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ABSTRACT

Motivation: Gene regulatory network (GRN) inference reveals the in-

fluences genes have on one another in cellular regulatory systems. If

the experimental data are inadequate for reliable inference of the net-

work, informative priors have been shown to improve the accuracy of

inferences.

Results: This study explores the potential of undirected, confidence-

weighted networks, such as those in functional association databases,

as a prior source for GRN inference. Such networks often erroneously

indicate symmetric interaction between genes and may contain mostly

correlation-based interaction information. Despite these drawbacks,

our testing on synthetic datasets indicates that even noisy priors re-

flect some causal information that can improve GRN inference accur-

acy. Our analysis on yeast data indicates that using the functional

association databases FunCoup and STRING as priors can give a

small improvement in GRN inference accuracy with biological data.

Contact: matthew.studham@scilifelab.se

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Gene regulatory network (GRN) inference determines causal in-

fluences in gene networks and is useful for understanding regu-

lation, usually at the transcriptional level, which can
hypothetically lead to effective modification of regulatory net-

works. GRN inference has been studied extensively over the past

decade as described in the following reviews (Hecker et al., 2009;

Lecca and Priami, 2013; Penfold and Wild, 2011; Tegn�er and
Bj€orkegren, 2007). In GRNs the nodes are genes and the edges

are influences, annotated with a direction and signed strength.

These networks are normally constructed using transcriptomic

data from experiments in which all of the genes in the network of
interest have been perturbed, often with RNAi knockdowns.

Gene expression is profiled either in a time series or when the

system has reached a steady-state.
A plethora of inference methods have been developed and are

based on information theory (Altay and Emmert-Streib, 2010;

Faith et al., 2007; Margolin et al., 2006), Boolean networks
(Haider and Pal, 2012; Layek et al., 2011; Wang et al., 2012),

Bayesian networks (Djebbari and Quackenbush, 2008; Husmeier

andWerhli, 2007; Yu et al., 2004) and ordinary differential equa-
tions (ODEs; Gardner et al., 2003; Gustafsson and H €ornquist,

2010; Yip et al., 2010). A subset of the methods based on a ODE

description formulates the inference as a convex programming

problem (Julius et al., 2009; Kulkarni et al., 2012; Zavlanos et al.,

2011). The Dialogue on Reverse Engineering Assessment and

Methods (DREAM) (Marbach et al., 2012; Penfold and Wild,

2011; Prill et al., 2010; Stolovitzky et al., 2009) and other bench-

marking studies (Bansal et al., 2007; Geier et al., 2007; Hache

et al., 2009) have shown that although many methods perform

better than random, there is a lot of room for improvement.
It is difficult to determine the true GRN for a biological

system because even if major characteristics such as transcription

factor binding are known, subtle influences may not be well

understood. To avoid this problem, many benchmarking studies

use synthetic data where the true GRN is known and the accur-

acy of inference methods can be analysed. GeneNetWeaver

(GNW; Schaffter et al., 2011) generated synthetic networks

and datasets for three of the DREAM competitions and this

program uses nonlinear dynamical models of transcription and

translation. Another synthetic data generation program,

GeneSpider (Tj€arnberg et al., 2014, manuscript in preparation),

uses a linear dynamical model of transcription. These two pro-

grams were used in our study to generate synthetic data.
Prior knowledge may be incorporated into the inference

method in order to improve accuracy and can also increase effi-

ciency by reducing the search space. Researchers have begun to

explore these possibilities by using pathways (Bonneau et al.,

2006; Husmeier and Werhli, 2007), transcription factor binding

(Gevaert et al., 2007; Gustafsson and H €ornquist, 2010; Shih and

Parthasarathy, 2012), protein–protein interactions (Shih and

Parthasarathy, 2012), gene ontology (Pei and Shin, 2012), epi-

genetics (Chen et al., 2013) and literature (Djebbari and

Quackenbush, 2008; Julius et al., 2009; Layek et al., 2011).

These studies incorporate the prior in different ways, but for

inference methods which minimize a penalty function, the prior

knowledge is often quantified as the ‘unlikelihood’ of a link,

and this value is multiplied by the sparsity term in the penalty

function (Christley et al., 2009; Greenfield et al., 2013;

Gustafsson and H €ornquist, 2010). The prior value has also

been discretized to be positive, negative or zero and used as a

constraint in an optimization (Julius et al., 2009; Kulkarni et al.,

2012; Zavlanos et al., 2011). Although there have been several

studies, none of them has been good enough to become a wide-

spread standard.
A comprehensive, user-friendly prior can be constructed using
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values (between 0 and 1) indicating the possibility of an inter-

action between two genes. One good place to find such data is in

functional association databases, which aggregate heterogeneous

experimental data and output a confidence score describing the

probability of a functional linkage between two proteins.

FunCoup (Schmitt et al., 2014) and the Search Tool for the

Retrieval of Interacting Genes (STRING) (Szklarczyk et al.,

2011) are two examples of such databases which aggregate

data from literature, protein interactions, genomics, orthology,

coexpression and subcellular localization in order to calculate the

probability of a functional association. Although these data-

bases’ pairwise confidence scores were not created to be priors

for GRN inference, they may contain enough information to

improve GRN accuracy.
The pairwise confidence scores from functional association

databases can be used to create an undirected, confidence-

weighted likelihood matrix that can be easily incorporated as a

prior into a GRN inference method. Bonneau et al. (2006) used

first-generation functional association databases Prolinks

(Bowers et al., 2004) and Predictome (Mellor et al., 2002) as

part of a gene biclustering algorithm but not explicitly in the

network inference. To our knowledge no one has extensively

studied the potential of undirected, unsigned, confidence-

weighted networks as priors for GRN inference.
In this study we generated synthetic datasets of steady-state

expression data and functional association-like priors, assumed a

dynamical systems model, and used a convex optimization-based

inference method. We compared the accuracy of the GRN infer-

ences with and without the priors to determine if and when un-

directed, unsigned, confidence-weighted networks improve GRN

inference. We also explored a few different experimental (per-

turbation) designs to see if they had an impact on the prior’s

usefulness. Finally, we applied our method to a yeast dataset and

used FunCoup and STRING to generate priors to see if they can

improve network inference with biological data.

