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ABSTRACT

Motivation: Sufficiently powered case–control studies with next-

generation sequence (NGS) data remain prohibitively expensive for

many investigators. If feasible, a more efficient strategy would be to

include publicly available sequenced controls. However, these studies

can be confounded by differences in sequencing platform; alignment,

single nucleotide polymorphism and variant calling algorithms; read

depth; and selection thresholds. Assuming one can match cases

and controls on the basis of ethnicity and other potential confounding

factors, and one has access to the aligned reads in both groups, we

investigate the effect of systematic differences in read depth and

selection threshold when comparing allele frequencies between

cases and controls. We propose a novel likelihood-based method,

the robust variance score (RVS), that substitutes genotype calls by

their expected values given observed sequence data.

Results: We show theoretically that the RVS eliminates read depth

bias in the estimation of minor allele frequency. We also demonstrate

that, using simulated and real NGS data, the RVS method controls

Type I error and has comparable power to the ‘gold standard’ analysis

with the true underlying genotypes for both common and rare variants.

Availability and implementation: An RVS R script and instructions

can be found at strug.research.sickkids.ca, and at https://github

.com/strug-lab/RVS.

Contact: lisa.strug@utoronto.ca

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Genome-wide case–control association studies with single

nucleotide polymorphisms (SNPs) can incorporate publicly

available genome-wide control data for comparison to disease

group allele frequencies (The Wellcome Trust Case Control

Consortium, 2007). This convenient strategy not only increases

statistical power by using larger numbers of controls but also

allows precious resources to be focused on data collection

from diseased individuals. Publicly available genome-wide next-

generation sequence (NGS) data exist [e.g. 1000 Genomes

Project (Abecasis et al., 2012)]; however, it has generally been

used as a tool to identify novel or rare variants in individual

studies, rather than as a control group for association analysis.

One explanation for this underutilization of NGS genotypes for

association may be the bias that results from sequencing cases

and controls with different genomic platforms and protocols;

these biases tend to be less of a concern when using microarray

data if properly accounted for (Sebastiani et al., 2011).
A more commonly implemented design for association with

NGS data is to use sequenced cases for variant discovery and

then genotype the identified variants in a larger sample of cases

and controls (Liu and Leal, 2012; Longmate et al., 2010; Sanna

et al., 2011). Such two-step sampling designs can be cost effective

and can ensure there is no Type I error inflation. However, this

approach cannot detect protective variants that are present only

in the discovery sample and in general are overly conservative.

Here we develop statistical methodology for a design in which

publicly available sequenced controls are used for association

studies with ‘in-study’ NGS sequenced cases to prioritize variants

for further investigation. Public controls could augment ‘in-

study’ sequenced controls or, in the case that we consider here,

public controls could be the only control group used for analysis.
Possible confounders that could influence findings when using

an external NGS control group in genetic association studies can

be divided into two general categories: (i) those that can be con-

trolled by design considerations such as appropriately matched

control groups on ethnicity (i.e. basic epidemiologic principles

unrelated to the type and production of genetic data); and (ii)

factors directly related to the sequencing and variant calling tech-

nology (Nielsen et al., 2011): base calling procedures (e.g. various

sequencing platforms), alignment (e.g. algorithm and reference

genome), read depth, SNP detection and genotype calling

algorithms (DePristo et al., 2011; Li et al., 2009; McKenna*To whom correspondence should be addressed.
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et al., 2010). For example, large publicly available datasets that
were sequenced at low read depth (LRD) can result in biased
estimation of allele frequencies. This bias diminishes with

increasing read depth (Kim et al., 2011). However, if allele fre-
quencies are compared from variants sequenced with different
read depth in case and control cohorts, false associations may be

generated and true ones masked. Even when average read depth
is similar coverage could vary in individual regions across plat-
forms, samples and experiments. This would likewise bias results

in regions with low coverage in one group by chance, and pre-
clude comparison between cases and controls in regions com-
pletely lacking sequence in one group or the other. Lastly,

differences in SNP discovery and variant calling algorithms can
also lead to spurious association findings. As a consequence of
these shortcomings, statistical methodology designed to assess

association in sequence data has generally required both cases
and controls to be sequenced together using a common platform,
depth and design.

Here, we focus on the technical aspects of comparing allele
frequencies between cases and controls that were sequenced as
part of different projects with different experimental designs.

When the matched case and control groups with their aligned
NGS data (e.g. binary version of Sequence Alignment/MAP
(BAM) files) are available, we can apply the variant calling al-

gorithm to the combined data so that the resulting case and
control data would be well-matched with the exception
of design parameters such as enrichment strategy, sequencing

platform, read depth and resulting coverage (Fig. 1).
It is well-documented that differences in read depth between

cases and controls have large effects on estimation of minor allele

frequency (MAF) and can lead to inflated Type I error in asso-
ciation studies (Kim et al., 2011). Less attention has been paid to
the selection threshold used in genotype calling algorithms (gen-

otypers) such as those implemented in Samtools and Genome
Analysis Toolkit (GATK) (DePristo et al., 2011; Li et al.,
2009; McKenna, et al., 2010). These genotypers provide confi-

dence/quality scores for a genotype call (e.g. GQ scores) and
based on these scores and a predetermined threshold, low
confidence/quality calls are filtered out.

