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ABSTRACT

Summary: Advances in sequencing technology have greatly reduced

the costs incurred in collecting raw sequencing data. Academic labo-

ratories and researchers therefore now have access to very large data-

sets of genomic alterations but limited time and computational

resources to analyse their potential biological importance. Here, we

provide a web-based application, Cancer-Related Analysis of

Variants Toolkit, designed with an easy-to-use interface to facilitate

the high-throughput assessment and prioritization of genes and mis-

sense alterations important for cancer tumorigenesis. Cancer-Related

Analysis of Variants Toolkit provides predictive scores for germline vari-

ants, somatic mutations and relative gene importance, as well as an-

notations from published literature and databases. Results are emailed

to users as MS Excel spreadsheets and/or tab-separated text files.

Availability: http://www.cravat.us/

Contact: karchin@jhu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on October 1, 2012; revised on November 19, 2012;

accepted on January 8, 2013

1 INTRODUCTION

With the advent of high-throughput sequencing technology, re-

searchers face a bottleneck in terms of the time required to analyse

the potential impact on disease aetiology of the many genetic vari-

ants routinely detected. Computational algorithms can in principle

help researchers to prioritize and direct future experiments by nar-

rowing down the numerous genetic alterations identified in sequen-

cing studies. However, in practice, it can be challenging to run these

algorithms in a researcher’s own laboratory, owing to the require-

ments of third-party software and databases, and large hard disk

space and RAM specifications. We have developed Cancer-Related

Analysis of VAriants Toolkit (CRAVAT), a web-based application

that provides a simple interface to prioritize genes and variants im-

portant for tumorigenesis, allowing users to assess millions of vari-

ants in a single upload step (Fig. 1).

Numerous web implementations already exist for variant classi-

fiers [reviewed in Karchin (2009)]. CRAVAT handles both germline

and somatic variation but is dedicated to cancer genome analysis. It

accepts variant calls from sequencing studies in either genomic co-

ordinates (hg18 or hg19) or transcript coordinates—NCBI Refseq,

CCDS and Ensembl (Pruitt et al., 2007, 2009; Flicek et al., 2012).

Variants are mapped onto the best available transcript, using a

greedy algorithm (see Supplementary Methods), and those variants

that cause missense changes are identified. These variants can be

scored in terms of their predicted impact on tumorigenesis, using

the Cancer-Specific High-throughput Annotation of Somatic

Mutations (CHASM) method (Carter et al., 2009). They can also

be scored by their predicted impact on protein function, with the

Variant Effect Scoring Tool (VEST) (Carter et al., 2013). Genes are

ranked by their most significantly scored variant or mutation.

Results are linked with published information from the 1000

Genomes Project (Clarke et al., 2012), the Exome Sequencing

Project, Catalogue of Somatic Mutations in Cancer (COSMIC)

(Forbes et al., 2008), GeneCards (Harel et al., 2009) and PubMed,

enabling users to compare predictions with known gene function,

cancer associations and clinical/experimental studies. CRAVAT re-

turns results via email in Excel and/or tab-separated text. It can also

provide a formatted submission file for mutation Position Imaging

Toolbox (muPIT) interactive (N.Niknafs et al., submitted for publi-

cation), allowing users to visualize variants interactively in 3D, to-

gether with position-specific annotations.

2 SYSTEMS AND METHODS

CRAVAT runs on a Linux server with Apache Tomcat 6.0.35, and its

web interface is written as Java Server Pages. When a user submits a

job, a Java servlet is called, which places the job in the server’s queuing

system, built on Redis backend and written in Python. When the

queued job runs, a ‘master analyzer’ script written is launched to

perform requested analyses, calling and processing the result of our

prediction software and annotation utilities as needed. Local mirrors

of annotation source databases are updated monthly. Prediction tools

Single Nucleotide Variant Toolbox (SNVBox) (Wong et al., 2011),

CHASM and VEST are updated several times a year.

