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ABSTRACT
Motivation: Coexpression networks are data-derived representations
of genes behaving in a similar way across tissues and experimen-
tal conditions. They have been used for hypothesis generation and
guilt-by-association approaches for inferring functions of previously
unknown genes. So far, the main platform for expression data has
been DNA microarrays, however the recent development of RNA-seq
allows for higher accuracy and coverage of transcript populations. It
is therefore important to assess the potential for biological investiga-
tion of coexpression networks derived from this novel technique in a
condition-independent dataset.
Results: We collected 65 publicly available Illumina RNA-seq high
quality Arabidopsis thaliana samples and generated Pearson corre-
lation coexpression networks. These networks were then compared
with those derived from analogous microarray data. We show how
Variance-Stabilizing-Transformed (VST) RNA-seq data samples are
the most similar to microarray ones, with respect to inter-sample
variation, correlation coefficient distribution and network topological
architecture. Microarray networks show a slightly higher score in
biology-derived quality assessments such as overlap with the known
protein-protein interaction network and edge ontological agreement.
Different coexpression network centralities are investigated; in par-
ticular, we show how betweenness centrality is generally a positive
marker for essential genes in Arabidopsis thaliana, regardless of the
platform originating the data. In the end, we focus on a specific
gene network case, showing that, although microarray data seem
more suited for gene network reverse engineering, RNA-seq offers
the great advantage of extending coexpression analyses to the entire
transcriptome.
Contact: fgiorgi@appliedgenomics.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The comprehensive understanding of the functional molecular
mechanisms in the cell is a major challenge of modern biology
(Kitano, 2002). Network representations have been successfully
employed to capture various cellular relationships, ranging from
protein-protein interactions (Breitkreutz et al., 2008) to gene reg-
ulations (Yilmaz et al., 2011) and metabolic conversions (Yamada
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and Bork, 2009). In these networks, biological entities (e.g., genes,
proteins, and metabolites) are represented as nodes, and their in-
teractions are represented as edges. Biological networks can be
assembled either by gathering all existing experimental knowledge
over relationships between these entities (Breitkreutz et al., 2008;
Yilmaz et al., 2011; Caspi et al., 2012), or alternatively, when
this kind of data is missing, they can be reconstructed by educated
inferences based on data profiles (Hartemink, 2005). The latter ap-
proach, often dubbed “biological network reverse engineering” has
great cost and time advantages over, for instance, classical for-
ward genetics approaches, as it allows to reduce the experimental
investigation to a subset of candidates potentially involved in a par-
ticular biological process (Wang et al., 2012). In the specific case
of reverse-engineered gene networks, the last decade has witnessed
an avalanche in the availability of transcript expression data, pro-
vided mainly by microarray data (Farber and Lusis, 2008), which
has in turn fueled the generation of “coexpression” networks (Van-
depoele et al., 2009). Coexpression networks are undirected graph
representations of transcriptional co-behavior between genes within
an organism. In such graphs, genes are connected by edges rep-
resenting the similarity in their expression pattern across several
experiments in which both genes are quantified. These similarities
are usually calculated by simple methods like Pearson correlation
(D’haeseleer et al., 2000) or by more sophisticated approaches
such as mutual information (Daub et al., 2004) or linear modelling
(Vasilevski et al., 2012). A significance value is usually associated
to each edge to estimate the amount of coexpression between any
gene pair; in the case of Pearson correlation, this value is the Pear-
son Correlation Coefficient (PCC) which ranges from -1 (perfect
negative linear coexpression) to +1 (perfect positive linear coexpres-
sion), whereas 0 (no correlation) signifies the overall lack of linear
relationships between the transcript quantities of the two genes
(Usadel et al., 2009). Coexpression networks have been widely gen-
erated and exploited in studies aimed at the identification of novel
gene functions via the “guilt-by-association” paradigm (Wolfe et al.,
2005) which assumes that similar expression patterns correspond
to similar functions, times of activation, or cellular compartments
(Ryngajllo et al., 2011). Noteworthy successes of this approach
have been obtained, for example, in identifying novel genes in-
volved in plant cell wall synthesis (Persson et al., 2005), starch
metabolism (Fu and Xue, 2010) and in the human B-cell leukaemia
signal transduction (Basso et al., 2005). At the same time, several
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standalone coexpression tools have been developed (Margolin et al.,
2006; Reverter and Chan, 2008; Opgen-Rhein and Strimmer, 2007)
together with freely accessible online databases (Usadel et al., 2009;
Obayashi et al., 2012).