To address variant call differences that can occur even within a
study design that sequences cases and controls, one could incorp-
orate read depth or quality score differences into the association

analysis by using a logistic regression analysis with read depth
as a covariate or by weighting each variant call by quality score
(Daye et al., 2012; Garner, 2011). However, in the setting where

cases and controls are distinguishable by read depth, these
approaches are not applicable because they would be con-
founded by case–control status, and the corresponding param-

eters would not be estimable. Another approach to account for
differential read depth is implemented in the GATK toolkit
(http://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_

sting_gatk_walkers_PrintReads.html), which randomly down-
samples BAM files for the higher read depth group. This ap-
proach is a less powerful strategy in comparison with

methodology that incorporates all observed data, as we show
in Section 3.2.
When cases and controls are sequenced as part of the same

experimental design, Skotte et al (2012) suggest substituting
genotype calls by their expected values given the observed

sequence data. This can result in higher power and better control

of Type I error than methods based on called genotypes, while

taking into account uncertainty in the calls without requiring

filtering by arbitrary quality score thresholds. This approach in-

corporates read depth by constructing the joint likelihood of

observed phenotypes and observed sequence data, and signifi-

cance testing is conducted using a score statistic. This approach,

however, would not control Type I error when there are case–

control differences in read depth because these differences may

produce inflated estimates of the score statistic variance, espe-

cially for rare variants.
In Section 2, we propose the robust variance score (RVS),

which repurposes and extends the approach by Skotte et al.

(2012). In Section 3.1, we illustrate analytically and by simulation

how differences in read depth and variant screening parameters

affect Type I error in association studies using called genotypes.

We then present simulation results under the null and alternative

models for association with single and multiple variants using the

RVS method. In Section 3.2, we show that analysis using the

RVS has comparable power to an analysis with the true geno-

types. In Section 3.3, we apply the RVS to analysis of several

studies using NGS technology, and we compare our findings

with those from association studies using genotype calls with

quality score thresholds.

2 METHODS

2.1 Defining the RVS method

We use a score statistic derived from the joint likelihood of observed

phenotypes and observed sequence data. We assume that for individual

i, the phenotype Yi depends on the observed sequencing dataDij, through

Step1: Matched cases 
and controls (e.g. sex, 
ethnicity)* 

Step 2: Alignment to 
common reference 
genome &

Step 4: Post variant calling association analysis 
with RVS (introduced here) using genotype like-
lihoods from VCF file in step 3 (accounts for read 
depth differences and selection threshold bias)

Step 3: Combined case/control SNP variant calling 
from BAM files to produce combined VCF file 

g

Fig. 1. Workflow proposed for the NGS association analysis when

external NGS control data are used. We assume both case and control

NGS data have passed standard quality control metrics. Asterisk indi-

cates that ideally cases and controls would also be matched on sequencing

platform and enrichment strategy. However, our results in Section 3 in-

dicates that this is not necessary. &Different alignment algorithms are

implicitly accounted for by the RVS because the unit of analysis is geno-

type probability rather than the genotype calls in the association analysis
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unobserved genotype Gij (Gij is coded 0, 1 and 2) at locus j. The corres-

ponding joint likelihood can be written as

PðY ¼ ðY1, :::,YnÞ, D ¼ ðD1j, :::,DnjÞÞ

¼
Yn
i¼1

X2
g¼0

PðYijGij ¼ gÞPðGij ¼ g,DijÞ

!
:

 

With logitðPðYi Gij ¼ g
�� ÞÞ ¼ �o þ �1g, the score statistic for �1 is

Sj ¼
Pn

i¼1 ðYi � YÞEðGij DijÞ
�� and the corresponding score test statistic

Tj ¼
S2
j

varðSjÞ
is constructed. Calculation of the expected value of genotype

Gij given the sequence data Dij is given by

E Gij Dij

��� �
¼
P2

g¼0 gPðGij ¼ g DijÞ
�� , which requires estimation of the con-

ditional probability PðGij ¼ g Dj ijÞ ¼
PðDij Gij¼gÞPðGij¼gÞj

PðDijÞ
. This probability is

calculated from genotype likelihood probabilities PðDij Gj ij¼ gÞ and geno-

type frequencies. The conditional probabilities PðDij Gj ij¼ gÞ are provided

in the output of standard genotype calling packages (DePristo et al., 2011;

Li et al., 2009), such as the variant calling format (VCF) files. They can

also be calculated from the aligned reads by applying the simple Bayesian

genotyper (McKenna et al., 2010). Genotype frequencies PðGij ¼ gÞ are

calculated from the full sample by the EM algorithm (McKenna et al.,

2010; Skotte et al., 2012).

To calculate the test statistics, we also need to calculate the variance of

Sj and, therefore, the variance of EðGij Dij

�� Þ. The expected value of the

score statistic is 0 under the null hypothesis because the mean of

EðGij Dij

�� Þ is equal for cases and controls when trait Yi and genotype

Gij are independent. The law of total variance is defined as

VarðGijÞ ¼ VarðEðGij DijÞ
�� Þ þ EðVarðGij DijÞ

�� Þ. The conditional expected

value EðGij DijÞ
�� ¼

P2
g¼0 gPðGij ¼ g DijÞ

�� converges to the true value of

genotype Gij with high read depth (HRD) because PðGij ¼ g Dj ijÞ goes

to 1 for true Gij. Therefore, VarðEðGij Dij

�� ÞÞ is converging to the VarðGijÞ.

This can also be seen from EðVarðGij DijÞÞ
�� where, in HRD data, it con-

verges to 0 by the mathematical properties of consistency and conditional

expectation (see Supplementary Fig. S1). When read depth is not suffi-

ciently high, the second term EðVarðGij DijÞÞ
�� is 40 and the first term

VarðEðGij DijÞÞ
�� is smaller than VarðGijÞ. Therefore, VarðEðGij DijÞÞ

�� is

read depth-dependent and in low read depth data, variance of

EðGij DijÞ
�� is smaller than the variance of the true genotype.

