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ABSTRACT

Motivation: Batch effects are due to probe-specific systematic vari-

ation between groups of samples (batches) resulting from experimen-

tal features that are not of biological interest. Principal component

analysis (PCA) is commonly used as a visual tool to determine whether

batch effects exist after applying a global normalization method.

However, PCA yields linear combinations of the variables that contrib-

ute maximum variance and thus will not necessarily detect batch

effects if they are not the largest source of variability in the data.

Results: We present an extension of PCA to quantify the existence of

batch effects, called guided PCA (gPCA). We describe a test statistic

that uses gPCA to test whether a batch effect exists. We apply our

proposed test statistic derived using gPCA to simulated data and to

two copy number variation case studies: the first study consisted of

614 samples from a breast cancer family study using Illumina Human

660 bead-chip arrays, whereas the second case study consisted of

703 samples from a family blood pressure study that used Affymetrix

SNP Array 6.0. We demonstrate that our statistic has good statistical

properties and is able to identify significant batch effects in two copy

number variation case studies.

Conclusion: We developed a new statistic that uses gPCA to identify

whether batch effects exist in high-throughput genomic data. Although

our examples pertain to copy number data, gPCA is general and can

be used on other data types as well.

Availability and implementation: The gPCA R package (Available via

CRAN) provides functionality and data to perform the methods in this

article.

Contact: reesese@vcu.edu or eckel@mayo.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

1.1 Batch effects

Batch effects are defined to be systematic non-biological vari-

ation between groups of samples (or batches) due to

experimental artifacts (Benito et al., 2004; Johnson et al., 2007;

Luo et al., 2010). Many factors contribute to the generation of

batch effects. Some of these include chip type, platform, labora-

tory, technician, storage and shipment conditions, protocols

(sample, amplification, labeling and hybridization), cRNA/

cDNA synthesis, wash conditions, etc (Luo et al., 2010).
Few methods have been developed to detect batch effects. For

expression data, existing methods include principal component

analysis (PCA) (Holmes et al., 2011; Yang et al., 2008) and un-

supervised hierarchical clustering (Chow et al., 2012; Johnson

et al., 2007; Konstantinopoulos et al., 2011). However, neither

of these methods provides a statistical test for detecting whether

batch effects are present.
A commonmethod for visualizing the existence of batch effects

is PCA. The first two principal components are plotted with each

sample colored by the suspected batch, and separation of colors is

taken as evidence of a batch effect. However, as pointed out by

Benito et al. (2004), if the batch effect is not the greatest source of

variation thenPCAmethods donotworkwell, as they look for the

directions of greatest variation. Also, visual inspection of the first

and second principal components is subjective. Methods that can

detect batch effects are needed, as ignoring the potential for batch

effects can have a serious effect on downstream analysis results. In

this article, we propose a test statistic derived using both the trad-

itional PCA method and guided PCA (gPCA) for detecting batch

effects. We evaluate the performance of our test in extensive simu-

lation studies. We also demonstrate the difference between PCA
and gPCA using two copy number variation datasets; however,

the methods are appropriate for any type of high-throughput

genomic data.

2 METHODS

2.1 Statistical methods

2.1.1 Principal component analysis PCA is used for data reduction

and interpretation. It is used to explain the variance–covariance structure

of a set of variables through linear combinations of the variables

(Johnson and Wichern, 2002). PCA is a form of unsupervised learning

that seeks to find the ‘combination of conditions that explain the greatest

variation in the data’ (Yang et al., 2008). It is used in many types of

analyses including neuroscience and computer graphics (Shlens, 2005), in

addition to microarray data analyses (Holmes et al., 2011; Yang et al.,*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2877

mailto:reesese@vcu.edu or eckel@mayo.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt480/-/DC1
Effects
,
.
;
Chow et
al.,
2012;
Johnson et
al.,
2007
principal components analysis 
(
)
 since
paper 
s
Methods
Principal Components components Analysis analysis (
)
Principal components analysis (
)
-
'


2008). The numerical workhorse of PCA is singular-value decomposition

(SVD).

