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ABSTRACT

Motivation: Accurately predicting and genotyping indels longer than

30 bp has remained a central challenge in next-generation sequencing

(NGS) studies. While indels of up to 30 bp are reliably processed by

standard read aligners and the Genome Analysis Toolkit (GATK),

longer indels have still resisted proper treatment. Also, discovering

and genotyping longer indels has become particularly relevant owing

to the increasing attention in globally concerted projects.

Results: We present MATE-CLEVER (Mendelian-inheritance-

AtTEntive CLique-Enumerating Variant findER) as an approach that

accurately discovers and genotypes indels longer than 30 bp from

contemporary NGS reads with a special focus on family data. For

enhanced quality of indel calls in family trios or quartets, MATE-

CLEVER integrates statistics that reflect the laws of Mendelian

inheritance. MATE-CLEVER’s performance rates for indels longer

than 30 bp are on a par with those of the GATK for indels shorter

than 30 bp, achieving up to 90% precision overall, with 480% of

calls correctly typed. In predicting de novo indels longer than 30 bp

in family contexts, MATE-CLEVER even raises the standards of the

GATK. MATE-CLEVER achieves precision and recall of �63% on

indels of 30 bp and longer versus 55% in both categories for the

GATK on indels of 10–29 bp. A special version of MATE-CLEVER

has contributed to indel discovery, in particular for indels of

30–100 bp, the ‘NGS twilight zone of indels’, in the Genome of the

Netherlands Project.
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1 INTRODUCTION

More than 6 years after its introduction, next-generation sequen-

cing (NGS) has become standard technology. Read length is

steadily increasing and so is sequencing speed, at an overall

still decreasing sequencing cost. One of the most evident advan-
tages of NGS over array-based approaches is that it has enabled

studying genetic variation beyond single nucleotide polymorph-

isms (SNPs) at both a larger scale and finer resolution. Several

large-scale projects addressing this are under way [e.g. The 1000

Genomes Project Consortium (2010), The Genome of the

Netherlands (GoNL) Project Consortium], which have accumu-

lated tera-scale amounts of NGS data. The goal is to discover

and genotype variants in thousands of individuals at single base-
pair resolution, and, in a second step, to classify them according

to population structure and phenotype, such as susceptibilities
for diseases.

For simplicity, we will refer to all insertion and deletion vari-
ants as indel variants, or simply indels—we are aware of the oc-

casional clash with nomenclature for structural variants. We will

refer to indel discovery as prediction of indels without predicting
the zygosity status of indel alleles, and to genotyping indels as

determining (e.g. computationally predicting) this zygosity
status.

Motivation. As one particular example of a nationwide dir-
ected effort, the GoNL Project puts particular emphasis on

drawing links between population structure and inheritability.

In the frame of this project, 769 Dutch individuals, consisting
of 231 mother–father–child trios, 11 monozygotic- and 8 dizyg-

otic-twin quartets, have been sequenced. In the analysis, indels
play a major role—the obvious reason is that only NGS has

made large-scale discovery of indels truly possible.
Also for other large-scale projects (The 1000 Genomes Project

Consortium, 2010; The International Cancer Genome

Consortium, 2010), mapping and categorizing indels is of
utmost relevance. However, both indel discovery and genotyping

technology still lag considerably behind the advances made in
sequencing technology itself (Alkan et al., 2011). Existing indel

discovery tools still leave much room for improvement. On top

of that, with only very few exceptions, they do not offer geno-
typing as an option. An analysis of existing state-of-the-art trio

variant callsets (e.g. that of the ‘platinum genome trio’ issued by
Illumina, see Appendix A.2 in the Supplementary Material for

more details) points out that a surprisingly large fraction of indel

calls violate the Mendelian laws. This decisively differs from
SNPs, which have been genotyped soundly and reliably.

In fact, genotyping SNPs has been standard for many years.
Since 2011, smaller indels can also be reliably handled. The

Unified Genotyper (UG), a tool from the Genome Analysis
ToolKit (GATK) (DePristo et al., 2011; McKenna et al., 2010),

has been providing the corresponding technology. We will dem-

onstrate the GATK-UG genotypes between 80 and 90% of
indels correctly in the Results section. However, its performance

sharply drops for indels of 30 bp and longer. The reason is that

one commonly runs the GATK on standard read alignments, e.g.
as delivered by BWA (Li and Durbin, 2009), Bowtie2 (Langmead

and Salzberg, 2012) or Stampy (Lunter and Goodson, 2011).*To whom correspondence should be addressed.
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For indels longer than 30bp, principled, statistically and

algorithmically sound approaches have not been described.

Our Contribution. We present a novel approach,

MATE-CLEVER (Mendelian-inheritance-AtTEntive CLique-

EnumeratingVariant findER) for sound discovery and genotyping

of indels longer than 30bp from NGS reads that were generated

through contemporary library protocols [For old or non-standard

protocols, we claim that we can discover and genotype indels

longer than two times the standard deviation (stddev) of the frag-

ment length distribution, which amounts to 30 on current proto-

cols.]. MATE-CLEVER provides a novel (Bayesian) probabilistic

framework to compute the probabilities that an indel allele is

homozygous, heterozygous or not present. In case of a family, it

integrates prior probabilities that reflect the laws of Mendelian

inheritance, which yields enhanced performance rates when com-

binedly genotyping family members. Overall, MATE-CLEVER

achieves performance rates on longer indels that are as favorable

as those of the GATK-UG on small indels. Thus, our approach

considerably raises the limits of sound indel genotyping.
For accomplishing this, we have combined the two most recent

approaches of ours, CLEVER (Marschall et al., 2012) and

LASER (Marschall and Schönhuth, 2013), into a hybrid

approach that specifically targets indels longer than 30bp.