If cases and controls do not have systematic differences in the read

depth at a given locus, the usual estimate of the variance for Sj, derived

from logistic regression, can be used. However, if there is a difference in

the variances of EðGij DijÞ
�� between two groups because of differences

in read depth, the variance estimate of Sj is biased. The bias depends

on the number of samples in the LRD and HRD groups and the

difference in variances between the two groups. For example, for

Ncontrol44Ncase, the variance of the score statistic is underestimated,

whereas if Ncase44Ncontrol, the variance of the score statistic is over-

estimated. As a consequence, variance estimation of the score statistics

must distinguish between the two groups.

We propose to estimate variance of the conditional expectation for

cases and controls separately, as we derive in Appendix A. Briefly, to

achieve the variance robustness when the number of cases is smaller than

the number of controls, we propose to estimate VarcaseðEðGij DijÞÞ
�� bybVarðGijÞ with estimated genotype frequencies PðGij ¼ gÞ, and we estimate

the variance of the conditional expectation for controls by the sample

variance of EðGij DijÞ
�� in the controls (see details in Appendix A).

Similarly, we use the score statistic Sj ¼
Pn

i¼1 ðYi � YÞEðGij DijÞ
�� to

construct the test statistics for jointly analyzing several rare variants

using standard published approaches (Basu and Pan, 2011; Lee et al.,

2012; Madsen and Browning, 2009; Morgenthaler and Thilly, 2007; Neale

et al., 2011; Wu et al., 2011), which are in general comparable (Derkach

et al., 2012). Similar to the single variant analysis, we can estimate the

variance of S ¼ ðS1, ::::,SJÞ, defined as the score statistic for J rare

variants. In this case, we combine the covariance matrices estimated sep-

arately for cases and controls by the same principle as in single variant

analysis.

For common variants, P-values can be computed using the asymptotic

distribution of the score test statistic, which is chi-square with 1 degree of

freedom. For rare variants, the asymptotic chi-square approximation to

the distribution of the score statistic Tj ¼
S2
j

varðSjÞ
is often inadequate, and a

permutation procedure is preferred (Basu and Pan, 2011; Derkach et al.,

2012). However, permutation cannot be used when the observed data

consist of an external control group because the distribution of

EðGij DijÞ
�� will then depend on read depth (Appendix A). Instead, we

could calculate P-values using the bootstrap, where we sample centered

values EðGij DijÞ
�� � EðGij DijÞ

�� with replacement, separately for cases and

controls. For joint rare variant analysis, instead of sampling EðGij DijÞ
�� for

a single variant, we sample with replacement a centered vector of values

(EðGi1 Di1Þ
�� � EðGi1 Di1Þ

�� , :::,EðGiJ DiJÞ
�� � EðGij DiJÞ

�� ) for the case and

control groups separately. P-value computation is based on 10 000 repli-

cates. This non-parametric approach is also used to test the equality

of two sample means without assuming equality of the distributions

(Hall and Hart, 1990).

2.2 Simulation methodology

We simulated sequence reads based on the simple Bayesian genotyper as

described in Appendix B. We assume all cases are sequenced at HRD and

all controls are sequenced at LRD. In cases, read depth is simulated using

a normal distribution with a mean of 100 and an SD of 10. In the control

group, read depth is normally distributed with a mean of 4 and an SD of

1 (minimum read depth is set to 1). For each individual’s locus, we gen-

erate a ‘true’ genotype, and then for that genotype, we generate sequence

reads. The distribution of the reads given the genotype is described in

Appendix B. Measurement error is present in the reads with the kth error

ek following a normal distribution with a mean of 0.01 and an SD of

0.025. Then, from the generated sequenced reads, the simple Bayesian

genotyper is used to call the genotype. The likelihood equations are also

constructed from these sequence reads, and then we implement the RVS

to evaluate Type I error and power.

For the simulations under the null model, we generate geno-

types for each individual’s locus based on the same MAF regardless

of case or control status. For the simulations under the alterna-

tive model, we calculate MAF at the specific locus for the case and

control groups separately. Specifically, we assume that

PðY1 ¼ 1 XijÞ ¼ expð�0þ
�� �1XijÞ=ð1þ expð�0 þ �1XijÞÞ, where, for ex-

ample, �0 ¼ logð0:1=ð1� 0:1ÞÞ and �1 ¼ logð1:5Þ, and these values cor-

respond to PðYi ¼ 1 Xij ¼ 0Þ
�� equal to 0.1 and the odds ratio (OR) for a

causal variant equal to 1.5.

2.2.1 Simulation parameters and association analysis Simulations

vary as a function of sample size, case control ratios and MAF. Specific

scenarios are provided in Table 1. To understand the effect of differential

read depth for fixedMAF using genotype calls, we simulate 1000 variants

to have the same MAF, and genotype calling is done with various selec-

tion thresholds (e.g. R¼ 0, 0.5 or 1, see Appendix B). Association analysis

using the genotype calls is conducted using the conventional score statistic

(Armitage, 1955).