Singular-value decomposition Let X be a centered n� p matrix of real

numbers where n denotes sample and p denotes genomic feature (e.g.

probe). Then there exists an n� n orthogonal matrix U and a p� p

orthogonal matrix V such that

X ¼ UDV0

where the n� p matrix D has diagonal ðq, qÞ entry lq � 0 for

q ¼ 1, . . . , minðn, pÞ where, by convention, l1 � l2 � � � � � lminðn, pÞ

and the other entries are 0. The positive constants lq are called the

singular values of D (Johnson and Wichern, 2002).

Principal components are the length n column vectors (P1,P2, . . . ,Pp)

of

P ¼ XV

where X is an n� p matrix, V is the matrix of right singular vectors,

v1, v2, . . . , vp, from the singular value decomposition and P is the n� p

principal component matrix.

The first principal component has the highest variance, and the second

principal component has the next highest variance under the constraint

that it is uncorrelated with the proceeding component. Typically, PCA is

performed on X alone. Herein, we refer to this as ‘unguided’ PCA. As

discussed in Section 1, unguided PCA is not effective for identifying batch

effects if they are not the largest source of variation. In this case, it does

not mean that batch effects do not exist in the data, but that alternate

methods must be used to find them.

2.1.2 Guided PCA For detecting batch effects, a more informative

version of PCA is on Y0X, where Y is an n� b indicator matrix where b

denotes batch and n denotes sample.

Y ¼

1 0 � � � 0

0 1 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 1

2
664

3
775

where 1 and 0 are block matrices with

yik ¼
1 if sample i is in batch k
0 otherwise

�

for i ¼ 1, . . . , nkð
P

k nk ¼ nÞ and k ¼ 1, . . . , b. Performing SVD on Y0X

results in a b� b matrix U that denotes the batch loadings and the p� p

matrix V that denotes the probe loadings. Large singular values imply

that the batch is important for the corresponding principal component.

gPCA guides the SVD to look for batch effects in the data based on the

batch indicator matrix Y, which can be defined to indicate any type of

potential batch effect.

Another commonly used method in this situation is Canonical

Correlation Analysis, which finds the linear combination with maximum

correlation; however, we are interested in variance, not correlation.

2.1.3 Proposed method: test statistic for testing whether batch
effects exist Our test statistic, �, quantifies the proportion of variance

owing to batch effects in experimental genomic data. The proportion of

total variance owing to batch is the ratio of the variance of the first

principal component from gPCA to the variance of the first principal

component from unguided PCA.

� ¼
varðXVg1 Þ

varðXVu1 Þ

where g indicates gPCA and u indicates unguided PCA. V is the matrix of

probe loadings resulting from gPCA or PCA, respectively. Large values

of � (values near 1) imply that the batch effect is large.

To determine whether � is significantly larger than would be obtained

by chance, a P-value is estimated using a permutation distribution created

by permuting the batch vectorM¼ 1000 times so that �pm is computed for

m ¼ 1, . . . ,M where p indicates permutation. Here, �pm is the proportion

of the total variance due to the first principal component from the mth

permutation from gPCA to the total variance due to the first principal

component from the mth permutation from unguided PCA. A one-sided

P-value is estimated as the proportion of times the observed � was in the

extreme tail of the permutation distribution.

P�value ¼

PM
m¼1

�̂5�̂pm
� �
M

:

Estimating percentage of total variation explained by batch. The per-

centage of total variation explained by batch is then calculated as

cPCg � cPCucPCg

� 100

where

cPCu ¼
varðXVu1 ÞPn

i¼1

varðXVui Þ

and cPCg ¼
varðXVg1

ÞPb
k¼1

varðXVgk
Þ

where u and g represent unguided PCA and gPCA, respectively.