While CLEVER has proven to be able to discover indels of

30–100bp—sometimes referred to as the (NGS) twilight zone of

indels—at highly favorable recall and precision rates, LASER

allows us to re-evaluate calls and adds split-read alignment

information, which leads to enhanced genotyping and high

breakpoint resolution.

Related Work. Structural variant (SV) discovery tools can be

divided into four large classes of approaches, for each of which

we restrict ourselves to naming a few state-of-the-art tools.
1. Internal segment size (also: insert size)-based approaches iden-

tify groups of paired-end reads whose alignments exhibit abnormal

internal segment lengthswith respect to a background distribution.

That is, they consider the distance between the two alignments of a

read pair (called internal segment size or insert size). Groups of

alignment pairs with deviating distance suggest the presence

of indel breakpoints in the internal segment. We will refer to

such alignment pairs as spanning alignments (see Fig. 1, top).

Examples of methods using this type of signal are Breakdancer

(Chen et al., 2009), VariationHunter (Hormozdiari et al., 2009),

HYDRA (Quinlan et al., 2010), PEMER (Korbel et al., 2009),

MoDIL (Lee et al., 2009) as well as our tool CLEVER

(Marschall et al., 2012). It is characteristic for these approaches

to successfully predict indels longer than 100bp. However, meth-

ods that impose a hard threshold and only work on ‘discordant’

reads, like BreakdancerMax, VariationHunter, HYDRA and

PEMER cannot detect smaller indels. [Note that the initial

Breakdancer release consisted of BreakdancerMini and

BreakdancerMax. Maintenance/development of BreakdancerMini

has been stopped, and current releases only contain

BreakdancerMax.]MoDIL andBreakdancerMini can, in principle,

detect shorter indels, but the former is prohibitively slow (see dis-

cussion in Marschall et al., 2012), and the implementation of

the latter isno longermaintained.CLEVERwasdesigned toprocess

all alignments in a short time and thus achieves good performance

also for indels in the ‘twilight zone’ (30–100bp). For insert size-

based approaches, placement of breakpoints is commonly rather

little accurate.
2. Split-read aligners aim at aligning reads across the break-

points of insertions and deletions. When the alignment of a read

end contains an indel breakpoint, we refer to it as breakpoint-

covering alignment (see Fig. 1, bottom). Examples for split-read

methods are PINDEL (Ye et al., 2009), SplazerS (Emde et al.,

2012) as well as our tool LASER (Marschall and Schönhuth,

2013). Split-read aligners predict breakpoints at single-base-pair

resolution. However, most of them apply predominantly

for indels up to 30 bp. Longer indels can be challenging for

split-read aligners if the alignment of split parts of reads is not

properly guided.

3. Coverage-based approaches aim at detecting deletions and

duplications bymeasuring amounts of reads mapped to locations.

Examples are CNVer (Medvedev et al., 2010) and CNVnator

(Abyzov et al., 2011). Although coverage-based approaches are

the only reliable technique to predict large duplications, they only

work for very large deletions and duplications.
4. De novo assembly methods focus on reconstructing

sequences without using a reference genome. A few more well-

known examples are ALLPATHS (Gnerre et al., 2011),

SOAPDenovo (Li et al., 2010) and VELVET (Zerbino and

Birney, 2008). An approach that focuses exclusively on novel

sequence insertions is NovelSeq (Hajirasouliha et al., 2010).

Our method, MATE-CLEVER, falls among the so-called

hybrid methods, as it makes use of both insert size signal

and split-read information. Such hybrid methods have estab-

lished a new class of approaches and have arisen in the literature

only from 2012 onward. Examples are DELLY (Rausch et al.,

2012), SVSeq2 (Zhang et al., 2012) and PRISM (Jiang et al.,

2012).
The only discovery method for larger indels currently available

that addresses family settings is CommonLAW (Hormozdiari

et al., 2011), which draws from VariationHunter (Hormozdiari

et al., 2009) as a core approach. CommonLAW collects

information on frequencies of variants that are supported by

combinations of family members in a preprocessing step. It

uses this information in the form of prior weights in a combina-

torial algorithm to predict variants parsimoniously.

Donor genome

Reference genome

Donor genome

Reference genome

Breakpoint 1 Breakpoint 2
Deletion

Breakpoint 1 Breakpoint 2
Deletion

Fig. 1. Blue rectangles represent sequenced ends of a fragment, whereas

gray rectangles represent the (unsequenced) internal segment. In the two

subfigures (top and bottom), parts of the reference genome (marked in

red) are deleted from the donor genome. Top: Spanning alignment pair:

The breakpoints of the deletion are located in the internal segment of

the paired-end read alignment (i.e. the gray part). Bottom: Breakpoint-

covering alignment: The breakpoints are located within the alignment of

one read end (i.e. the blue part), which yields a split-read alignment
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Although approaches that aim at genotyping indels have

rarely been described, there have been reliable techniques for

shorter indels since 2011. Examples for processing indels of

length up to 30bp are the above-mentioned UG (DePristo

et al., 2011) from the GATK (McKenna et al., 2010) and the

earlier approach DINDEL (Albers et al., 2011), whose core ideas

initially inspired the GATK-UG. An option for indels from

125bp or longer is GASV-Pro (Sindi et al., 2012), which report-

edly achieves sufficiently reliable classification rates on very long

indels.
Reliable pipelines for genotyping indels that are �30–100bp

long, in particular in the context of family settings, have not been

described in the literature so far.