Coexpression networks have also been studied topologically, gen-
erally showing a modular structure (Bassel et al., 2011) and a
scale-free distribution of their connectivity (Barabási and Oltvai,
2004; Iancu et al., 2012), meaning that most genes have a small
number of coexpressors, while a few genes behave as coexpression
“hubs”. However, the vast majority of these studies have neglected
the growing availability of RNA-seq datasets, which provide sev-
eral potential advantages over microarrays (Wang et al., 2009). First
of all, RNA-seq doesn’t require prior knowledge of the studied or-
ganism, extending its usage even to poorly-characterized organisms
(Balakrishnan et al., 2012), both for “standard” purposes (tran-
scriptome definition and differential gene expression) and for any
derived application (such as sample clustering or coexpression anal-
ysis). Furthermore, RNA-seq allows for the identification of all
transcripts, whereas microarrays usually cover only a subset of
the transcriptome. For example, in Arabidopsis thaliana the most
used microarray for quantitative transcriptomics (Edgar et al., 2002;
Giorgi et al., 2010), the Affymetrix ATH1, covers reliably and
unambiguously only 21,377 genes (based on the most recent Cus-
tomCDF annotation (Dai et al., 2005)), which is only a subset of
the entire genome (27,416 genes in the TAIR10 annotation release
(Swarbreck et al., 2008)). Finally, RNA-seq has the potential to de-
tect novel transcribed loci on annotated genomes (Roberts et al.,
2011), splicing variants (Richard et al., 2010), and allele-specific
events (Zhang et al., 2009), massively increasing the investigative
capability over these molecular phenomena.

In the present study, we try to determine whether RNA-seq data
can be efficiently used for coexpression analysis. In order to do
so, we derive coexpression networks from a set of 65 high qual-
ity Illumina-based RNA-seq Arabidopsis thaliana experiments, and
compare them with those extracted from biologically analogous and
equally sized microarray data. We determine the nature of these net-
works, both biologically and topologically, with an overview on
different network centralities and their association with gene es-
sentiality (Jeong et al., 2001) in Arabidopsis. Finally, we focus on
two specific gene cases, showing how the increased detection range
of RNA-seq can indeed cover missing areas of the coexpression
networks.

2 METHODS

2.1 Dataset selection and preprocessing
We downloaded 95 samples from the NCBI Sequence Read Archive
(Leinonen et al., 2011). After the SRA files were collected, the archives
were extracted and saved in FASTQ format. The FASTQ files were trimmed
using ERNE-FILTER software1 with default parameters and minimum read
length at least 70% of the original size. All samples with less than 30% of
the reads surviving the trimming process were discarded. Surviving reads
(986,482,909) were aligned on the TAIR10 Arabidopsis thaliana reference
genome (Swarbreck et al., 2008) using TopHat v2.0.4 (Trapnell et al., 2009).
Samples where less than 30% of the trimmed reads aligned on the Ara-
bidopsis transcriptome were not considered for coexpression analysis. The
831,286,856 aligned reads (corresponding to 65 final samples, see file S1 for

1 Available: http://erne.sourceforge.net

details) were then summarized at the gene level based on the TAIR10 an-
notation by Cuffdiff v2.0.2 (Trapnell et al., 2010), which provided also the
raw count and the RPKM (Reads Per Kilobase of gene model per Million
mapped reads) values (Mortazavi et al., 2008). Raw counts were modified
into normalized values via the Variance Stabilizing Transformation (VST)
method implemented in the R package DESeq (Anders and Huber, 2010).
Analogous tissue and condition microarray datasets (see file S1) were down-
loaded from Gene Expression Omnibus (Edgar et al., 2002) and normalized
using MAS5 (Hubbell et al., 2002). All microarray samples were quality
tested using the Robin software (Lohse et al., 2010).