2.2 Simulation study

Most often investigators are interested in modeling their data in the pres-

ence of a known phenotype. Therefore, we simulated data to represent

copy number data under three scenarios: (i) feature data (here, feature

denotes probe) with no phenotypic effect; (ii) feature data with a pheno-

typic effect with high variance; and (iii) feature data with a phenotypic

effect with low variance. The feature data were generated independently

from a multivariate normal distribution with 1000 features and 90 obser-

vations. To study type I and II errors, for all three scenarios, the data

were simulated in two ways: to include a true batch effect and without a

true batch effect. When a batch effect was present, there were two batches

with batch mean vectors of 0 and 1. The variance associated with batch

was �2bI, where �
2
b was allowed to be 0.5 or 1. In the true phenotype

scenarios, 10% of the features were affected by phenotype using mean

vectors 0 and 1 and variance matrix �2pI where �
2
p ¼ 2 for the high pheno-

typic variance scenario and �2p ¼ 0:2 for the low phenotypic variance

scenario. The proportion of features affected by the phenotype was

pprop¼ 0.1 or 0.05. In all scenarios with a phenotypic effect, the pheno-

type was generated independent from any batch effect. Each simulation

scenario was repeated 500 times.

For the scenarios with no true batch effect, the resulting proportion of

P-values 50:05 formed our estimate of the type I error. The proportion

of P-values 50:05 for the scenarios with a true batch effect formed our

estimate of the power. Here, phenotype can be thought of as any variable

of interest, whether categorical (e.g. case versus control) or continuous

(e.g. mammographic density).

2.3 Case studies

Our method was applied to two case studies. The U and V matrices are

assumed to be orthogonal n� n (or b� b for gPCA) and p� p matrices,

respectively. To adjust for missing values, mean value imputation was

performed on the centered data X before PCA.

2.3.1 Filtering For unsupervised learning problems, non-informative

features contribute random noise to distance calculations. The resulting

effect is that non-informative features mask useful information provided

by informative features. Therefore, non-informative features should be
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assigned a zero weight in the clustering algorithm (Kohane et al., 2003).

The simplest implementation for assigning a non-zero weight in a cluster

analysis is to exclude identified non-informative features. This filtering

step is applied to genomic data to remove sources of obscuring variation

before applying a clustering algorithm. In our simulation studies, we

observed higher power when the proportion of features affected by

batch increased; therefore, we filtered our data stringently to keep the

most variable or informative features. A variance filter was applied to the

data to remove noise and reduce the number of features. The standard

deviation of each feature was calculated and the 1000 most variable fea-

tures were retained (Causton et al., 2003; Dudoit et al., 2002; Inza et al.,

2004). A sensitivity analysis was performed allowing the number of

features retained by the variance filter to range between 10 and the full

GENEMAM dataset. Further analysis implementing an analysis of vari-

ance filter was also investigated.

2.3.2 GENEMAM The GENetic Epidemiology of MAMmogr-aphic

Density (GENEMAM) study data included 614 samples from the

Minnesota Breast Cancer family study (Sellers et al., 1995). These sam-

ples were genotyped using the Illumina Human 660 bead-chip array.

Samples were processed over three time periods on eight plates. Forty-

two samples failed quality-control checks from plates 1–4 because of an

Illumina reagent problem, and these samples were replated on plate 5,

along with six other samples. Samples on plates 6–8 were genotyped at a

later date. This effectively yielded three batches corresponding to the

three different runs. Data for all chromosomes were used. Illumina’s

GenomeStudio software was used to obtain the Log2 R ratio (LRR)

values. LRR is a measure of relative intensity where R is the sum of

the normalized allelic probe intensities produced by SNP assays and

the ratio is of observed R divided by the expected value (Laurie et al.,

2010).