2 METHODS

2.1 Laws of Mendelian inheritance

According to Mendel’s laws, a child inherits exactly one allele from each

parent. Egg and sperm cells each contain one set of chromosomes, rep-

resenting a recombination of the two sets of chromosomes present in each

parent. During recombination, it is determined which alleles are passed

on to the child. Let 0,1,2 be placeholders for ‘variant not present’, ‘het-

erozygous variant’ and ‘homozygous variant’, respectively. We write Xgh

with g, h 2 f0, 1, 2g and g � h to refer to variants that are ‘g’ in one parent

and ‘h’ in the other one. For example, X01 refers to variants that are

heterozygous in either the mother or father, but not present in the

other parent. Analogously, we write Yj with j 2 f0, 1, 2g to denote the

event that the child has genotype j. Assuming that each allele is equally

likely to be transmitted to the child, the Mendelian laws can be cast

statistically as

PðY0jX01Þ ¼
1
2 PðY1jX01Þ ¼

1
2 PðY2jX01Þ ¼ 0

PðY0jX11Þ ¼
1
4 PðY1jX11Þ ¼

1
2 PðY2jX11Þ ¼

1
4

PðY0jX02Þ ¼ 0 PðY1jX02Þ ¼ 1 PðY2jX02Þ ¼ 0

PðY0jX12Þ ¼ 0 PðY1jX12Þ ¼
1
2 PðY2jX12Þ ¼

1
2

PðY0jX22Þ ¼ 0 PðY1jX22Þ ¼ 0 PðY2jX22Þ ¼ 1

ð1Þ

When discovering genetic variations in a trio rather than a single

individual, one can take advantage of Mendel’s laws. A variant found

in one of the parents has (at least) a 50% probability of being present in

the child. This translates to the conditional probability of a variant being

present in the child, given its presence in one of the parents, being higher

than the a priori probability, which is not conditioned on any prior

knowledge.

2.2 MATE-CLEVER workflow

Step 1: Running CLEVER. We run our tool CLEVER (Marschall

et al., 2012) on each individual independently. CLEVER processes all

alignments, including also concordant ones, which allows it to also

detect indels shorter than 100bp. The output of this step is a set of

deletions Dclever.

Step 2: Defining Regions of Interest. At this stage, deletions

still may have remained undiscovered in single individuals. So, for

each d 2 Dclever, we declare a window of �1000bp around d, a region

of interest in every individual, independently of in which individual d was

originally discovered.

Step 3: Extracting Reads of Interest. We extract all paired-end

reads where one end aligns in a region of interest. Owing to pooling

deletions from all family members when determining these regions, this

may also include paired-end reads from individuals who do not have a

CLEVER deletion in the region of interest themselves. The goal of this is

to discover breakpoint-covering reads, where one end has to be split-

aligned and therefore has remained unaligned by the (standard) read

aligner in use (Li and Durbin, 2009). Let � ¼ {A, C, G, C} be the

DNA alphabet and let ‘ be the read length. That is, each paired-end

read can be considered a pair of sequences of length ‘, i.e. an element

of �‘ ��‘. Correspondingly, we write R � �‘ ��‘ for the set of all

extracted read pairs, from all individuals.

Step 4: Generating (Split) Alignments with LASER. We align all

reads r 2 R using our read aligner LASER (Marschall and Schönhuth,

2013). LASER determines both normal alignments, containing only short

indels and split alignments, indicating long indels. We report up to 50

alignments per read end. In case of ambiguous indel placements, we

only report the leftmost one. We write A1ðrÞ and A2ðrÞ to denote the

set of alignments of the first and second read end of r 2 R. We define

AðrÞ ¼ A1ðrÞ [ A2ðrÞ and AðRÞ ¼
S

r2R AðrÞ. For each alignment

A 2 AðrÞ, LASER estimates the probability of it indicating the correct

placement of r, written PðAÞ, based on phred scores and empirical indel

statistics; see Appendix D for details.

Step 5: Refining the List of Putative Deletions. We now refine the

set of putative deletions Dclever to create a list of candidate deletions Dcand

that are supported by both spanning and breakpoint-covering alignments,

i.e. are supported by both CLEVER and split alignments from LASER.

