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ABSTRACT

Summary: Correlating disease mutations with clinical and phenotypic

information such as drug response or patient survival is an important

goal of personalized cancer genomics and a first step in biomarker

discovery. HyperModules is a network search algorithm that finds fre-

quently mutated gene modules with significant clinical or phenotypic

signatures from biomolecular interaction networks.

Availability and implementation: HyperModules is available in

Cytoscape App Store and as a command line tool at www.baderlab.

org/Sofware/HyperModules.

Contact: Juri.Reimand@utoronto.ca or Gary.Bader@utoronto.ca

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Establishing functional links between genetic variation and

human disease is a key goal of cancer genome sequencing

(Gonzalez-Perez et al., 2013) and genome-wide association stu-

dies (Hardy and Singleton, 2009). Complex diseases like cancer

are often driven by infrequent changes in multiple genes in

pathways (Vogelstein et al., 2013). Network analysis helps

interpret mutations in systems context and find disease genes,

pathways and biomarkers for precision medicine (Barabasi

et al., 2011).
Discovery of modules (subnetworks) in biological networks

helps isolate systems with disease-related properties and reduces

interactome complexity. A growing number of methods are

available for this purpose. A landmark paper combines gene ex-

pression signatures with protein–protein interactions (PPI) to

find predictive modules of cancer outcome (Chuang et al.,

2007). The NETBAG method studies genetic associations and

copy number variants to find autism-related modules (Gilman

et al., 2011). HotNet detects frequently mutated pathways in

networks (Vandin et al., 2011, 2012). Net-Cox builds prognostic

cancer signatures in network analysis of gene expression data

(Zhang et al., 2013). The Reactome FI Cytoscape plugin

uncovers prognostic gene modules from networks and gene

expression data (Wu and Stein, 2012). Network-based stratifica-

tion predicts tumor subtypes from mutations in network regions

(Hofree et al., 2013). Such modules maximize a feature of genes

such as differential expression, disease mutation frequency or

enrichment of interactions.
Because clinical profiles of patients are increasingly available

in cancer genomics efforts such as the The Cancer Genome Atlas

(TCGA) pan-cancer project (Weinstein et al., 2013), new meth-
ods are needed to discover multivariate biomarkers in networks.

We recently analyzed cancer mutations in phosphorylation sig-

naling and found that kinase–substrate networks are informative

of patient survival and therapy response (Reimand and Bader,
2013; Reimand et al., 2013). In particular, we found network

modules with rare mutations in ovarian cancer patients with im-

proved prognosis. We created the HyperModules method to sys-
tematically discover clinically correlated modules from gene and

protein networks (Reimand and Bader, 2013) based on our ear-

lier work on functional subnetwork discovery (Altmae et al.,
2012; Reimand et al., 2008). Here we present the previously un-

available software in open-source Java as a command line tool

for automated work and a Cytoscape app for interactive graph-
ical analysis.

2 SOFTWARE

HyperModules assumes that clinically informative mutations of
complex disease occur in systems of closely interacting genes.

The greedy network search algorithm focuses on a local network

area, defined by a central seed node (a mutated gene) and its
surrounding subnetwork. All mutated genes are sequentially con-

sidered as seeds in module discovery. Search starts from the seed

and grows the module toward increased benefit by adding con-
nected genes that best improve clinical significance. This object-

ive is driven by statistical tests where patients defined by the

module are compared with other patients. Categorical clinical

variables are studied with Fisher’s exact test and survival times
with log-rank test. Cox regression is currently not supported;

however, we plan to add this feature in the future. To estab-

lish statistical significance of detected modules, we build a null
distribution by searching networks with permuted gene

names. Each module of the true network is quantified with an

empirical P-value reflecting the fraction of seed-specific modules
from shuffled networks exceeding the significance of the true

module. This removes artifacts of the greedy strategy

and corrects for topological features such as highly connected
nodes.

The analysis pipeline is outlined in Figure 1. Interaction net-
works are loaded into Cytoscape using standard features

(Shannon et al., 2003). HyperModules requires gene mutations

and patient clinical information in two tables. The user selects*To whom correspondence should be addressed.
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type of clinical analysis and columns in data table (survival time

or variable such as tumor relapse). Survival analysis requires

follow-up time and vital status of patients. Detected modules

are studied further with network visualization, survival curves

and data export. We tested HyperModules on protein networks

to find survival modules with cancer mutations. We extracted

three human PPI networks of variable size from iRefWeb

(Turner et al., 2010), and five cancer mutation datasets from

the International Cancer Genome Consortium portal version

12 (Supplementary Fig. S1). For example, network analysis of

30 000 interactions with 121 liver cancer patients, 686 mutated

genes and 10 000 permutations takes 10min on an 8-core com-

puter with 16 GB RAM. HyperModules is thus applicable to a

range of networks and mutation datasets.

3 EXAMPLE ANALYSIS

An example dataset is provided in Supplementary File S1. It

comprises 183 ovarian cancer patients from the TCGA study

(Cancer Genome Atlas Research Network, 2008) and the net-

work of 4823 kinase–substrate interactions from our earlier

study (Reimand and Bader, 2013). The ovarian cancer mutations

are restricted to 163 proteins with single nucleotide variants af-

fecting protein phosphorylation sites or kinase domains. Two

sets of modules were computed with 10 000 network permuta-

tions and are shown in Supplementary Figures S2–S3. First, the

search for survival correlations in the kinase–substrate network

with log-rank test identified 19 modules, where associated pa-

tients have significantly different survival rates compared with

other patients in the cohort (empirical P � 0:05). Second, the
categorical variable search with Fisher’s exact test revealed

fivemodules with significant enrichment of alive patients (empir-

ical P � 0:05). The modules are also summarized in

Supplementary Table S1.

4 DISCUSSION

HyperModules is a biological network-mining algorithm that

reveals modules of interacting genes with clinically informative

disease mutations. Diverse biomolecular interaction networks

can be analyzed, including PPI networks, gene regulatory

networks and curated biological pathways. Disease mutations

are also broadly defined. Although we initially studied cancer

point mutations, other types of alterations such as copy

number and gene expression changes can be used.

HyperModules finds correlations with groups of genes where

mutations may be infrequent but the signature strengthens

through network integration. Such modules are not often directly

usable as biomarkers because of small sample size; however, we

believe that our approach helps discover genes and pathways as

potential multivariate biomarkers for further experiments.
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Fig. 1. HyperModules requires three inputs—(1) mutated genes in patients, (2) patient clinical information and (3) protein or gene

network. Search is performed for all mutated genes as seeds (4). Network visualization, clinical variable statistics and data export facilitate further

analysis (5)
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