Single variant association analysis of the simulated data is conducted

using (i) a score statistic with the true genotypes, (ii) the RVS method and

(iii) a genotype likelihood approach that does not implement the robust

variance estimate (Skotte et al., 2012). We calculate P-values from the

RVS using bootstrap. The corresponding P-values from analysis with

true genotypes and the genotype likelihood approach are calculated via

permutation. P-value computations are based on 10 000 replicates. We

assess the performance of the RVS as a function of sample size (Table 1).
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In joint rare variant analysis, we collapse five rare variants with MAF

ranging from 0.001 to 0.05 and performance is evaluated across 10000

replicates. We use the cohort allelic sums test (CAST) (Morgenthaler and

Thilly, 2007) as an example of a linear statistic and C-alpha (Neale et al.,

2011) as an example of a quadratic statistic. We compare results from an

analysis that uses the true genotypes with the RVS test that use the

genotype likelihood-derived score statistic with the robust variance, as

described in Section 2.1.

To assess power and Type I error, we use 1000 and 10 000 simulated

replicates, respectively. For simulations under the null model, we assess

the deviation of P-values from a uniform distribution in quantile–quantile

(QQ) plots. In the analysis with genotype calls, we also assess the effect on

Type I error when variants with low confidence/quality scores are filtered

based on a selection threshold (see detailed description of confidence

scores and selection thresholds in Appendix B). We evaluate power to

detect association under various scenarios using the RVS method and

compare our findings with the power we obtain using the true genotypes

as the gold standard (Table 1).

2.3 NGS study data

2.3.1 Data from the 1000 Genomes Project To make comparisons

between two independently sequenced samples with different enrichment

strategies under the null hypothesis, we consider data from the 1000

Genomes Project using samples of European descent (CEUþGBR).

Aligned reads from chromosome 11 are downloaded from the Phase 3

release [20130502]. One sample consists of exome data from 56 individ-

uals (average read depth �50), and the other sample includes 113 indi-

viduals who were sequenced at LRD (�6.5). A multisample VCF file was

generated using the Genome Analysis Toolkit (GATK, version 2.4-9)

(DePristo et al., 2011; McKenna et al., 2010) on the combined set of

the aligned reads to identify SNPs and Indels in the samples. We excluded

variants satisfying any of the following criteria: variants with phred scaled

probability 530 (Qual530), with phred-scale strand bias P-value by

Fisher’s exact test 460 (FS460) and low quality depth QD52.

Additional filtering parameters are presented in Supplementary Table

S8. From the VCF files, we extract the individual genotype calls and

their corresponding genotype likelihoods. To study the effect of filtering

on Type I error inflation, we also analyzed datasets removing genotype

calls with a quality score55 and 10 (GQ55, 10). The GQ value is the

phred quality score �10log10Pðgenetype call is wrong variantj Þ. Therefore,

GQ¼ 5 and GQ¼ 10 correspond to R¼ 0.5 and R¼ 1, as defined in

Appendix B. Here we restrict analysis to biallelic loci and variants that

have�20%missing calls, and compare association results using the geno-

type calls and the RVS constructed from the likelihoods supplied in the

VCF file. In Supplementary Table S8, we provide the number of variants

analyzed in each dataset.

2.3.2 NGS Sequencing in a Rolandic epilepsy-associated
region Rolandic epilepsy (RE) is a childhood-onset epilepsy, and its

electroencephalography (EEG) endophenotype is linked and associated

with a 600kb chromosomal region of 11p13 from 31243 672 to 31 893 146

using NCBI Human Reference Assembly build 37 (Strug et al., 2009). To

evaluate the reliability of using the RVS with an external control group in

an associated region, we compare 27 HRDRE cases with 113 LRD NGS

controls from the 1000 Genomes Project.

We obtained targeted resequencing data on 27 RE patients of

European descent, ascertained in the northeastern USA. The 600kb

region of chromosome 11p13 was enriched using long-range PCR. The

multiplex samples were then resequenced on the Illumina GAIIX

Table 1. Summary of simulation studies

Study design Data generated Genetic effect Analysis methods applied Purpose

Number of cases:

Number of controls

50:150 1000 replicates for each

MAF¼ 0.01, 0.1, 0.2, 0.3, 0.4 and

selection threshold R¼ 0, 0.5, 1

combination

Under the null

hypothesis

Score test with genotype

calls

Assess Type I error inflation

using genotype calls500:1500

500:500 10000 replicates for MAF¼ 0.01

and ranging from 0.1 to 0.5

Under the null

hypothesis

(1) Score test with true

genotypes, (2) RVS,

(3) genotype likelihood

without RVS

Comparing Type I error

between the three methods

in single variant analysis

500:1500

50:50 10000 (100000 for number of

case¼ 50) replicates of 5 rare vari-

ants with MAF ranging from 0.001

to 0.05

Under the null

hypothesis

(1) CAST and C-alpha with

true genotypes, (2) RVS

Comparing Type I error

between the two methods in

joint rare variant analysis

50:100

50:200

500:500

500:1500

500:500 1000 replicates for MAF¼ 0.01 and

0.1

Under the alternative

hypothesis; OR¼ 1.5.

(1) Score test with true

genotypes , (2) RVS

Comparing empirical power

of the two methods in single

variant analysis

500:1500

50:50 1000 replicates of five rare variants

with MAF ranging from 0.001 to

0.05

Under the alternative

hypothesis; OR¼ 1.5

(1) CAST and C-alpha with

true genotypes, (2) RVS

Comparing empirical power

of the two methods in joint

rare variant analysis

50:100

50:200

500:500

500:1500

Note: All cases are simulated to be sequenced at HRD and all controls at LRD.
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platform with an average read depth of 197� by deCODE Scientific

Services (Iceland). Thirty-six base-pair end reads were aligned to a

700kb region of 11p13 using the Novoalign algorithm within the

GATK analysis pipeline (DePristo et al., 2011; McKenna et al., 2010).