Here, we again aim at a high sensitivity: we prefer to err on the side of

including too many rather than too few candidates. We will purge bad

candidates in a later step. LetDsplit be the set of all deletions supported by

split alignments generated in Step 4. We compute the expected support

SRðdÞ of a deletion d 2 Dsplit as follows:

SRðdÞ :¼
X

A2AðRÞ

IdðAÞ � PðAÞ

where IdðAÞ is an indicator that is 1 when alignment A contains deletion d

and 0 otherwise. To be rather permissive, we retain all deletions with an

expected support of 0.5 and above and thus set

D0split :¼ fd 2 Dsplit : SRðdÞ � 0:5g

Next, we filter out deletions that are not similar to any deletion from

Dclever. Formally, we define the set of candidate deletions as follows:

Dcand :¼ fd 2 D0split : there exists d 0 2 Dclever such that

�Lðd, d
0Þ5TL and �Oðd, d

0Þ5TOg
ð2Þ

where �Lðd, d
0Þ is the length difference between d and d 0 and �Oðd, d

0Þ is

the offset, i.e. the distance of their center points. CLEVER predictions are

based on internal segment statistics rather than on alignments. Therefore,

position and length can differ from the true deletion. The thresholds TL

and TO have to allow for enough flexibility to take that into account

without creating too many spurious hits. We found that setting TL ¼ 20,

just slightly above the insert size distribution’s stddev, and TO ¼ 100, to a

distance that is unlikely to produce random hits, works well in practice.

Step 6: Recalibrating Alignment Scores. Because of empirical indel

statistics, the probability PðAÞ tends to be small if A is an alignment that

supports a deletion (either through too long insert size, in case of a

spanning alignment, or through a split, in case of a breakpoint-covering

alignment). Because we are ready to believe in deletions d 2 Dcand, we

increase the probabilities PðAÞ for alignments supporting deletions

d 2 Dcand as follows.

All deletions d 2 Dcand now incur only the minimum phred-scaled cost

of 1, whereas all other deletions retain their original costs. To be more

precise, a deletion d 0=2Dcand retains a cost of CdelðLðd
0ÞÞ as defined in

Appendix D. Using the updated deletion costs, we re-compute the

posterior distribution over all alternative alignments (as described in
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Appendix D). This systematically increases PðAÞ for alignments A indi-

cating deletions d 2 Dcand, but not for A indicating deletions d not in

Dcand. From a Bayesian point of view, this procedure corresponds to

updating our prior belief in alignments A into posterior probabilities by

incorporation of the additional evidence provided by Dcand. We then

compute the most likely alignment pair:

ðA	1ðrÞ,A
	
2ðrÞÞ :¼ arg max

ðA1 ,A2 Þ

2A1ðrÞ�A2ðrÞ

PðA1Þ � PðjIðA1,A2ÞjÞ � PðA2Þ

where PðjIðA1,A2ÞjÞ is the empirical probability (determined from

uniquely mappable reads) to observe an internal segment of size

IðA1,A2Þ. We discard all other alignments. We also discard alignments

where PðAÞ51
 0:001, equivalent to a phred-scaled mapping quality of

at least 30.

Step 7: Genotyping each Individual. For each deletion, we predict

the genotype of each individual based on a prior belief pprior, evidence

from covering alignments, and evidence from spanning alignment pairs.

The prior belief is a global user-specified input parameter. It can be used

to adjust the trade-off between precision and recall. We process all

d 2 Dcand ordered (decreasingly) by expected support SRðdÞ. In the fol-

lowing, let C(d) be the arithmetic mean of start and end position of d.

Spanning alignment pairs: We assume insert sizes to be normally

distributed with mean � and stddev � [see Marschall et al. (2012) for

further discussion of this assumption]. A read r is said to support the

deletion d if

d � IðA	1ðrÞ,A
	
2ðrÞÞ and jIðA	1ðrÞ,A

	
2ðrÞÞj 
 �4jd j=2,

where IðA	1ðrÞ,A
	
2ðrÞÞ is the set of positions that constitute the internal

segment between the two alignments. That is, deletion d lies in the

internal segment and the internal segment length is closer to �þ jd j

than to �. Owing to the symmetry of the null distribution N �, � , the

latter is equivalent to that the deletion is more likely to be present than

absent relative to r. Read r contradicts the deletion d if

CðdÞ 2 IðA	1ðrÞ,A
	
2ðrÞÞ and jIðA	1ðrÞ,A

	
2ðrÞÞj 
 � � jd j=2:

That is, the center point of d lies in the internal segment, whereas in this

case d is more likely to be absent than present relative to r. Note that for

contradicting reads d itself does not necessarily lie in the internal segment,

which is an obvious requirement. Because a deletion reduces to a single

breakpoint in the donor genome, considering only center points for

contradicting reads is analogous to considering the entire deletion for

supporting reads. For accurate genotyping, we have to take ‘crosstalk’

between supporting and contradicting reads into account. Therefore, we

determine pinsertFP :¼
R1
�þjdj N �, �ðxÞdx as the probability of a false positive

(a contradicting read being misclassified as supporting) and pinsertFN ¼ pinsertFP

as the probability of a false negative (a supporting read misclassified as

contradicting).

Let nS and nC be the number of supporting and contradicting reads,

respectively, and let n :¼ nS þ nC. Let Bðn, pÞðkÞ be the probability that out

of n samples, each of which, with probability p, has a special label,

k samples have the label. This reflects a common binomial distribution.

We then determine (0 for indel not present, 1 for heterozygous and 2 for

homozygous)

pins0 / Bn, pðnSÞ, p ¼ pinsertFP

pins1 / Bn, pðnSÞ, p ¼ 0:5pinsertFP þ 0:5ð1
 pinsertFN Þ

pins2 / Bn, pðnSÞ, p ¼ 1
 pinsertFN

ð3Þ

as insert-size based probabilities for a deletion being not present,

heterozygous and homozygous.