2.3.3 GENOA The Genetic Epidemiology Network of Arteriopathy

(GENOA) data included 1418 of the non-Hispanic white adults enrolled

in the GENOA study of the Family Blood Pressure Program, a study

designed to identify germline genetic determinants of hypertension in

multiple ethnic groups. These samples were genotyped on Affymetrix

SNP Array 6.0 chips, and all samples had contrast QC values 40.4.

The PennCNV-Affy Protocol (http://www.openbioinformatics.org/

penncnv/penncnv_tutorial_affy_gw6.html) was followed to obtain the

LRR values. The analysis focused on chromosome 22 data using the

first 10 plates consisting of 703 samples.

3 RESULTS

3.1 Simulation study

The estimates for type I error for all scenarios are reported in

Table 1. The proportion of features with a phenotypic effect is

pprop¼ 0.1 for scenarios (b–c) and 0.05 for scenario (d). In all

scenarios, the type I error is at or below the nominal 0.05 level.

Figure 1 shows power of our test statistic as a function of the

proportion of features with a true batch effect if there is no true

phenotypic effect. If �2b ¼ 0:5, then our test statistic has 80%

power if �0.3% of the features are affected by batch. If

�2b ¼ 1, then �0.6% of features need to have a batch effect to

achieve 80% power. If a phenotypic effect exists with high

phenotypic variance, then �1.5 or 2% of the features need to

have a batch effect to achieve 80% power for �2b ¼ 0:5 and

�2b ¼ 1, respectively (Fig. 2a). Similarly, if a phenotype exists

with low phenotypic variance and 10% of features are affected

by phenotype, then �1.5 or 1.2% of the features need to have a

batch effect to achieve 80% power for �2b ¼ 0:5 and �2b ¼ 1,

respectively, and if 5% of features are affected by phenotype,

then �0.75% of the features need to have a batch effect to

achieve 80% power for both �2b ¼ 0:5 and �2b ¼ 1 (Fig. 2b).
Power is also higher when the batch variance is smaller.

Further simulations varying the batch variance, with the differ-

ence between batch means smaller than the difference between

the phenotype means, and with high proportions of features

affected by batch can be found in Supplementary Section 4. In

the scenario where batch variance is varied and the batch mean

difference is smaller than the phenotype mean difference, we

found that as batch variance increased, so did the estimated

power. The smaller the difference in the phenotypic means, the

higher the power. In the no phenotype scenario, we found that

power decreased as the batch variance increased. This is attrib-

utable to the first principal component from unguided PCA and

gPCA being similar when no phenotype is affecting the feature

data, which is unlikely in application datasets. In the scenario

where a high proportion (between 50 and 90%) of features are
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Fig. 1. Power for detecting batch effect as a function of the proportion of

features that are affected by batch when no true phenotype was included

with batch proportion ranging from 0.1 to 1%

Table 1. Estimated type I error

� ¼ 0:5 � ¼ 1

(a) No phenotype 0.034 0.034

(b) High phenotype (pprop¼ 0.1) 0.014 0.014

(c) Low phenotype (pprop¼ 0.1) 0.000 0.002

(d) Low phenotype (pprop¼ 0.05) 0.010 0.046

Note: For all scenarios, there is no true batch effect. Scenario (a) has no phenotypic

effect in the data; however, scenario (b) has a phenotypic effect with high variance

included and scenarios (c and d) have phenotypic effects with low variance included

in the analysis with phenotypic effect at pprop¼ 0.1 or 0.05, respectively.
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affected by batch, we found that the estimated power was 100%

(see Supplementary Table S5).

3.2 GENEMAM

The standard use of PCA is to look at the plot of the first prin-

cipal component of the data (n� p matrix X, where n denotes

sample and p denotes probe) versus the second principal

component (Fig. 3a). The GENEMAM data have an obvious
batch effect, and the PCA plot of the first two principal compo-

nents shows that this batch effect is due to the plate when colored
by plate with three batches consisting of plates 1–4, 5 and 6–8. As

is common with batch effects, this batch effect is due to the plates
being run at different times.
Next, we performed a gPCA with plate as the batch indicator.