2.2 Construction and evaluation of coexpression
networks

Pearson correlation coefficients between all gene pairs were calculated for
each dataset, and networks with varying correlation coefficient thresholds
were extracted. Only positive PCCs above the specified thresholds were con-
verted into a network edge, in order to allow for the application of network
quality assessments based on the assumption of co-presence (or co-absence)
of gene expression; specifically: the existence of protein-protein interaction
and/or activating gene regulation, and the belonging to the same functional
group (Jordan et al., 2004; Vandepoele et al., 2009).

The Mapman-based iso-ontological percentage in the networks was ob-
tained by counting the number of edges containing two genes with at least
one shared Mapman ontology term (Klie and Nikoloski, 2012). Due to the
highly grained nature of the Mapman bins, the ontology was trimmed to the
third branch (e.g., bin 1.3.1.10 would become 1.3.1). The total percentage
agreement is then calculated by dividing the number of agreeing edges by the
total number of edges in the network. Edges containing genes of unknown
function (Mapman bin 35) were ignored for this calculation.

The Arabidopsis thaliana reference protein-protein interaction network,
collecting 96,827 protein interactions, was obtained from AtPin version
Jun-2010 (Brandüao et al., 2009). The reference genetic interaction net-
work, composed by 11,355 positive genetic interactions, was obtained from
AtRegNet version 15-Sep-2010 (Yilmaz et al., 2011).

The fit of degree distribution of the coexpression networks to a power law
was calculated as in (Brohée et al., 2008).

Networks were graphically represented using Cytoscape (Smoot et al.,
2011); node coloring was applied to the networks following the Mapman
ontology described within the CorTo tool2 and in file S2.

2.3 Network Centrality and Essential Genes
A manually curated list of 481 essential genes was obtained from SeedGenes
v8 (Tzafrir et al., 2003). Degree, shortest path betweenness, and clustering
coefficient network centralities were calculated with an implementation of
the JUNG library3. ROC curves (Beck and Shultz, 1986) were generated
for essential genes by using a sliding threshold (τ ), namely every different
degree (τdeg), betweenness (τbtw), and clustering coefficient (τclc) values
in the population, and then calculating the number of true positive essen-
tial genes above each τ . Joint centrality ROC curves were calculated by
averaging the ranking in the three centralities (degree, clustering coeffi-
cient, and betweenness) for each gene. Further details are available in the
Supplementary material (file S3).

2.4 Ontology enrichment analysis
Mapman ontology term over-representation analyses were performed us-
ing the most recent Arabidopsis thaliana Mapman TAIR9 mapping (Thimm
et al., 2004) via a Bonferroni-corrected Fisher’s Exact Test (Upton, 1992)
as implemented in the CorTo software. Over-represented Mapman bin pairs
(to estimate the functional enrichment in edges) were also calculated with an

2 Available: http://www.usadellab.org/cms/index.php?page=corto
3 Available: http://jung.sourceforge.net
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Figure 1. Correlation in expression datasets. (A) Box plots showing PCCs
between samples. (B) Density distributions of PCCs between genes.

implementation of the Fisher’s Exact Test based on the theoretical maximum
number of combinations between two Mapman bins.

3 RESULTS
3.1 Properties of the coexpression networks
We collected 65 Illumina RNA-seq samples (totalling 831,286,856
aligned reads) representing a wide range of Arabidopsis thaliana
tissues and conditions. Expression values for each gene were calcu-
lated 1) as the count of aligned reads over the transcript sequence
(“raw counts”), 2) after RPKM normalization (Mortazavi et al.,
2008), which simply adjusts raw counts using the number of
mapped reads and gene lengths, and 3) after VST normalization,
a method designed to transform count data into values distributed
homoscedastically (Anders and Huber, 2010) (see file S3). We
decided to pair each of the 65 RNA-seq samples with correspond-
ing microarray experiments, via a manual research of the Gene
Expression Omnibus database (Edgar et al., 2002) for the best
tissue/condition/ecotype match, in order to keep comparability be-
tween these two data sources as high as possible. Despite this, sam-
ple clustering shows a clear distinction between the two platforms.
However, VST normalization generally brings RNA-seq samples hi-
erarchically closer to microarrays than RPKM normalization or raw
counts (file S4).

