned.

2.2 Time complexity analysis

The time complexity of BITS is OððjAj þ jBjÞ log jBjÞ, which can be

shown to be optimal by a straightforward reduction to element unique-

ness (known to be �ðN logNÞ (Mirsa and Gries, 1982). To compute

ICOUNTðBS,BE, aiÞ for each ai in A, the interval set B is first split into

two sorted integer lists BS and BE, which requires OðjBj log jBjÞ time.

Next, each instance of ICOUNTðBS,BE, aiÞ searches both BS and BE,

which consumes OðjAj log jBjÞ time. For the counting problems, combin-

ing the results of all ICOUNTðBS,BE, aiÞ instances into a final result can be

accomplished in OðjAjÞ time.

Fig. 1. Comparing a naı̈ve binary search for interval intersection to the

BITS approach. (A) Binary searches of intervals sorted by start coordin-

ate will occasionally identify overlapping intervals. However, contained

intervals prevent knowing how far one must scan the database to identify

all intersections. (B) Contained intervals also cause single binary searches

to falsely conclude that no intersections exist for a given query interval.

(C) To overcome these limitations, BITS uses two binary searches of the

database intervals: one into a sorted list of end coordinates and the other

into a sorted list of start coordinates. Each search excludes database

intervals that cannot intersect the query, leaving solely the intervals that

must intersect the query

3

BITS

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1

2.3 Parallel BITS

Performing a single operation independently on many different inputs

is a classic parallelization scenario. When based on the sub-routine

ICOUNTðBS,BE, aÞ , which is independent of all ICOUNTðBS,BE,xÞ for

intervals x in the query set where a 6¼ x, counting interval intersections

is a pleasingly parallelizable problem that easily maps to a number of

parallel architectures.

NVIDIA’s CUDA is a single instruction multiple data (SIMD) archi-

tecture that provides a general interface to a large number of parallel

GPUs. The GPU is organized into multiple SIMD processing units,

and the processors within a unit operate in lock-step. The BITS algorithm

is especially well suited for this architecture for a number of reasons.

First, CUDA is optimized to handle large numbers of threads. By assign-

ing each thread, one instance of ICOUNTðBS,BE, aÞ, the number of

threads will be proportional to the input size. CUDA threads also execute

in lock-step and any divergence between threads will cause reduced

thread utilization. Although there is some divergence in the depth of

each binary search performed by ICOUNTðBS,BE, aÞ, it has an upper

bound of Oðlog jBjÞ. Outside of this divergence, ICOUNTðBS,BE, aÞ is a

classic SIMD operation (Kirk and Hwu, 2010). Finally, the only data

structure required for this algorithm are a sorted array, and thanks to

years of research in this area, current GPU sorting algorithms can sort

billions of integers within seconds (Merrill and Grimshaw, 2011; Satish

et al., 2009).

3 RESULTS

3.1 Comparing BITS to extant sequential approaches

We implemented a sequential version of the BITS algorithm

(‘BITS-SEQ’) as a stand-alone Cþþ utility. Here, we assess the

performance of this implementation relative to BEDTools

intersect and UCSC Genome Browser’s (‘UCSC’) (Kent

et al., 2002) bedIntersect utilities (see Supplementary

Material for details). We compare the performance of each tool

for counting the total number of observed intersections between

sets of intervals of varying sizes (Fig. 2). The comparisons pre-

sented are based on sequence alignments for the CEU individual

NA12878 by the 1000 Genomes Project (The 1000 Genomes

Project Consortium, 2010), as well as RefSeq exons. Owing to

the different data structures used by each algorithm, the relative

performance of each approach may depend on the genomic dis-

tribution of intervals within the sets. As discussed previously,

tree-based solutions that place intervals into hierarchical bins

may perform poorly when intervals are unevenly distributed

among the bins. We tested the impact of differing interval distri-

butions on algorithm performance by randomly sampling 1

and 10 million alignment intervals from both whole-genome

and exome-capture datasets for NA12878 (see Supplementary

Material). Each algorithm was evaluated considering three differ-

ent interval intersection scenarios. First, we tested intervals from

different distributions by comparing the intersection between

exome-capture alignments and whole-genome alignments. As

Fig. 2. Run times for counting intersections with BITS, BEDTools and UCSC ‘Kent source’. (A) Run times for databases of 1 million alignment

intervals from each interval distribution. (B) Run times for databases of 10 million alignment intervals from each interval distribution. Bars reflect the

mean run time from five independent experiments, and error bars describe the standard deviation. Gray bars reflect the run time consumed by data

structure construction, whereas white bars are the time spent counting intersections. Above each BITS execution time, we note the speed increase relative

to BEDTools and ‘Kent source’, respectively. ‘Exons’ represents 400351 RefSeq exons (autosomal and X, Y) for the human genome (build 37).