The gPCA plot of the first two principal components (Fig. 3b)
shows greater separation in the batches, especially of plate 3 from

plates 1, 2 and 4, than the unguided principal component plot
(Fig. 3a). After filtering out all but the p¼ 1000 most variable

features, our permutation test confirms that there is a significant
batch effect separating the plates (� ¼ 0:5987; P-value50.001).

Of the variance due to features in these data, 87.3% of the total
variation is explained by batch.

We also performed a sensitivity analysis allowing the number
of features retained by the variance filter to range between 10 and

the full GENEMAM dataset. We found that our test statistic
was not sensitive to filtering (for the application datasets and

when no phenotypic effect was present in the simulation scen-
ario). The test statistic applied to the simulated data was not

affected by filtering provided that the number of features re-
tained was 5% when there was a phenotype with high variance

(a somewhat weak phenotypic effect) and �50% when there was
a phenotype with low variance (i.e. a strong phenotypic effect),

and thus filtering can be used as a method to reduce the analysis
time required provided it is judiciously applied (Supplementary

Table S1). We also implemented an analysis of variance filter to
identify probes with a significant batch effect and found that

even with stringent multiple comparison methods, the filtered
datasets were still very large. A detailed discussion can be

found in the Supplementary Section 1.
This case study is an example with an obvious batch effect and

thus did not require specialized methods to detect, as batch was
the largest source of variability.

3.3 GENOA

In this case study, batch is not so easily detected using unguided
PCA. Unguided PCA was performed and Figure 4a shows the

PCA plot of the first two principal components. Figure 4a shows
that plates 7 and 8 might be slightly separated from the rest of

the plates. A gPCA with batch defined by plate (Fig. 4b) shows
that plates 7 and 8, along with plate 4, separate slightly from the

other plates. It is not obvious from the unguided PCA that plate
4 is separate from the rest of the plates. However, gPCA shows

a separation between plate 4 and the rest of the plates. After
filtering out all but the p ¼ 1000 most variable features, our

permutation test shows that there is a significant batch effect
separating the plates (� ¼ 0:9219; P-value50:001). Of the vari-

ance due to features in these data, 71% of the total variation is
explained by batch. gPCA identifies a batch (plate 4) that does

not otherwise stand out in an unguided principal component
plot.

3.4 Impact of identifying and correcting for batch effects

Although various methods exist for adjusting for batch effects,
these methods do not incorporate a procedure for identifying

whether a batch effect is truly present (Benito et al., 2004;
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Fig. 2. Power for detecting batch effect as a function of the proportion of

features that are affected by batch when (a) phenotypic data with high

variance were included in gPCA with batch proportion ranging from 0.1

to 2.5% and (b) phenotypic data with low variance were included in

gPCA with batch proportion ranging from 0.1 to 2.5%
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Carvalho et al., 2010; Chow et al., 2012; Huang et al., 2012;
Johnson et al., 2007; Konstantinopoulos et al., 2011; Leek and

Storey, 2007, 2008; Leek et al., 2012; Marron and Todd, 2002;
McCall et al., 2010; Sun et al., 2011). Using both simulated and

real data (see Supplementary Section S3), we further assessed the
effects of correcting for batch on the number of significant fea-

tures. In our simulated dataset, there were 50 features with a
phenotypic effect, 50 features with a batch effect and 100 features

with both a phenotypic and a batch effect. After fitting a linear

model using the lmFit() function with phenotype as the pre-

dictor, the number of significant features in simulated data was

assessed using the eBayes() function in the limma package

both before batch correction and after batch correction using the

batch mean-centering method of Sims et al. (2008) and the FDR

method of Benjamini and Hochberg (1995) for adjusting for

multiple testing, letting � ¼ 0:1. Forty-eight of the 150 features

had a significant phenotypic effect before batch correction,

whereas 148 of the 150 features were significant post-batch

Fig. 4. GENOA–(a) Unguided PCA of X and (b) gPCA of Y0X. Samples

for each plate are denoted by a different color (online version) and/or

symbol

Fig. 3. GENEMAM–(a) Unguided PCA of X and (b) gPCA of Y0X.