Here we compare the RE cases with the 113 controls of European descent

from the 1000 Genomes Project, Phase 3 release [20130502]. A multisam-

ple VCF file was produced using GATK’s Unified Genotyper module on

the combined set of aligned reads to identify variant sites in the samples.

Only biallelic variants are analyzed here. Additional filtering parameters

and the number of variants categorized by MAF threshold 0.05 are in

Supplementary Table S9. Given there are only 27 RE cases sequenced, we

focus on variants with MAF40.05. We then selected the 491 SNPs that

have �20% missing calls and have estimated MAF40.05. Likelihood

information from the VCF file was used to implement the RVS method

to compare the two groups.

For comparison, we assess the association evidence using genotype

calls from the 27 epilepsy cases and an independent sample of 200 colo-

rectal cancer cases from the UK, whole-genome sequenced by Complete

Genomics. Sequencing was performed at high coverage (70% of the

genome with an average 35�) using unchained combinatorial probe

anchor ligation chemistry on arrays of self-assembling SNA nanoballs

(Drmanac et al., 2010). In this case we did not have access to locus-

specific coverage information. We investigate the variant call set in a

sample spanning the 600kb region of interest at 11p13. In this dataset

we have 453 variant sites with �20% missing calls and estimated MAF

40.05 available for analysis.

3 RESULTS

3.1 Theoretical and empirical investigations of the effect

of read depth and selection threshold differences

To guide our theoretical investigations, without loss of generality,

we assign A and C to be major and minor alleles, respectively. For

simplicity assume that all reads are sequenced without errors

(ek ¼ 0 for k ¼ 1, :::, rij). Under this setting, if rij reads consist

of minor and major allele calls, then the genotype call is always

set to AC. We assume that the true genotype at the locus is CC

and all rij reads consist of the minor allele C. From Appendix B,

the likelihoods for the genotypes AA, AC and CC are

LðDij AAÞ
�� ¼ 0, LðDij ACÞ

�� ¼ ð1=2Þrij and LðDij CCÞ
�� ¼ 1, where

Dij consists of rij reads all equal to C. The posterior probabilities

are equal to PðAA DijÞ
�� ¼ 0, PðAC DijÞ

�� ¼ ð1=2Þrij � PðACÞ=PðDijÞ

and PðCC DijÞ
�� ¼ PðCCÞ=PðDijÞ. By ignoring PðDijÞ and assuming

Hardy-Weinberg equilibrium (HWE) with PðCÞ ¼ pj and

PðAÞ ¼ qj, we rewrite the posterior probabilities as

PðAA DijÞ ¼ 0
�� , PðAC DijÞ

�� ¼ ð1=2Þrij2pjqj and PðCC DijÞ ¼ p2j

��� .

The genotype call is chosen to be CC if

PðCC DijÞ ¼ p2j 4PðAC DijÞ ¼ 2pjqjð1=2Þ
rij

����� , and it is miscalled

as AC otherwise. This implies that for a variant with read depth

rij and a specific MAF pj5 1
1þ2rij�1

, the rare homozygous genotype

can be misclassified as a heterozygote. Naturally, this kind of

misclassification leads to underestimated MAFs, and the degree

of bias decreases with MAF as the number of rare homozygous

genotypes decreases. For a given read depth, Table 2 provides the

MAF threshold below which rare homozygous genotypes are

misclassified.
The degree of bias in the estimation of MAF is also related to

the selection threshold R, which screens out calls with low con-

fidence scores. With a selection threshold R¼ 0, estimation of

MAF is affected mainly by misclassified rare homozygous calls.

However, with R40, those misclassified calls are often filtered

out because of low confidence/quality scores. This suggests the

estimated MAF would be further underestimated because of

screening out some misclassified calls and some weak true

calls. Similarly, sequencing error, which is not modeled in this

theoretical investigation, would further affect estimation of

MAF because posterior probabilities for genotypes with rare al-

leles are affected. Our empirical investigations do incorporate

sequencing error (Section 3.2).
These theoretical findings have particular implications when

case and control samples differ systematically: (i) If cases and

controls are sequenced with the same read depth but two differ-

ent selection thresholds are applied, spurious results can occur

for some MAFs. (ii) If both cases and controls are sequenced

with different read depths but the same selection threshold,

R40, is applied, spurious results can also occur for some

MAFs. (With R¼ 0, for variants with MAF larger than the crit-

ical MAF provided in Table 2, the analysis is unlikely to produce

spurious results.) (iii) For a given read depth, at variants with

MAF below the threshold (Table 2), spurious association results

are more likely for all R because of bias in MAF estimation.
Our simulation study confirms our theoretical conclusions and

further investigates the relationship between read depth rij, selec-

tion threshold R and Type I error. As the theoretical derivations

Fig. 2. QQ plot for P-values from an association study with 50 HRD

cases and 150 LRD controls, as a function of MAF. P-values are calcu-

lated by the score statistic on 1000 variants using called genotypes. R is

the selection threshold

Table 2. Relationship between read depth and critical MAF threshold

Read depth 2 3 4 5 30 100

Minimum MAF 0.33 0.20 0.11 0.059 1.8�10�9 1.6�10�30

Note: For MAF below the listed value, rare homozygous genotypes are miscalled as

heterozygotes. Selection threshold R¼ 0.
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predicted, deviation in QQ plots or the extent of bias in the esti-

mation of a given variant’s MAF depends largely on the MAF

(Fig. 2). The main contributor to the deviation in the QQ plots is

that the rare homozygotes are in most cases screened out (R¼ 1

and 0.5) or miscalled (R¼ 0) in the LRD control sample. A de-

viation of P-values from the expected uniform distribution is less

apparent when MAF is large (e.g. Fig. 2; MAF¼ 0.4); this is

because of less misspecification/filtering for large MAF (as

seen in Table 2).
To confirm that a deviation in P-values from uniform exists in

the absence of filtering (R¼ 0), we considered analysis in larger

samples. Analysis of simulated replicates with 500 HRD cases

and 1500 LRD controls confirms our theoretical prediction

(Supplementary Fig. S2). Larger deviations from expected are

observed in larger sample sizes where the differences in estimated

MAF between cases and controls are amplified and the greatest

bias occurs when the MAF is �0.2.