BED¼BEDTools; UCSC¼ ‘Kent source’

4

R.M.Layer et al.

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1

each set has a large number of intervals and a different genomic
distribution, we expect a small (relative to the set size) number of

intersections. We also tested a uniform distribution by counting

intersections between Refseq exons and whole-genome sequen-

cing alignments. Here, each interval set is, for the most part,

evenly distributed throughout the genome; thus, we expect each
exon to intersect roughly the same number of sequencing inter-

vals, and a large number of sequencing intervals will not intersect

an exon. Finally, we assessed a biased intersection distribution

between exons and exome-capture alignments. By design, exome

sequencing experiments intentionally focus collected DNA se-
quences to the coding exons. Thus, the vast majority of sequence

intervals will align in exonic regions. In contrast to the previous

scenario, nearly every exon interval will have a large number of

sequence interval intersections, and nearly all sequencing intervals

will intersect an exon.

3.1.1 BITS excels at counting intersections In all three interval
distribution scenarios, the sequential version of BITS had super-

ior runtime performance for counting intersections. BITS was

between 11.2 and 27.9 times faster than BEDTools and between
1.2 and 5.2 times faster than UCSC (Fig. 2). This behaviour is

expected, whereas the BEDTools and UCSC tree-based algo-

rithms must enumerate intersections to derive the count, BITS

infers the intersection count by exclusion without enumeration.

3.1.2 BITS excels at large intersections and biased
distributions The relative performance gains of the BITS

approach are enhanced for large datasets (Fig. 2B). As tree-based
methods have a fixed number of bins, and searches require a

linear scan of each associated bin, the number of intervals

searched grows linearly with respect to the input size. In the

worst-case where all intervals are in a single bin, a search

would scan the entire input set. In contrast, BITS uses binary
searches; hence, the number of operations is proportional to

loglog of the input size, regardless of the input distribution.
Similarly, exome-capture experiments yield biased distributions

of intervals among the UCSC bins. Consequently, most bins in

tree-based methods will contain no intervals, whereas a small

fraction contain many intervals. When the query intervals have

the same bias, the overhead of the UCSC algorithm is more oner-
ous, as a small number of bins are queried and each queried bin

contains many intersecting intervals that must be enumerated to

count overlaps. As the BITS algorithm is agnostic to the interval

distributions, it will outperform the UCSC algorithm (Fig. 2A

and B) for common genomic analyses, such as ChIP-seq and
RNA-seq, especially given the massive size of these datasets.

3.2 Applications for Monte Carlo simulations

Identifying statistically significant relationships between sets of
genome intervals is fundamental to genomic research. However,

owing to our complex evolutionary history, different classes of

genomic features have distinct genomic distributions, and as

such, testing for significance can be challenging. One widely

used, yet computationally intensive, alternative solution is the
use of Monte Carlo (MC) simulations that compare observed

interval relationships to an expectation based on randomization.

All aspects of the BITS algorithm are particularly well suited for

MC simulations measuring relationships between interval sets.

As described, all intersection algorithms begin detecting intersec-

tions between two interval sets by setting up their underlying

data structures (e.g. trees or arrays). The BITS set-up process

involves mapping each interval from the 2D chromosomal inter-

val space (i.e. chromosome and start/end coordinates) to a 1D

integer interval space (i.e. start/end coordinates ranging from 1

to the total genome size). Once the intervals are mapped, arrays

are sorted by either start or end coordinates. In contrast, the

UCSC set-up places each interval into a hash table. As shown

in Figure 2, data structure set-up is a significant portion of the

runtime for all approaches.
However, in the case of many MC simulation rounds, where

a uniformly distributed random interval set is generated and

placed into the associated data structure, the set-up step is

faster in BITS, whereas the set-up time remains constant in

each simulation round for UCSC. For BITS, the mapping step

is skipped in all but the first round, and in each simulation

round, only an array of random starts must be generated. The

result is a 6� speed-up for MC rounds over the cost of the initial

intersection set-up. For UCSC, both the chromosome and the

interval start position must be generated and then placed into the

hash table with no change in execution time.
This speed-up in BITS is extended on parallel platforms, where

the independence of each intersection is combined with efficient

parallel random number generation algorithms (Tzeng and Wei,

2008) and parallel sorting algorithms (Merrill and Grimshaw,

2011; Satish et al., 2009). MC simulations have obvious task

parallelism, as each round is independent. BITS running on

CUDA (‘BITS-CUDA’) goes a step further and exposes

fine-grain parallelism in both the set-up step, with parallel

random number generation and parallel sorting, and the inter-

section step where hundreds of intersections execute in parallel.