Depending on server load, run time for analysis of 1000 SNVs is

�5–10minutes. Run time scales linearly with the number of SNVs. A

job with 1.8 million SNVs takes from 4 to 13 days. Benchmarking

details are provided in the Supplementary Information. There is no

limit to the size of a job. To ensure that large jobs do not hold up

smaller jobs, jobs are separated into two queues, depending on size.

2.1 Prediction software

CHASM: Software to rank potential somatic driver mutations for

specific cancer tissue types. It trains a classifier using parf, a fortran

implementation of Random Forest (Amit and Geman, 1997;*To whom correspondence should be addressed.
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Breiman, 2001). The training set is a positive class of known cancer

drivers from the COSMIC database and a negative class of simulated

passenger mutations.

VEST: VEST scores variants by predicted protein functional

impact. It also uses parf to train a Random Forest classifier. The

VEST training set is a positive class of disease-causing germline vari-

ants from the Human Gene Mutation Database (HGMD

Professional 2012v2) (Stenson et al., 2009) and a negative class of

common variants from the Exome Sequencing Project dataset

(ESP6500 accessed July 2012) (http://evs.gs.washington.edu/EVS/]).

Both CHASM and VEST provide P-values and false discovery

rate estimates to help the user establish a score cut-off for accepting

predictions.

SnvGet: Returns 86 pre-computed features for each variant from

the SNVBox database including the following: physiochemical prop-

erties of amino acid residues; scores derived from multiple sequence

alignments of protein or DNA; region-based amino acid sequence

composition; predicted properties of local protein structure; and an-

notations from the UniProtKB feature tables (UniProt Consortium

and others, 2012). These features are used by CHASM and VEST to

train classifiers and can be incorporated in new, user-generated pre-

dictive algorithms.

2.2 Annotation utilities

Each variant is annotated with database of single nucleotide poly-

morphisms identifiers, allele frequencies from the 1000 Genomes

Project and ESP6500 populations, gene function information from

the GeneCards database, the number of times that variant was

observed in the COSMIC database and previous cancer association

of the gene harbouring the variant, returned by PubMed search.

3 DISCUSSION

We provide an example to demonstrate how the CRAVAT web

server can prioritize and facilitate mutation analysis. We obtained

genomic coordinates of 184 824 mutations from The Cancer Genome

Atlas sequencing study of 248 endometrial tumors from Firehose.

We limited our submission to mutations that were called as

‘missense’ by Firehose, yielding 121 440 mutations. Options for

‘Cancer Driver Analysis’, ‘CHASM’, ‘Uterus’ tissue type and

‘Include gene annotation’ were selected. Results were received via

email after 16h: Excel spreadsheet with pages for ‘Variant

Analysis’, ‘Amino Acid Level Analysis’ and ‘Gene Level Analysis’

and a separate text file to visualize amino acid substitutions in

muPIT. On the ‘Variant Analysis’ sheet, 1066 mutations, of which

800 were unique, received a CHASM false discovery rate �0.3.

Many significantly scored mutations were involved in pathways

previously determined to impact endometrial cancer, e.g. PI3K,

Wnt signalling, MAPK signalling and p53 signalling pathways

(Kanehisa et al., 2012). Several genes from these pathways

(PIK3CA, PTEN, TP53, KRAS and CTNNB1) were known endo-

metrial cancer driver genes (Liang et al., 2012). In addition to iden-

tifying well-known drivers, CHASM identified potential drivers not

previously associated with endometrial cancer, in biologically rele-

vant pathways: viz MTOR in the PI3K pathway and GSK-3B in the

Wnt signalling pathway).

3.1 Future work

CRAVAT is currently limited to analysis of missense mutations. We

shall provide additional tools to analyse other types of mutation and

to rank genes based on somatic mutation frequencies, aggregated P-

values of CHASM or VEST scores, ratios of truncating to

non-truncating mutations and counts of recurrently mutated pos-

itions. We also plan to include statistics useful in identifying which

variant calls may be artifacts.
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Fig. 1. CRAVAT interface and workflow. (1) Input co-ordinates. (2)

Select ‘Cancer driver analysis’, ‘Functional effect analysis’ and/or ‘Gene

annotation’. (3) Results are delivered to the provided email address
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