3.2 Empirical investigation of RVS

We begin our empirical investigation of the properties of the

RVS approach by showing that it controls Type I error under

a variety of settings. As predicted, the P-values from the geno-

type likelihood approach (Skotte et al., 2012) are inflated when

the number of LRD controls is larger than the number of cases

(Fig. 3B and D). This inflation increases as the case control ratio

decreases. In contrast, P-values from the RVS using the boot-

strap are not affected because it uses the robust variance estimate

(Fig. 3, Supplementary Fig. S3 and Supplementary Table S1).

For example, for a test size of 0.01, the empirical Type 1 error for

RVS is 0.0094. The Type I error is slightly conservative for the

analysis of single rare variants using RVS, but this is as expected

and remains the case even when the true genotypes are analyzed

(Supplementary Fig. S3A and Supplementary Table S2). This

indicates that both permutation and bootstrap approaches are

conservative when there is sparsity in the data. A similar result is

observed when asymptotic distributions are used to compute

P-values (Supplementary Fig. S4). In contrast to single rare vari-

ant analysis, when five rare variants are grouped for analysis,

Type I errors resulting from the bootstrap and permutation

approaches are well controlled (Fig. 4 and Supplementary

Tables S3 and S4). Investigations with smaller sample sizes mag-

nify these observations (Supplementary Figs. S5 and S6 and

Supplementary Table S5).
For common variants, the RVS method is comparable in

power with the score test applied to the true genotypes

(Table 3). When a single rare variant is considered, both the

score test applied to the true genotypes and the RVS have

substantially less power than joint analysis (Supplementary

Table S6). When we jointly analyze five rare variants by CAST

Fig. 4. QQ plots for P-values from rare variant analysis using the CAST

linear statistic (plots A and B) and C-alpha quadratic statistic (plots C

and D). Five rare variants are grouped together with MAF ranging from

0.001 to 0.05. Analysis with true genotypes uses the score statistic. Plots

(A and C), 500 cases, 500 controls; Plots (B and D) 500 cases, 1500

controls. Sequencing error is set to 0.01

Fig. 3. QQ plots for P-values from RVS for 10000 variants with MAF

equal to 0.1 (A and B) and 0.01 (C and D). True genotype analysis uses

the score statistic; Likelihood uses genotype likelihoods without the

robust variance. Plots (A and C), 500 cases and 500 controls; Plots

(B and D) 500 cases and 1500 controls. Sequencing error is set to 0.01

Table 3. Empirical power of the RVS for single common variants

Type of analysis Sample size

(case:control)

Level of the test

0.05 10�2 10�3 10�4

RVS 500:500 0.81 0.62 0.32 0.13

True genotypes 0.83 0.62 0.34 0.15

RVS 500:1500 0.91 0.80 0.53 0.29

True genotypes 0.95 0.84 0.62 0.41

Note: All cases are simulated to be sequenced at HRD and all controls at LRD.

Results are based on 1000 replicates. The variant has MAF equal to 0.1 and OR

equal to 1.5. Empirical power for analysis with the true genotypes is provided for

comparison. Sequencing error is set to 0.01.
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and the quadratic test C-alpha, a noticeable improvement in

power is apparent (Table 4). Not surprisingly, results from

single and joint rare variant analysis indicate that analysis

using the RVS is not as powerful as the score statistic with the

true genotypes, when the number of controls is larger than the

number of cases. This is because genotype frequencies used in the

posterior are estimated from the observed case control data, and

the accuracy of these estimates is affected when read depth is

low. We also note that the RVS method, in most cases, has

similar power to an analysis with the true genotypes with test

sizes between 0.05 and 0.0001.
We also consider an empirical power comparison between

the RVS method with HRD cases and LRD controls, and con-

ventional logistic regression where both groups have the same

average LRD (4�). We consider this analysis to illustrate that

downsampling HRD cases to the same average read depth as

controls reduces power. Results in Table 5 (500 cases and

500/1500 controls at MAF¼ 0.1) and Supplementary Table S7

(500 cases and 500/1500 controls at MAF¼ 0.01) indicate that

using RVS in studies with HRD cases is a more powerful strategy

than using logistic regression in studies with LRD in both case
and control groups.

3.3 Application of the RVS method

3.3.1 1000 Genomes Project data We used two publicly avail-
able datasets from the 1000 Genomes Project: 56 HRD exome
sequencing and 113 LRD whole genome sequencing at 11p13 to

assess the Type I error inflation using RVS under the null
hypothesis. We compare results for single SNP analysis of
common variants (MAF40.05) and rare variant analysis using

groups of five rare variants (MAF50.05).
A comparison of P-values from common variants using the

RVS method with those from the score statistic using genotype

calls that are not filtered (R¼ 0) indicates that the RVS controls
Type I error well (Fig. 5). Results from these two analyses are
similar, although analysis with unfiltered genotype calls results in

several false-positive variants. These spuriously associated vari-
ants would have been filtered out had genotype quality filters
been applied. However, as we observed in our simulations and

our theoretical findings, filtering also results in increasing Type I
error inflation, as a function of more stringent quality thresholds.
Filtering can also significantly reduce the number of variants

for analysis, which would reduce power. For example, with
GQ¼ 10 (R¼ 1), we analyze only 1760 common SNPs (see
Supplementary Fig. S7). The RVS does not require any filtering

and analyzes the observed data as is.
It should be noted that the inflation in Type I error is only

marginal in Figure 5, consistent with our theoretical predictions.