Correlating samples to each other shows that microarrays are
more similar to each other (Fig. 1A). It is known that even with a
single-array normalization method such as MAS5, which doesn’t
overestimate sample correlation (Lim et al., 2007), microarray
samples tend to be highly correlated to each other (Giorgi et al.,
2010). Correlation coefficients between samples are much lower in

publicly available Arabidopsis thaliana RNA-seq data when com-
pared to similarly sized combinations of randomly taken publicly
available microarrays (Giorgi et al., 2010). RPKM normalization,
supposed to increase comparability between samples (Mortazavi
et al., 2008), is indeed reducing sample variability when com-
pared to raw counts. VST normalization yields a high inter-sample
correlation, comparable to microarray levels (Fig. 1A).

Concerning PCCs between genes, which is the basic parameter
on which coexpression networks are built in most studies (Usadel
et al., 2009), microarray data yield a symmetrical, bell-shaped
distribution (Fig. 1B, solid line), almost perfectly overlapped by
VST-normalized RNA-seq data (Fig. 1B, dotted grey line). RNA-
seq raw count data show a bimodal correlation distribution (Fig. 1B,
cross-pointed line), as noted before in a smaller dataset comparison
(Iancu et al., 2012), where this increase was explained by the greater
sensitivity and dynamic range of RNA-seq data. RPKM normaliza-
tion shows a bell-shaped curve slightly skewed towards negative
values, and not centered over a zero value (Fig. 1B, plus-pointed
line). All data generate correlations between gene expressions which
are higher than the random PCC distribution (Fisher, 1915) (Fig. 1B,
dashed line). Since the expected random distribution depends on the
number of samples in the original dataset (not on the number of vari-
ables/genes), these differences are not merely due to the different
number of genes detected by microarrays vs. RNA-seq. Distribu-
tions of correlation coefficients for raw RNA-seq counts approach
a monomodal distribution for log2-transformed data and Spearman
correlation coefficients (file S5).

An immediate consequence of different PCC distributions is the
difference in the relationship between coexpression network size
and PCC threshold used to build it (Fig. 2A). Microarray data, given
the same threshold, yield smaller networks than RNA-seq, message
that should warn against the application of the same rule-of-thumb
significance thresholds applied before in coexpression studies, with
PCC=0.7 as a frequently used value (Jordan et al., 2004; Luo et al.,
2007; Usadel et al., 2009).

For each PCC threshold plotted in Fig. 2A, we calculated several
biological and topological properties. The overlap of a coexpres-
sion network with protein-protein interaction networks is a common
criterion for biology-based network quality assessment (Lim et al.,
2007; Usadel et al., 2009). In fact, direct Pearson correlation has
successfully been used before for identifying proteins belonging to
the same complex, as these usually require genes to be coexpressed
in order to yield stoichiometrically balanced proteic products (Te-
ichmann and Babu, 2002). In this respect, microarray data allow to
achieve the highest performance in terms of Matthews coefficient
(Baldi et al., 2000) and accuracy in the overlap between coex-
pression connections and the 96,827 experimentally validated Ara-
bidopsis thaliana physical protein-protein interactions (Brandüao
et al., 2009) (Fig. 2B and file S6). RNA-seq data allow for positive
coexpression-based estimation (i.e., positive Matthews coefficients)
only for PCCs higher than 0.8, with raw counts achieving higher
prediction power than normalized counts. The accuracy of the co-
expression analysis shows a constant increase proportional to the
threshold stringency applied to generate the networks (file S6).

Regardless of the expression measurement method or the PCC
threshold applied, edges derived from coexpression networks are
always negative or null predictors (Fig. 2C) of the manually curated
collection of 11,355 Arabidopsis thaliana transcription factor-target
relationships (Yilmaz et al., 2011). While direct, static coexpression
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Figure 2. Properties of coexpression networks at different PCC thresholds. (A) Network sizes by number of edges. (B) Overlap to Arabidopsis thaliana AtPin
protein-protein interaction network. (C) Overlap to Arabidopsis thaliana AtRegNet transcription factor-target network. (D) Percentage of edges connecting
genes with identical Mapman ontology. (E) R2 fit of the degree distribution to a power law.

measures such as Pearson correlation are known to be positive esti-
mators of static protein interactions (Zampieri et al., 2008), they are
usually counter-predictive or meaningless for causal relationships
like transcription factor-target interactions. In these cases, more
complex methods that can remove indirect and spurious edges are
suggested, such as Partial Correlation (Schäfer et al., 2001; de la
Fuente et al., 2004) or LASSO (Vasilevski et al., 2012). However,
even full partial correlation networks (Schäfer et al., 2001) derived
from both microarray and RNA-seq data have negative Matthews
coefficients with the annotated Arabidopsis genetic network (file
S7).