Breakpoint-covering alignments: We determine the number of read ends

supporting the deletion

ns ¼
X
r2R

IdðA
	
1ðrÞÞ þ IdðA

	
2ðrÞÞ

where IdðAÞ is 1 if alignment A contains the deletion d and 0 otherwise.

We also count the number n of all reads r whose alignments overlap C(d)

(hence, nC : n
 nS is the number of alignments that contradict d). We set

psplitFN ¼ psplitFP ¼ 0:01. This is rather conservative—recall that the align-

ments were filtered at a 0.001 level in Step 6. We proceed analogously

as for spanning alignments (see Equation 3), but now use n and nS, as

obtained here. This yields probabilities psplit0 , psplit1 , psplit2 .

We also consider pprior0 :¼ 1
 pprior, p
prior
1 ¼ pprior2 :¼ pprior=2, which

expresses our prior belief in the zygosity status of deletions. To achieve

a high precision, we set pprior ¼ 0:001.

Let pi :¼ ppriori � pinsi � p
split
i for i ¼ 0, 1, 2. We finally determine the

type as

argmax
0, 1, 2

fp0, p1, p2g

which corresponds to the genotype with the highest posterior probability.

Recall that we process deletions d ordered by expected support SRðdÞ.

When processing subsequent deletions, all alignments already in use for

genotyping a higher-ranked deletion d will be ignored.

Step 8: Finding De Novo Deletions. De Novo deletions, i.e. dele-

tions present only in the child, but not in the parents, are rare but usually

of utmost interest. Their detection is difficult for two reasons. On one

hand, they are absent in the parents and heterozygous in the child, i.e.

only one out of six alleles represents them. This results in considerably

less power for detecting them. On the other hand, inherited deletions that

are heterozygous in only one parent are prone to be mistaken as de novo,

if local coverage in the respective parent is low.

To avoid such spurious calls, we further filter all deletions that were

genotyped as present only in the child, by not only requiring strong evi-

dence for its presence in the child, but also strong evidence that it is absent

in the parents. Let Tde-novo ¼ 10
5; we recall that p0 is the probability

(from Step 7) that a deletion is not present in an individual. All deletions

with p05Tde
novo in the child and with 1
 p05Tde
novo in both parents

are reported as de novo. All other deletions are passed on to the next

processing step.

Step 9: Family-Structure-Aware Genotyping. Finally, we combine

individual probability distributions ðp0, p1, p2Þ (0 for not present, 1 for

heterozygous and 2 for homozygous) from all family members into a

combined probability distribution ðpghj; g, h, j 2 f0, 1, 2gÞ. For example,

p021 ¼ pmo0 � p
fa
2 � p

ch
1 , where we index with mo, fa, ch for the different family

members, is the probability that the deletion is not present in the mother,

homozygous in the father and heterozygous in the child. We combine these

probabilities with a Mendelian prior qghj; g, h, j 2 f0, 1, 2g where

qghj /

(
PðYjjXghÞ ghj respects the Mendelian laws

0 otherwise

See (1) for PðYjjXghÞ. We report

argmax
ghj

fqghj � pghjg

as the final Mendelian-law-corrected genotype.

3 EVALUATION

3.1 ‘Venter’s Family’—a Trio Benchmark

We derive Mendelian-inheritance-compliant annotations for a

virtual family from the full set of Craig Venter’s variants (Levy
et al., 2007). We opt for proceeding this way for three reasons.
(i) For indels, there are no trio benchmark datasets available
(see also the discussion in Appendix A.2). (ii) The Venter vari-

ants make an encompassing amount of real annotations.
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In particular, we only have to simulate reads, but not variants

[see also Marschall et al. (2012) for more arguments on good

benchmark datasets]. (3) Dividing these variants into three (over-

lapping) subsets, one each for a mother, a father and the child,

does not lead to a significant reduction of quantities of variants

in one of the single individuals because Mendel’s laws imply that

the vast majority of annotations are shared by at least two

individuals.
Formally, let � be the entire set of annotations. We divide (see

section ‘Laws of Mendelian inheritance’ for notation)

� ¼ X01 _[ X11 _[ X02 _[ X12 _[ X22 ð4Þ

We also set aside a certain amount of de novo variants X00.

We assume that fractions of variants of equal zygosity are the

same in both mother and father. Similarly, we divide � ¼ Y0 _[

Y1 _[ Y2 into subsets.
The (computational) problem is to partition a given set of

annotations � into subsets

ðY0 \ X10Þ _[ ðY0 \ X11Þ _[ . . . _[ ðY2 \ X22Þ ð5Þ

without violating Mendel’s laws and such that the resulting call-

set makes a reasonable SV discovery and genotyping benchmark.

Refer to Appendix A.1 for how we solve this problem geomet-

rically. Owing to the large number of heterozygous deletions and

because heterozygous deletions are harder to discover than

homozygous deletions, the resulting benchmark is relatively

difficult. We included (unrealistically) large amount of de novo

deletions in the benchmark because we need a statistically suffi-

cient mass of de novo annotations for benchmarking properly.
Using the resulting trio benchmark annotations, which include

all SNPs, indels, mixed variants and inversions, i.e. all variants

one can download from Levy et al. (2007), we simulated reads

using the read simulator SimSeq (Earl et al., 2011). Mean frag-

ment size was set to � ¼ 500 and stddev to � ¼ 15, which reflects

common standards and was chosen as it resembles the data in the

GoNL project (Boomsma et al., 2013). We generated two differ-

ent datasets of reads, one of which amounts to 12� coverage

(which meets the GoNL Project standards) and the other one has

30� coverage. We then aligned all reads with BWA (Li and

Durbin, 2009), with default parameters in the ‘aln’ step and

parameters ‘-n25 -N25’ in the ‘sampe’ step to allow for up to

25 alternative alignments per read.