Samples for each plate are denoted by a different color (online version)

and/or symbol
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correction (Supplementary Table S4). This shows that batch cor-
rection allows features with a true phenotypic effect that is

masked by batch to be identified as significant after batch

correction.

3.5 Evaluating batch correction methods

Luo et al. (2010) observed the impact of batch effect removal on

cross-batch prediction performance, and Lazar et al. (2012) and
Chen et al. (2011) provided surveys of some of the many methods

of batch effect removal. In Table 2, we report our test statistic �
and the corresponding P-values when analyzing the raw uncor-
rected and batch mean-centering corrected data. Although there

is a highly significant batch effect in the uncorrected data, the

correction method successfully removed enough batch variation
from all datasets. Therefore, our proposed test statistic is useful

for identifying whether any batch adjustment methods should be

applied before statistical analysis and for assessing the adequacy
of the batch adjustment method applied.

4 DISCUSSION

gPCA can be used to identify batch effects in large and messy
data, such as expression, CNV, and methylation data, by com-

puting the SVD while taking batch into account. Principal com-

ponent plots are a standard method of looking for batch effects
in high-throughput data. Here, we show how gPCA can be used

both to visualize batch effects and to formally test whether batch

effects are present in the data. From our simulation studies, the
type I error of our statistic is close to nominal 0.05 level and

power is reasonably good when an adequate proportion of the

features are affected by batch. Additionally, when the proportion
of features affected by batch is high (between 50 and 90%), the

estimated power is 100% (Supplementary Table S5).
The Y matrix in the gPCA analysis can be formed by consider-

ing any combination of variables. We note that with the Ymatrix

coding multiple variables, the variance ascribed to the first prin-
cipal component of the gPCA may incorporate multiple sources,

which would be difficult to disentangle. To estimate the variance

attributed to multiple sources, gPCA could be used to examine

each one by defining Y in separate analyses. Note that gPCA is

dependent on knowing how to define potential batch effects. If

this is not known, this statistic should not be used. If batch is

misspecified by the investigator, provided the misspecified batch

effect indicator matrix has no relationship to the experimental

design, then the test will likely not reject the null hypothesis be-

cause type I error was close to the nominal 0.05 level.

In the case of microarray data, scaling of the batch identifier

matrix Y is not in general useful for balanced experiments.

However, when some batches have far more samples than

others, scaling of Y is a useful tool to correct for the imbalance.

In the case of the GENEMAM data, while plates 5 and 8 had

half as many or fewer samples than the rest of the plates, the

effect of scaling Y was minimal, although it did have an effect.

For microarray data, we do not want to scale the data matrix X,

as all the variables, probes in our case, are already on the same

scale and scaling X would only serve to adjust the variance. If

the variances are smoothed, then we may miss an important

difference between variables or batches.
gPCA can be used on other problems and types of data as

well, including B-allele frequency data and expression data.

Because pre-processing of microarrays is time-consuming, expen-

sive and with abundant systematic errors, the ability to discover

and adjust for these errors is important. Our test statistic that

uses gPCA allows one to find the sources of systematic errors, or

batch effects, in all types of microarray data and adjust for it

during analysis.

In summary, herein we present a novel statistic to test for the

presence of batch effects. The test is particularly useful to test

whether batch effects exist after applying a global normalization

procedure such as quantile or loess normalization. Although

these global normalization procedures correct for batch effects

that affect all probes similarly, they do not correct for probe-

specific batch effects. Furthermore, our test statistic is useful for

determining whether a batch-correction method has adequately

removed observed batch effects.
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