Another common evaluation method of data-derived networks is
the assessment of the ontological nature of the edges (Lim et al.,
2007), which assumes that a positive-hit edge is the one connect-
ing genes sharing at least one biological function. In order to do
so, we assessed the edges of our coexpression networks using
the Mapman ontology (Thimm et al., 2004) (Fig. 2D), a plant-
oriented finely grained version of the more generic Gene Ontology
(Klie and Nikoloski, 2012). The ontological assessment is par-
tially biased, because also genes with different functions can be
coregulated in reality (Lim et al., 2007). However, it guarantees
a qualitative estimate—independent from experimentally proven
interactions—for the 63.1% of Arabidopsis genes which are func-
tionally annotated by Mapman; since the fraction of annotated
genes is slightly higher in the population represented by the ATH1
microarray (67.9%, file S8), we used the intersection between
genelists in the two data types to perform this analysis. Our data
show that microarray-derived networks (Fig. 2D) possess the high-
est percentage of iso-ontological edges, followed by VST, RPKM

and raw counts. A clear connection between threshold stringency
and the percentage of edges sharing genes belonging to at least
one common ontological term is evident only for microarray-based
networks (Fig. 2D), warning against the direct application of func-
tional clustering methods (Mutwil et al., 2010) on RNA-seq-derived
coexpression networks.

We also analysed the networks topologically by fitting their global
connectivity to a power law distribution (Brohée et al., 2008). All
coexpression networks, regardless of the type of transcript data
used, show a good fit to a scale-free distribution (Fig. 2E), with R2

always above 0.7 whenever the PCC threshold reduces the number
of connections below 107 (Fig. 2A) (Barabási and Oltvai, 2004).
There seems to be an optimal scale-free PCC threshold, which is
0.78 for microarray, 0.86 for RPKM, 0.88 for VST and 0.95 for
raw count networks. These thresholds correspond also to a posi-
tive overlap (Fig. 2B) with the Arabidopsis thaliana protein-protein
interaction network (also scale-free (Brandüao et al., 2009)).

3.2 Centrality and Essentiality in Coexpression
networks

We now focus on specific networks, selected by visual inspection
based on the best overall qualities (Fig. 2) at three different sizes
(simply dubbed “small”, “medium”, and “large”) and summarized
in Table 1. On these networks, we calculated for each gene three dif-
ferent measures for network centrality (Koschützki and Schreiber,
2008), specifically: degree (number of connections), clustering co-
efficient (normalized amount of connections between the gene’s
neighbours) and shortest path betweenness (normalized number of

Table 1. Properties of three ranges of similarly edge-sized Arabidopsis thaliana coexpression networks from different input data.

Size range Data source PCC
threshold

Number of
edges

Average node
degree

PPI Matthews % Fraction of iso-
ontological edges

Power law
R2

Small

Microarrays 0.90 132,558 26.53 3.247·10−3 3.442 0.737
VST 0.94 111,543 20.95 1.004·10−3 1.582 0.810
RPKM 0.97 115,485 19.40 6.790·10−4 1.210 0.819
Raw counts 0.97 158,314 16.32 1.623·10−3 1.284 0.832

Medium

Microarrays 0.80 861,676 58.02 6.725·10−3 2.145 0.831
VST 0.86 911,096 50.99 1.904·10−3 1.317 0.843
RPKM 0.91 954,178 58.42 9.333·10−4 0.939 0.788
Raw counts 0.94 997,889 54.29 3.247·10−3 1.082 0.843