There is a reasonably high average read depth for the 10 269
variants analyzed in the ‘LRD’ control group (7.5� versus
71� for the HRD control group; Supplementary Fig. S8 and

Supplementary Table S8). With a read depth of 8, the theoretical

Fig. 5. QQ plots for P-values obtained from the RVS and the score

statistic. Analysis based on 56 HRD cases and 113 LRD controls from

the 1000 Genomes Phase 3 release [20130502]. P-value based on 105 rep-

licates. We use 10 269 SNPs that have MAF40.05, missing rate smaller

than 20% and are present in both datasets

Table 4. Empirical power of the RVS for joint rare variant analysis using

a linear statistic (CAST) and quadratic statistic (C-alpha)

Method Type of analysis Sample size

(case:control)

Level of the test

0.05 10�2 10�3 10�4

CAST RVS 500:500 0.86 0.69 0.47 0.26

True genotypes 0.89 0.74 0.50 0.29

C-alpha RVS 500:500 0.71 0.49 0.26 0.12

True genotypes 0.74 0.53 0.28 0.12

CAST RVS 500:1500 0.96 0.89 0.72 0.51

True genotypes 0.97 0.92 0.79 0.61

C-alpha RVS 500:1500 0.89 0.76 0.55 0.35

True genotypes 0.92 0.80 0.61 0.40

Note: All cases are simulated to be sequenced at HRD and all controls at low read

depth. Results based on 1000 replicates. For each replicate, 5 variants with MAF

raging form 0.001 to 0.05 and OR equal to 1.5 are grouped and analyzed by linear

and quadratic statistics with RVS. Empirical power for analysis with true genotypes

is also provided. Sequencing error is set to 0.01.

Table 5. Empirical power comparison between RVS with HRD cases and

LRD controls, and logistic regression when both case and control groups

have equal average LRD (4�)

Type of analysis Sample size

(case:control)

Level of the test

0.05 10�2 10�3 10�4

Logistic regression 500:500 0.73 0.51 0.25 0.1

RVS 0.81 0.62 0.32 0.13

Logistic regression 500:1500 0.89 0.75 0.51 0.29

RVS 0.91 0.80 0.53 0.29

Note: Results are based on 1000 replicates. The variant has MAF¼ 0.1 and

OR¼ 1.5. Empirical power for association using RVS is provided for comparison.
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calculations indicate that it is unlikely to have a biased estimate

of MAF for variants with MAF 40.007. Individual variants

within these 10 269 that are sequenced with lower read depth

than 7� contribute to the slightly inflated Type I error, high-

lighting the important point that average read depth is not suf-

ficient to assume unbiased estimation of MAF at all loci when

using genotype calls for analysis.
Figure 6 compares the results for joint rare variant analysis

using the linear statistic (CAST) between (i) the RVS method and

(ii) the score statistic using genotype calls with filtering thresh-

olds as R¼ 0, R¼ 0.5 and R¼ 1. The RVS approach controls

the Type I error well, while P-values are inflated in all three

scenarios with genotype calls. The filtering reduces the overall
inflation in Type I error, at the expense, however, of significantly

reducing the number of rare variants that can be analyzed, from

14 850 for RVS and R¼ 0, to 11 285 and 2585 for R¼ 0.5, 1,

respectively, suggesting filtering can negatively impact power.

Results from analysis with quadratic statistics are similar

(Supplementary Fig. S9).

3.3.2 Association in targeted resequencing of individuals with
Rolandic epilepsy Last, we are interested in how the RVS per-

forms in a region of association with the RE EEG endopheno-
type. We identify variants from the aligned reads of our 27 RE

cases and 113 LRD whole genome-sequenced individuals from

the 1000 Genomes Project. In addition, we have access to geno-

type calls in 200 HRD controls sequenced by Complete

Genomics. A summary of the number of variants analyzed

with our cases and each control group indicates similar identifi-
cation of variants with MAF40.05 (Supplementary Table S9).

We compare the top-ranked variants by the RVS method using

the 1000 Genomes Project LRD control group, with the top

rankings based on an analysis that implements the conventional

score statistic using genotype calls with the 200 HRD controls
sequenced by Complete Genomics. Table 6 indicates that the

top-ranked variants are similar across the two analyses; that is,

using the RVS with LRD controls indicates similar prioritization

of variants for follow-up to an analysis with genotype calls from

two HRD sequenced samples in an associated region. The LRD

group is smaller than the HRD control group, which may
explain why the P-values from the RVS are slightly larger.