The improvement is modest for a single intersection (only paral-

lel sorting can be applied to the set-up step) where BITS-CUDA

is 4� faster than sequential BITS and 40� faster than sequential

UCSC. However, as the number of MC rounds grows, perform-

ance improves dramatically. At 10 000MC rounds and 1e7 inter-

vals, BITS-CUDA is 267� faster than sequential BITS and

3414� faster than sequential UCSC. An improvement of this

scale allows MC analyses for thousands of experiments (e.g.

25 281 pairwise comparisons in Section 3.3).

Table 1. Runtime (seconds) comparison for MC simulationsa

Number of MC iterations

Size Tool 1 100 1000 10000

1e5 BITS-CUDA 0.73 1 4 28

BITS-SEQ 0.41 7 68 680

UCSC 0.17 14 138 1381

1e6 BITS-CUDA 2 3 1 103

BITS-SEQ 5 120 1200 12000

UCSC 6 878 8780 87800

1e7 BITS-CUDA 14 22 97 835

BITS-SEQ 66 2235 22350 223500

UCSC 568 28 508 285080 2 850800

aTimings in italics were extrapolated owing to long run times.

5

BITS

We demonstrate the improved performance of BITS over

UCSC for MC simulations for measuring the significance of

the overlaps between interval sets in Table 1. As both the

number of MC rounds and the size of the dataset grows, the

speed-up of both sequential BITS and BITS-CUDA increases

over UCSC. For the largest comparison (1e7 intervals and

10 000 iterations), BITS-SEQ is 12� faster than UCSC, and

BITS-CUDA is 267� faster than BITS-SEQ and 3414� faster

than sequential UCSC.

3.3 Uncovering novel genomic relationships

The efficiency of BITS for MC applications on GPU architec-

tures provides a scalable platform for identifying novel relation-

ships between large-scale genomic datasets. To illustrate

BITS-CUDA’s potential for large-scale data mining experiments,

we conducted a screen for significant genomic co-localization

among 159 genome annotation tracks using MC simulation

(see Supplementary Material). This analysis was based on func-

tional annotations from the ENCODE project (ENCODE

Fig. 3. BITS-CUDA measurements of spatial correlations among 159 genome features from the ENCODE project and from the UCSC Genome

Browser. For each comparison, we show an enrichment score reflecting the log2 ratio of the observed count of intersections over the median count of

intersections from 10000 MC simulations. Each set of three labels on the x and y axes correspond to three consecutive rows or columns, respectively.

Assays from the GM12878 cell line are in green, H1-hESC in blue and K562 in red. Annotation tracks from the UCSC Genome Browser are in black

6

R.M.Layer et al.

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts652/DC1

Project Consortium, 2007) for the GM12878, H1-hESC and
K562 cell lines, including assays for 24 transcriptions factors
(often with replicates), 8 histone modifications, open chromatin
and DNA methylation. We also included diverse genome anno-

tations from the UCSC genome browser (e.g. repeats, genes and
conserved regions).
Using BITS-CUDA, we measured the log2 ratio of the

observed and expected number of intersections for each of the
25 281 (i.e. 159 * 159) pairwise dataset relationships using 1e4
MC simulations (Fig. 3). As expected, this analysis revealed

that (i) the genomic locations for the same functional element
are largely consistent across replicates and cell types; (ii) methy-
lated and semi-methylated regions are similar across cell types;

and (iii) most functional assays were anti-correlated with gen-
omic repeats (e.g. microsatellites) owing to sequence alignment
strategies that exclude repetitive genomic regions. Perhaps not
surprisingly, this unbiased screen also revealed intriguing pat-

terns. First, the strong enrichment among all transcription fac-
tors (TF) assays suggests that a subset of TF binding sites is
shared among all factors. This observation is consistent with

previous descriptions of ‘hot regions’ (Gerstein et al., 2010).
In addition, there is a significant, specific and unexplained
enrichment among the Six5 TF and segmental duplications.

Pursuing the biology of these relationships is beyond the scope
of the current manuscript; however, we emphasize that the ability
to efficiently conduct such large-scale screens facilitates novel
insights into genome biology. This analysis presented a tremen-

dous computational burden made feasible by the facility with
which the BITS algorithm could be applied to GPU architec-
tures. Indeed, each iteration of our MC simulation was tested

for intersections among 4 billion intervals among the 25 000
datasets, yielding444 trillion comparisons for the entire simula-
tion. Although this simulation took 9069min on a single com-

puter with one GPU card, we estimate that it would take at least
112 traditional processors to conduct the same analysis using
standard approaches, such as the UCSC tools or BEDTools.