3.2 Results: Venter simulated reads

For comparing MATE-CLEVER with state-of-the-art

approaches, we selected the following three tools: (i) Unified

Genotyper (abbreviated UG or simply GATK), which sets the de

facto standard for both population- and multi-sample-aware gen-

otyping (DePristo et al., 2011); (ii) PINDEL as a most prominent,
state-of-the-art split-read approach that sets the de facto standard

in split-aligning reads (Ye et al., 2009); and (iii) CommonLAW as

the only indel discovery tool available, apart from theGATK, that

is distinctly trio-aware (Hormozdiari et al., 2011).

We have furthermore evaluated DELLY (Rausch et al., 2012)

and PRISM (Jiang et al., 2012), both of which, like MATE-

CLEVER, are hybrid approaches. However, DELLY does not

address discovery of indels in the length range considered here

(Tobias Rausch, personal communication). Moreover, both tools

address neither genotyping of indels nor the integration of family
information during discovery. See Appendix B for corresponding

results. We furthermore refer to the CLEVER article (Marschall
et al., 2012) for performance statistics for Breakdancer (Chen

et al., 2009), GASV (Sindi et al., 2009), HYDRA (Quinlan
et al., 2010), VariationHunter (Hormozdiari et al., 2009),

SVSeq2 (Zhang et al., 2012) and MoDIL (Lee et al., 2009).
Because CommonLAW is internal segment size-based, we

evaluate its calls with relaxed distance thresholds and compare

its results with MATE-CLEVER calls evaluated in the same way
in a separate table to avoid confusion and/or unfair compari-

sons. The comparison of MATE-CLEVER, the GATK and
PINDEL (with strict criteria) is shown in Table 1, whereas the

comparison of MATE-CLEVER and CommonLAW (with
relaxed criteria) is displayed in Table 2; the precise criteria and

an explanation of evaluation metrics are provided in the next

section. A detailed overview of MATE-CLEVER’s genotyping
performance is given in Figure 2.
Table 3 shows the performance of MATE-CLEVER, UG and

PINDEL in terms of making de novo predictions. De novo dele-
tions only exist in the child, hence cannot be inherited, but must

have come into existence during mating. De novo variants,
including SNPs, are rare, but are also of great interest, because

they can help to explain the mechanisms behind creation of new
genetic variation. We recall that we included amounts of de novo

calls in our benchmark that overestimate true amounts because
we need a statistically sufficient mass for evaluation.

3.3 Evaluation metrics

In Table 1, we count a prediction as true positive if it matches a
true annotation at most 20-bp distance, with at most 10 bp dif-

ference in length. For a relaxed evaluation of CommonLAW
(Table 2), a true positive is a prediction that matches a true

annotation at a distance of at most 100-bp, with at most
100bp difference in length. Recall is determined as the number

of true positives over the number of true annotations. Precision is
the number of true positives over the number of predictions. In

Tables 1 and 2, Family Precision refers to pooling all predictions
and annotations into one ‘family pool’ and determining precision

accordingly. Recall is also evaluated by pooling. Individual
Precision refers to not pooling calls and annotations, but to

evaluating precision in each individual separately and taking
the average. Genotype Precision is the fraction of (individual)

predictions that are (not only true positive, but also) correctly
genotyped. In Table 2, we have replaced Genotype Precision by

Length Difference, due to that CommonLAW does not genotype
and to reflect differences between split-read-driven and insert-

size based approaches in terms of breakpoint accuracy.

3.4 Results: real data (platinum genome)

We also evaluated MATE-CLEVER on chromosome 1 of the

platinum genome trio provided by Illumina, as downloaded from
http://www.illumina.com/platinumgenomes, together with the

computational annotations, generated through Illumina
inhouse-software (Eland and CASSAVA, personal communica-

tions with Ole Schulz-Trieglaff, Illumina, available at ftp://ftp.
platinumgenomes.org/trio). The platinum trio consists of individ-

uals NA12878 (mother), NA12877 (father) and NA12882 (son).
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We then aligned the reads using BWA (with the same setting as
for the simulated reads) and ran MATE-CLEVER as well as
PINDEL on the alignments. Note first that the standard devia-

tion (stddev) of the fragment length distribution is extremely high
(�65bp), due to the outdated library protocols, which explains

the small amount of deletions of length 65–129bp MATE-
CLEVER predicts (We virtually claim that we can discover

and genotype indels longer than two times the stddev of the
fragment length distribution, which amounts to 30 on current
protocols.). See Appendix E for Venn diagrams and statistics,

relating MATE-CLEVER, PINDEL and CASSAVA calls. Total
amounts of predictions (exclusive calls in parentheses) evaluate

as follows (see Appendix E for more details):
– 65–129 bp (1–2 stddev): MATE-CLEVER 69 (22),

CASSAVA 130 (79) and PINDEL 256 (195), with 21 shared

by all

– 130–194bp (2–3 stddev): MATE-CLEVER 30 (15),
CASSAVA 113 (100), PINDEL 40 (26), with 12 shared by all
– 195–324bp (3–6 stddev): MATE-CLEVER 87 (22),

CASSAVA 45 (28), PINDEL 80 (16), with 16 shared by all
– 325–1000bp (46 stddev): MATE-CLEVER 97 (33),

CASSAVA 0, PINDEL 157 (93), with 64 shared by the two
Although CASSAVA genotypes can be in conflict with the

Mendelian laws (see Appendix A.2), none of the MATE-
CLEVER calls are (PINDEL does not genotype).