4 DISCUSSION

Publicly available genome-wide microarray datasets have been

widely used as controls in genome-wide association studies (The

Wellcome Trust Case Control Consortium, 2007). Here we pro-

vide a new method, the RVS, to test for association in studies

that use NGS from external control groups. Confounding factors
associated with NGS data processing, such as SNP and genotype

calling algorithms, read depth and selection parameters can all

contribute to spurious or masked findings. Here we focus on

statistical adjustment for the bias in MAF estimation (and con-

sequently Type I error) introduced by differential read depth

between cases and controls, and the selection threshold. In the
absence of a unified study design for sequencing cases and con-

trols, using theoretical and empirical investigations, we show that

the RVS is a useful tool to incorporate external control groups in

genetic association studies with NGS data, in an effort to priori-

tize sequence variants for follow-up.
The RVS can be used for single variant or joint rare variant

analysis, and does not require arbitrary selection of parameter

values for filtering but rather analyzes all observed data. The
Type I error associated with the RVS is well controlled by the

use of robust variance estimates, and the power is comparable to

analyses using genotypes called without error.
Our theoretical and simulation results indicate that systematic

differences between cases and controls lead to spurious results in

association analysis using genotype calls from NGS technology.

The degree of deviation in P-value distribution from expected

under the null hypothesis depends on MAF, difference in read

Fig. 6. QQ plots for joint rare variant analysis under the null model: with

the CAST statistic using the RVS, and a score test using genotype calls

with selection threshold R¼ 0, 0.5 and 1, respectively. Analysis based

on 56 HRD cases and 113 LRD controls from the 1000 Genomes

Project Phase 3 release [20130502]. P-value results are based on 105 rep-

licates. Analysis combines five rare variants (MAF50.05, missing rate

smaller than 20%)

Table 6. A comparison of the variants’ rankings from a score test using

genotype calls with 27 RE cases and HRD Complete Genomics controls

(n¼ 200), versus the rankings from RE cases and 1000 Genomes LRD

controls (n¼ 113)

Name P-value (rank)

based on HRD

cases and HRD

controls; genotype calls

P-value (rank) based

on HRD cases and

LRD controls; RVS

rs6484504 0.00008 (1) 0.0010 (3)

rs578666 0.00012 (2) 0.0001 (1)

rs674035 0.0007 (3) 0.0004 (2)

rs11031375 0.003 (4) 0.009 (7)

rs662702 0.012 (5) 0.0523 (191)

rs11031330 0.011 (7) 0.0018 (4)

rs603202 NA 0.0027 (5)
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depth and the applied selection threshold. Particularly, when
R¼ 0, genotype call-based association analyses can be applied
for some variants even when there is a significant difference in

read depth between cases and controls (Fig. 2 and Table 2).
Table 2 provides lower bounds on MAF at which point MAF
estimates from low read depth data remain close to the true

value. However, using these theoretical predictions to justify ana-
lysis at certain MAFs would perforce preclude analysis at the
remaining variants because the biased allele frequency estimation

for the remaining data would remain unaccounted for. A HRD
control group with ample coverage to allow a selection threshold
(i.e. R40) can be used to avoid this bias; however, this does not

ensure that there is ample read depth in cases and controls at
every locus.
To address systematic difference in read depth, the GATK

toolkit (http://www.broadinstitute.org/gatk/gatkdocs/org_broad
institute_sting_gatk_walkers_PrintReads.html) proposes to ran-
domly downsample BAM files for the higher read depth group.

This approach is a less powerful strategy in comparison to meth-
odology that incorporates all observed data as we show in
Section 3.2. Other methods that use logistic regression analysis

with read depth as a covariate, or by weighting each variant call
by quality score (Daye et al., 2012; Garner, 2011), as well as
methods that substitute genotype calls by their expected values

(Skotte et al., 2012) are only applicable if both groups are not
distinguishable by read depth and sequencing error.
We implement the RVS in a case–control study with 27 HRD

cases and 113 LRD controls. The top-ranked variants are in
agreement with an association study based on genotype calls
from the 27 HRD cases and 200 HRD controls. However, as

was the case in the present study, if one has access only to geno-
type calls, as opposed to the aligned BAM files or the raw data,
only variants with genotype calls present in both datasets can be

analyzed; this could potentially be restrictive. For example,
rs603202 in Table 6 was sequenced in the 1000 Genomes
Project controls and epilepsy cases, but calls at this SNP in

the Complete Genomics control group are absent. Without
additional information about locus-specific coverage in the
Complete Genomics control set, we are not able to determine

whether the missing variant is monomorphic in the sample or
there was simply no sequencing coverage. Coverage information
is integrated into the RVS analysis of the aligned reads.

Currently the RVS cannot accommodate covariate adjust-
ment, and this will be an area of future development. The RVS
is easily extendable to accommodate a design in which a subset of

controls is sequenced alongside the cases in addition to incorpor-
ating an external control group. This type of study design may
prove preferable to assess the comparability of the external con-

trol group; this more costly approach, however, requires a formal
evaluation. Ensuring the comparability of the case and control
groups on the basis of epidemiologic principles is paramount.

This assumption requires careful consideration before moving
forward with any statistical analysis.
Ideally, cases and controls would also be matched on sequen-

cing platform and enrichment strategy; however, our results
indicate that this is not necessary because the RVS adjusts for
differences in variability and missing rates because of platform/

enrichment differences. We suggest that when cases and con-
trols are sequenced using different technologies, conducting

association analysis with a second control group can provide

confidence that systematic bias due to platform/enrichment dif-

ferences is not driving the observed signals. Different alignment

algorithms are implicitly accounted for by the RVS because

the unit of analysis is the genotype probability rather than the

genotype calls in the association analysis.
Whole genome sequencing of large samples remains cost pro-

hibitive for many investigators. Using external control groups in

NGS association studies, to augment a smaller set of sequenced

controls or as the only control set for comparison, can reserve

precious resources for the sequencing of cases. Therefore, if NGS

service providers (or other public initiatives) make control sam-

ples available to customers (or the public), then the RVS makes it

feasible to use external control groups in association studies with

NGS data.
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