4 CONCLUSION

We have developed a novel algorithm for interval intersection
that is uniquely suited to scalable computing architectures, such

as GPUs. Our algorithm takes a new approach to counting inter-
sections: unlike existing methods that must enumerate intersec-
tions to derive a count, BITS uses two binary searches to directly
infer the count by excluding intervals that cannot intersect one

another.
We have demonstrated that a sequential implementation of

BITS outperforms existing tools and illustrated that BITS is

task efficient and highly parallelizable. BITS is also memory ef-
ficient: our MC simulation required 217Mb of random access
memory and the sequential implementation consumed 412Mb of

random access memory, versus 790Mb for UCSC and 3588Mb
for BEDTools. We show that a GPU implementation of BITS is,
therefore, a superior solution for MC analyses of statistical rela-

tionships between genome intervals sets.
Given the efficiency with which the BITS algorithm counts

intersections, it is also well suited to other genomic analyses,

including RNA-seq transcript quantification, ChIP-seq peak

detection and searches for copy-number and structural variation.

Moreover, the functional and regulatory data produced by pro-

jects, such as ENCODE, have led to new approaches (Favorov

et al., 2012) for measuring relationships among genomic features.

We recognize the importance of scalable approaches for

detecting such relationships, and we anticipate that our new

algorithm will foster new genome mining tools for the genomics

community.

ACKNOWLEDGEMENTS

The authors are grateful to Anindya Dutta for helpful discus-

sions throughout the preparation of the manuscript and to Ryan

Dale for providing scripts that aided in the analysis and inter-

pretation of our results.

Funding: NHGRI (NIH 1R01HG006693-01 to A.Q.).

Conflict of Interest: none declared.

REFERENCES

Alekseyenko,A.V. and Lee,C.J. (2007) Nested containment list (NCList): a new

algorithm for accelerating interval query of genome alignment and interval

databases. Bioinformatics, 23, 1386–1393.

ENCODE Project Consortium (2007) Identification and analysis of functional ele-

ments in 1% of the human genome by the ENCODE pilot project. Nature, 447,

799–816.

Favorov,A. et al. (2012) Exploring massive, genome scale datasets with the

GenometriCorr package. PLoS Comput. Biol., 8, e1002529.

Gerstein,M.B. et al. (2010) Integrative analysis of the Caenorhabditis elegans

genome by the modENCODE project. Science, 330, 1775–1787.

Giardine,B. et al. (2005) Galaxy: a platform for interactive large-scale genome

analysis. Genome Res., 15, 1451–1455.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res., 12,

996–1006.

Kirk,D. and Hwu,W. (2010) Programming Massively Parallel Processors: A

Hands-On Approach. Elsevier, Burlington, MA.

Li,H. et al. (2009) The sequence alignment/map (SAM) format and SAMtools.

Bioinformatics, 25, 2078–2049.

McKenney,M. and McGuire,T. (2009) A parallel plane sweep algorithm for

multi-core systems. In Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic Information Systems.

GIS ’09, pp. 392–395. ACM, New York, NY, USA.

Merrill,D. and Grimshaw,A. (2011) High performance and scalable radix sorting: a

case study of implementing dynamic parallelism for GPU computing. Parallel

Process. Lett., 21, 245–272.

Mirsa,J. and Gries,D. (1982) Finding repeated elements. Sci. Comput. Progr., 2,

143–152.

Neph,S. et al. (2012) BEDOPS: high performance genomic feature operations.

Bioinformatics, 28, 1919–1920.

Quinlan,A.R. and Hall,I.M. (2011) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Richardson,J.E. (2006) fjoin: simple and efficient computation of feature overlaps.

J. Computat. Biol., 13, 1457–1464.

Satish,N. et al. (2009) Designing efficient sorting algorithms for manycore GPUs. In

International Symposium on Parallel and Distributed Processing, 2009. IPDPS

’09, pp. 1–10. IEEE.

The 1000 Genomes Project Consortium (2010) A map of human genome variation

from population-scale sequencing. Nature, 467, 1061–1073.

Tzeng,S. and Wei,L.Y. (2008) Parallel white noise generation on a GPU via crypto-

graphic hash. In Proceedings of the 2008 Symposium on Interactive 3D Graphics

and Games. I3D ’08, pp. 79–87. ACM, New York, NY, USA.

7

BITS