Large

Microarrays 0.70 2,994,674 155.32 6.222·10−3 1.411 0.796
VST 0.78 2,857,389 118.19 1.354·10−3 0.989 0.832
RPKM 0.84 3,011,806 129.08 4.043·10−4 0.812 0.814
Raw counts 0.91 3,161,796 143.95 3.552·10−3 0.922 0.820
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times the gene is crossed by a shortest path connecting two other
genes). Regardless of the data and network size used, we constantly
see a positive correlation between degree and betweenness, and a
negative correlation between clustering coefficient and betweenness
(file S9). In network biology, a strong association between cen-
trality and gene function has been observed for a long time: for
instance, essential genes products tend to have more distinct inter-
actors (i.e., a higher degree) than non-essential ones (Jeong et al.,
2001), high betweenness genes tend to be key network regulators
(Joy et al., 2005) and cancer genes have a significantly higher degree
and clustering coefficient than other genes (Rambaldi et al., 2008).
In coexpression analysis, this relationship is less investigated; how-
ever it has been proven that embryonic-essential Arabidopsis genes
(Tzafrir et al., 2003) have a significantly higher degree than the
rest of the transcriptome in microarray-based coexpression networks
(Mutwil et al., 2010). The same is true in our microarray, VST
and raw count (but not RPKM) gene networks, where the essential
genes are consistently and significantly more connected than non-
essential ones (Table 2). In microarray-derived networks, degree,

Table 2. Wilcoxon tests p-values testing the distributions of centrality values
of essential vs. non-essential genes in similarly sized coexpression networks.

PCC Clustering
threshold Degree coefficient Betweenness

0.90 10−55 10−53 10−55

Microarrays 0.80 10−59 10−35 10−48

0.70 10−60 10−27 10−44

RNA-seq
VST

0.94 10−4 0.036 0.002

0.86 10−4 0.383 10−5

0.78 10−5 0.135 10−10

RNA-seq
RPKM

0.97 1 1 1

0.91 0.208 0.881 10−45

0.84 0.121 1 10−18

RNA-seq
raw counts

0.97 10−11 0.008 10−13

0.94 10−24 10−5 10−8

0.91 10−27 0.902 10−43

clustering coefficient and betweenness in all three thresholds ana-
lyzed are positive predictors for essentiality (Table 2 and Fig. 3A).
For networks derived from RPKM-normalized data, betweenness is
the only parameter significantly associated with essentiality, albeit
not in high threshold networks (Fig. 3C), while RNA-seq raw counts
and VST based networks show again the tendency of essential genes
to possess a high degree and a high betweenness (Fig. 3B and 3D).
The connection with clustering coefficient is lost in larger RNA-seq
networks (Table 2).

In general, essential genes possess a significantly higher between-
ness in almost all Arabidopsis thaliana coexpression networks (file
S9), while there seems to be no advantage in combining all three
centralities by average gene ranking (Fig. 4), an approach utilized
before for essential gene detection (Joy et al., 2005). It is clear how-
ever, that coexpression network degree alone, as stated before for
degree in protein-protein interaction networks (Wuchty, 2002), is
not always a sufficient predictor for gene essentiality in RNA-seq
networks, while it is a valid predictor in microarray networks.

3.3 Biological insights from coexpression networks
We then functionally annotated and intersected the networks de-
scribed in Table 1 and looked at them at a greater detail (Fig. 4, file
S2 and S10). There is a very low size overlap between microarray-
and RNA-seq-derived coexpression networks (Fig. 4A). This is
perhaps not entirely surprising given the technical low correlation
between these two techniques, especially for high and low transcript
abundances (Wang et al., 2009). However, microarray-derived net-
works are more similar to VST-derived ones (12.7% shared edges
relative to total microarray network size) than those based on RPKM
or raw counts (respectively, 6.2% and 5.0%). Also, the overlap be-
tween RNA-seq networks is constantly below 50% of their total
sizes (file S10, the highest overlap is visible between raw counts
and RPKM), posing an interesting caveat about the comparabil-
ity of coexpression inferences made with differently normalized
RNA-seq data (the same issue was reported before for different nor-
malization procedures on microarray data (Lim et al., 2007)). Each
of the networks derived by our analysis seems to be focusing on
different parts of the cellular transcriptome (Fig. 4B): for exam-
ple microarrays show a high propensity of coexpression for RNA
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A

Microarrays

Ubiquitin (E3 SCF FBOX) - Phosphate transport
Gluco-, galacto- and mannosidases - RNA processing
Abscisic acid - DNA
Secondary metabolism - RNA processing
Metal handling - Calcium signalling

B

RPKM

VST

Transport - Glycolysis (cytosolyc branch)
C1 metabolism - Cell organisation
Aminoacidic activation - Transport
Cell wall associated kinases - Transport
RNA processing - L12 ribosomal subunit