4 DISCUSSION

Table 1 shows that the GATK’s overall recall and precision as
well as its genotyping performance are excellent for deletions of
10–29 bp, with recall between 60 and 70%, depending on cover-

age, and with precision and genotyping rates at �90%.

Table 1. Performance rates for calling and genotyping deletions, using highly stringent evaluation criteria

Coverage Overall recall Family precision Individual precision Genotype precision

12� / 30� 12� / 30� 12� / 30� 12� / 30�

Length range 10–29 (25 678 true deletions)

MATE-CLEVER 11.9 / 22.1 90.1 / 90.9 90.6 / 91.5 77.2 / 83.4

GATK 57.0 / 69.9 90.9 / 89.8 90.5 / 89.2 87.0 / 88.3

PINDEL 66.3 / 82.7 92.4 / 90.4 93.0 / 91.4 N/A / N/A

Length range 30–49 (3170 true deletions)

MATE-CLEVER 55.8 / 69.6 88.0 / 85.9 88.2 / 86.3 81.9 / 84.6

GATK 15.7 / 23.2 91.5 / 91.3 90.9 / 90.8 84.8 / 88.5

PINDEL 43.0 / 58.8 83.9 / 73.8 86.6 / 78.2 N/A / N/A

Length range 50–99 (1854 true deletions)

MATE-CLEVER 48.7 / 55.6 77.9 / 74.4 78.9 / 74.8 78.5 / 76.8

GATK 0.3 / 0.6 66.7 / 73.3 65.0 / 73.7 59.3 / 77.8

PINDEL 25.0 / 37.2 69.3 / 55.9 72.8 / 61.7 N/A / N/A

Length range 100–249 (1137 true deletions)

MATE-CLEVER 34.7 / 42.5 73.9 / 63.6 76.5 / 64.9 77.6 / 70.5

GATK 0.0 / 0.0 
 / 
 
 / 
 
 / 


PINDEL 14.1 / 20.1 71.1 / 58.7 75.0 / 63.7 N/A / N/A

Note: See main text for definitions. Best values in each category are typeset in bold face.

Table 2. Performance rates comparing MATE-CLEVER and CommonLAW, using relaxed evaluation criteria

Coverage Overall recall Family precision Individual precision Length difference

12� / 30� 12� / 30� 12� / 30� 12� / 30�

Length range 10–29 (25 678 true deletions)

MATE-CLEVER 13.2 / 23.9 93.7 / 93.8 93.6 / 93.8 0.5 / 0.5

CO.LAW 0.4 / 0.5 93.1 / 89.5 94.1 / 90.9 17.8 / 16.4

Length range 30–49 (3170 true deletions)

MATE-CLEVER 60.7 / 75.2 93.7 / 92.1 93.4 / 91.8 0.9 / 1.1

CO.LAW 12.4 / 12.9 94.2 / 95.0 92.3 / 88.5 13.6 / 11.0

Length range 50–99 (1854 true deletions)

MATE-CLEVER 54.1 / 63.1 87.0 / 85.6 87.0 / 84.5 2.3 / 2.8

CO.LAW 55.2 / 66.9 84.3 / 93.6 77.0 / 89.0 16.4 / 13.4

Length range 100–249 (1,137 true deletions)

MATE-CLEVER 38.6 / 48.9 84.7 / 78.4 86.5 / 78.9 3.1 / 4.5

CO.LAW 39.5 / 52.4 75.8 / 65.8 77.7 / 68.4 27.9 / 14.8

Note: CommonLAW cannot genotype. Because CommonLAW is internal segment size-based, breakpoint predictions are less accurate. See main text for column definitions.

Best values in each category are typeset in bold face.
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PINDEL’s discovery performance rates rival those of UG in this

size range. However, PINDEL does not allow to genotype. For

deletions of 30bp and longer, MATE-CLEVER has precision

and genotyping rates at about those of the GATK (30–49bp:

� 85–88%), but better recall (30–49bp: 70% for MATE-

CLEVER versus 23% for UG, both on 30�).
Table 2 shows that CommonLAW’s contribution starts at

�50–60bp, where it achieves excellent recall and family-pooled

precision. Its performance relative to single individuals falls

behind MATE-CLEVER and it cannot genotype. Moreover,

its accuracy in determining breakpoints is not competitive with

that of split-read aligners. Overall, MATE-CLEVER is able to

genotype and achieves highly favorable performance rates in
terms of assigning and genotyping calls in individuals and in
terms of breakpoint accuracy.