Raw counts

Generic stress - Postranslational modification
RNA processing - antisense RNAs
Biotic stress - C1 metabolism
β-1,3 glucan hydrolases - Development
Hormone metabolism - Sugar transporters

Intersection

Ribosomal proteins - Ribosomal proteins
Regulation of transcription - Protein degradation
Chromatine structure- Ubiquitination
Cell wall - Regulation of transcription
Biotic stress - Postranslational modification

VST RPKM

Microarrays Raw counts

13,888

708,155
(82.2%)

543,511
(54.5%)

574,211
(63.0%)

418,653
(43.9%)

14,329

18,155

82,797
88,191

17,559

271,932

9,607

2,91811,827

121,925

Amino acid synthesis - Regulation of transcription
Post-translational modification  - Calcium signalling
Nucleotide salvage - Ubiquitin (E3 RING)
Biotic stress - LTP genes
Ribosomes - Leucine rich transmembrane kinases

Figure 4. Overlap assessment and functional overview of medium sized co-
expression networks described in Table 1. (A) Venn diagrams for relative
distribution of network edges. In brackets, percentage of edges specific to a
particular data type. (B) Selection of significantly over-represented (p Bon-
ferroni corrected < 10−100) connections between Mapman functional
classes.

processing genes with other functional areas, and RPKM-based
networks describe several transport-related coexpressions.

An intersection of all networks describes a few backbone coex-
pression structures well known in literature, like the relationship
between cell wall synthesis/degradation and regulation of transcrip-
tion (Mutwil et al., 2010) or the one between biotic stress and
post-translational modification mechanisms (Mishra et al., 2006).
Genes coding for ribosomal proteins are also highly coexpressed to
each other (Fig. 4B and file S2).

One of the great advantages of coexpression analysis is its pos-
sibility to propose novel candidate genes for incompletely char-
acterized biological pathways (Persson et al., 2005; Vasilevski
et al., 2012). RNA-seq allows a quantitative assessment of the en-
tire transcriptome, therefore extending this type of inference over
genes where microarray-based coexpression investigations are not
an option. One of these genes is Sphavata (At5g21960), a poorly
characterized ethylene-responsive factor gene (ERF) known to be
induced by jasmonate (Giuntoli et al., 2009). In fact, the top 100
correlators for Sphavata calculated by all three normalizations of
RNA-seq data (file S11), show a significant over-representation for
genes involved in jasmonate metabolism (Mapman bin 17.7) and
belonging to the ERF family (Mapman bin 27.3.3).

On the other hand, a well-studied gene for coexpression analysis
is RHM2, a NDP-L-rhamnose synthase involved in polysaccha-
ride branching and necessary for Arabidopsis seed coat mucilage
pectin biosynthesis (Usadel et al., 2004). This gene has been used

as a coexpression bait in order to identify novel genes involved in
the mucilage pathway (Haughn and Western, 2012) by using cor-
relation analysis over a microarray seed dataset (Vasilevski et al.,
2012). Our analysis shows the potential in identifying novel genes
coexpressing with RHM2 (Fig. 5 and file S12): among the top
10 positive correlators identified using RNA-seq data, four genes
not present on the Arabidopsis microarray were identified, three
of which putatively involved in polysaccharide synthesis (Swar-
breck et al., 2008): At2g26100 (a putative galactosyltransferase),
At3g06550 (RWA2, involved in polysaccharide O-acetylation) and
At5g57270 (a putative N-acetylglucosaminyltransferase). In total,
six coexpressors of RHM2 are already annotated as cell-wall related
(Fig. 5, green nodes); a particular coexpressor found with RNA-
seq data (UGP2) is an essential gene active on nucleotide sugar
pyrophosphorylation (Meng et al., 2009). All these genes may be
novel candidates in the pectin biosynthesis pathway. At the same
time, RNA-seq-based coexpression is able to identify GAUT1, a α-
1,4-galacturonosyltransferase already known to be active, as RHM2,
within the pectin branching metabolism (Sterling et al., 2006).

4 DISCUSSION
Our results describe the first large scale (65 samples) attempt to
use RNA-seq data collected from multiple tissues and experimen-
tal conditions for gene network reverse engineering. We show that
coexpression networks generated from this novel technology are
indeed realistic (Fig. 2) and accurate, with accuracy increasing
together with network stringency, validating the assumption that
RNA-seq-based coexpression is a better-than-random selector of
real biological relationships (file S6). However, our results show
that microarray-based coexpression networks based on simple cor-
relation achieve a higher similarity to biological networks, and at
the same time show a low overlap with RNA-seq based representa-
tions (Fig. 4). All RNA-seq networks show a scale-free topology
(Fig. 2E) as previously noted on a smaller dataset (Iancu et al.,
2012). In particular, the usage of raw counts with respect to the
popular RPKM-normalized counts seems to be advantageous in cor-
relation based analysis for several of the properties investigated here
(Fig. 2, Fig. 3 and Table 1).

VST-normalized data possess microarray-like behavior with re-
gards to correlation coefficient distribution and topological network
properties (size and degree distribution, Fig. 2A and 2E). Amongst
RNA-seq data, VST networks also possess the highest proxim-
ity to microarray networks detected by hierarchical clustering (file
S4) and edge intersection (file S10); however, this is not directly
translated into similar biological network properties.

We also find that coexpression network betweenness centrality
can be calculated from RNA-seq data and used as a positive marker
for Arabidopsis thaliana essential genes (Table 2). The task of iden-
tifying essential genes has been called the “most important task of
genomics-based target validation” (Chalker and Lunsford, 2002),
since these genes are extremely important not only to understand
the minimal requirements for life (Li et al., 2011), but also because
they are excellent drug targets (Cole, 2002).

Another important application of coexpression analysis is in the
identification of novel genes and novel gene functions. To this
respect, we show how RNA-seq data can be complementary to mi-
croarray data in describing the functional neighborhood of a pectin
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AT3G07830

AT3G18040
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(RHM2)

AT1G53500
(RWA2)

AT1G61130
(GAUT1)

AT5G17310
(UGP2)

AT3G14810
(MSL5)

Figure 5. Coexpression network of RHM2, obtained by merging the top
10 correlators calculated from four different input data: microarrays (dot-
ted line), RNA-seq VST (dot-dashed line), RNA-seq RPKM (dashed line)
and RNA-seq raw counts (solid line). Nodes depicted as rectangles are not
represented by the ATH1 Arabidopsis array.

metabolism gene (Fig. 5) or to confirm the connection with jas-
monate of a poorly characterized putative transcription factor (file
S11). There are at least 6,953 Arabidopsis thaliana genes annotated
on the TAIR10 genome but not represented by any probeset on the
Affymetrix ATH1 microarray platform; 3,578 of these genes have
no functional annotation—neither experimentally inferred, nor pre-
dicted in silico (Thimm et al., 2004)—, which gives RNA-seq the
unique possibility to functionally investigate a previously uncovered
portion of the transcriptome. This potential can indeed be transposed
to other organisms as well, given the fair conservation of coexpres-
sion across species, at least in the plant kingdom (Movahedi et al.,
2012). All data investigated in this paper are preloaded and can be
freely analyzed by the CorTo coexpression tool.

Despite its obvious advantages, the unexpected relative underper-
formance of RNA-seq vs. microarrays in network reconstruction
raises an important caveat on its direct usability for coexpression
analysis, at least by the simple Pearson correlation criteria used
in this work. The creation of novel approaches to properly nor-
malize and interprete gene count correlations generated by Next
Generation Sequencing will pose a future fundamental challenge for
coexpression investigators.
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Koschützki, D. and Schreiber, F. (2008). Centrality analysis methods for biological

networks and their application to gene regulatory networks. Gene Regul Syst Bio, 2,
193–201.

Leinonen, R., Sugawara, H., Shumway, M., and Collaboration, I. N. S. D. (2011). The
sequence read archive. Nucleic Acids Res, 39(Database issue), D19–D21.

Li, M., Wang, J., Chen, X., Wang, H., and Pan, Y. (2011). A local average connectivity-
based method for identifying essential proteins from the network level. Comput Biol
Chem, 35(3), 143–150.

Lim, W. K., Wang, K., Lefebvre, C., and Califano, A. (2007). Comparative analysis of
microarray normalization procedures: effects on reverse engineering gene networks.
Bioinformatics, 23(13), i282–i288.
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