Table 3 displays performance rates of MATE-CLEVER, the
GATK and PINDEL when discovering de novo deletions. For
PINDEL, amounts of predictions being typed as ‘child only’ are

seemingly too large—the majority of such calls exist in the child,
but are inherited, possibly because de novo calling has not yet
(personal communication Kai Ye) been implemented in the of-

ficially downloadable PINDEL as a special feature. The GATK
achieves excellent de novo prediction rates on 30� read data, in
all size ranges. MATE-CLEVER makes nearly no calls below

30bp, but outperforms the other tools for deletions larger than
30bp, keeping stable prediction rates also for 12� data.
As is evident from Figure 2, the majority of MATE-CLEVER

calls is correctly typed (as already displayed in Table 1). If
MATE-CLEVER mistypes, then it rather over- than under
calls deletions. That is, for example, it tends to predict heterozy-

gous calls as homozygous rather than not present, if it fails to
genotype correctly.

When running MATE-CLEVER on the platinum trio, one
can assume that MATE-CLEVER yields too little predictions
5130 bp because this reflects two times the stddev of the insert

size distribution (We recall that we claim that we can discover
and genotype indels longer than two times the stddev of the
fragment length distribution, which amounts to 30 on current

protocols.). PINDEL, which, as a split-read mapper, should be
much less affected by the large stddev, delivers amounts of pre-
dictions, which, in comparison with Venter’s genome, are too

large. CASSAVA delivers a reasonable amount of predictions.
Between 130 and 194bp, CASSAVA seems to make too many
predictions, when relating numbers to the Venter genome. Both

MATE-CLEVER and PINDEL deliver reasonable amounts in
this size range in this respect. This picture does not change also
for deletions longer than 194bp, for both MATE-CLEVER and

PINDEL, but numbers for CASSAVA drastically decrease.
Beyond 325bp (¼6 stddev), CASSAVA makes no predictions.

Across all size ranges, MATE-CLEVER delivers a substantial
fraction of predictions that the other tools do not predict. As a
general trend, the agreement between MATE-CLEVER and

PINDEL (in relative numbers) is higher than between MATE-
CLEVER and CASSAVA or between PINDEL and CASSAVA
(see Venn diagrams in Appendix E). Also note that, as discussed

in Appendix A.2, the CASSAVA indel calls are often in disagree-
ment with the Mendelian laws of inheritance, which potentially
translates into relatively high false-positive prediction rates.

Without further wet-lab validations, however, we cannot reach
a final conclusion about how to interpret the Venn diagrams
in Appendix E.

5 CONCLUSION

We have described a novel combinedly insert size- and split-read-
alignment-based (hybrid) approach by which to discover and
genotype indels longer than 30bp. Although the GATK has

set the standards for indels of size up to 30 bp, approaches for
indels larger than 30bp had not been available. Here, we close
this gap. Our tool MATE-CLEVER discovers and genotypes

deletions larger than 30bp at performance rates that are on a
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Fig. 2. MATE-CLEVER genotypes, where each class of predictions

spans a block of four neighboring bars, are compared with true

genotypes, as indicated by colors. Bars refer to different combinations

of coverage and indel length. Bar length is measured in percentage.

So, e.g. for 30�, 30–249bp indels predicted as not present (4th bar in

1st block), �97% are not present (blue fraction) in the respective

individual

Table 3. Performance rates when detecting de novo deletions are shown

Coverage Total Recall Precision

De novo Inherited

12� / 30� 12� / 30� 12� / 30� 12� / 30�

Length range 10–29

MATE-CLEVER 1 / 20 0.0 / 5.7 0.0 / 50.0 100.0 / 35.0

PINDEL 2221 / 1236 42.6 / 77.3 3.3 / 10.8 85.4 / 66.9

GATK 164 / 193 23.3 / 58.5 25.0 / 52.3 63.4 / 38.9

Length range 30–249

MATE-CLEVER 12 / 47 14.3 / 61.2 58.3 / 63.8 25.0 / 21.3

PINDEL 392 / 466 18.4 / 49.0 2.3 / 5.2 64.8 / 38.4

GATK 8 / 8 4.1 / 10.2 25.0 / 62.5 62.5 / 37.5

Note: Total: Number of de novo deletions predicted. Recall: Percentage of true

de novo deletions that are predicted as such. Precision: Percentage of de novo dele-

tion predictions that match true de novo deletions. Inherited: Percentage of predicted

de novo deletions that are true deletions in the child, but are mistyped, i.e. inherited.

Best values in each category are typeset in bold face.
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par with those of the GATK for deletions smaller than 30bp. In

doing this, MATE-CLEVER also integrates statistics reflecting

the laws of Mendelian inheritance, for enhanced performance

rates when dealing with ancestry-related contexts.
We focus exclusively on results for deletions here. With some

minor modifications, however, MATE-CLEVER also applies

for insertions—both its core engines (Marschall et al., 2012,

CLEVER); (Marschall and Schönhuth, 2013, LASER) have

been designed for also reliably handling insertions (note that

the usual limitations owing to read and fragment length do not

allow to discover insertions larger than 80bp). Extrapolating

CLEVER’s and LASER’s performance rates for insertions,

which largely agree with those for deletions, may yield reason-

able guesses on MATE-CLEVER’s performance on insertions.

Still, challenges remain. Neither the GATK nor MATE-

CLEVER achieves recall of 470%. Future work will be con-

cerned with raising sensitivity even further, by using improved

alignment scores, and also by integrating elements that allow

for further improved recalibration of read alignments, such as

constructing local haplotypes.
For further results on real data, we refer the interested reader

to the GoNL Project (http://www.nlgenome.nl), where MATE-

CLEVER contributed to predicting indels in all 231 trios and

19 quartets.
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