2 METHODS

2.1 Regulatory model

Our model is based on system identification concepts common in engin-

eering and similar to the models in Gardner et al. (2003), Julius et al.

(2009) and Zavlanos et al. (2011). When the regulatory network is near a

steady-state it can be approximated by the linear dynamical system:

_x=Ax+p

y=x+";
ð1Þ

where x 2 R
n are actual transcript differences between a perturbed and

an unperturbed initial state for n genes in an experiment, p 2 R
n are

exogenous perturbations of the n genes, A 2 R
n�n is the network model

in which each element aij 2 R; 8i; j describes the regulatory influence of

gene j on gene i, y 2 R
n are the measurements of the transcript differences

and " 2 R
n represents measurement noise in a single experiment. When

gene expression is measured at steady-state (Crampin et al., 2004) and

multiple perturbation experiments are combined we find that

Y=� A�1P+ "; ð2Þ

where Y 2 R
n�m is the steady-state gene expression matrix, P 2 R

n�m is

the perturbation matrix and " is the noise matrix for a system with n genes

and m experiments. We will avoid underdetermined problems and only

focus on situations where m � n. In such a network, RNA decay is con-

founded with self-regulation. Normally in a stable system aii50; 8i.

2.2 Inference method

Our network inference method is formulated as a convex optimization

problem (Boyd and Vandenberghe, 2004), similar to methods in (Julius

et al., 2009; Zavlanos et al., 2011). We used a numerical cutoff based on

the reduced precision of the optimization solver to identify zero and non-

zero values. The optimization problem is shown below.

minimizeA kAY+PkF+�
X

i

X
j
1� wij

� �
jaijj

Initially, without considering a prior, our goal is to fit the model and

ensure a level of sparsity which ignores effects caused by noise. This first

term deals with the model fit by minimizing the sum of the residuals

kAY+PkF: The second term encourages sparsity and agreement with

the prior: �
P

i

P
j 1� wij

� �
jaijj whereW 2 R

n�n; 0 � wij � 1 8i; j is an un-

directed, unsigned, confidence-weighted prior network and � 2 R+

(zeta) is the regularization parameter. This term is similar to the incorp-

oration of the prior in Christley et al. (2009) and Gustafsson and

H €ornquist (2010). Without a prior, the cross-optimization procedure

described in (Tj€arnberg et al., 2013) can be used to set the regularization

parameter, �. However, this procedure was not created for models in

which the prior is incorporated into the sparsity term. With no proven

method to set the parameter, all sparsity levels are considered, from a

diagonal-only network (only RNA decay) through a fully connected

network.

2.3 Synthetic data analysis

Five 20-gene true networks were initially generated using GNW

(Schaffter et al., 2011). In order to create realistic networks, we used a

subset of yeast interactions (provided by GNW), and there were at least

10 regulators in each network. These initial networks were unsigned, so

we randomly assigned a positive or negative sign to the non-zero links.

Then the link strengths were discretized to values {–1, 0, 1} and we made

sure that the self-interactions had a discretized strength of�1 to represent

RNA decay. In general the networks were sparse, with an average spars-

ity level of 83.45%, or �66 non-zero links.

There were three experimental designs: single-20, double-20 and

double-40. For the single-20, each gene was knocked-down once and

the number of experiments, m, is equal to the number of genes,

n (m=n=20). For the double-20, each experiment perturbed two

genes: all were knockdowns except in one experiment one gene is over-

expressed. The number of experiments equaled the number of genes

(m=n=20). For the double-40, each experiment knocked-down two

genes and the number of experiments was double the number of genes

(m=2n=40). All experiments were unique within each design and the

strength of each perturbation was set to 0.5, positive in overexpressions

and negative in knockdowns.

Given the true network and experimental design, we used GNW

(in a way independent of the network generation) and GeneSpider

(GSP; Tj€arnberg et al., 2014, manuscript in preparation) to gener-

ate gene expression data. Both network generators add random numbers

from a Gaussian distribution to simulate measurement errors. We

therefore perform a Monte Carlo simulation using five ‘replicates’ of

each dataset. Each generator created five expression matrices for

each true network and experimental design. We created a total of 150

datasets (2 generators� 5 replicates� 5 true networks� 3 experimental

designs).

We define single-to-noise ratio (SNR) as the smallest signal (measured

by the singular value) in the gene expression matrix divided by the largest

signal in the error (Nordling, 2013):

i131

Functional association networks as priors for GRN inference

&NoBreak;
&NoBreak;
,
&NoBreak;
&NoBreak;
&NoBreak;
&NoBreak;
&NoBreak;
&NoBreak;,
&NoBreak;
,
&NoBreak;
,
&NoBreak;
&NoBreak;
&NoBreak;&NoBreak; 
&NoBreak;
&NoBreak;
-
ene
et
eaver
-
-
about 
,
``
''
x
x
x
&NoBreak;


SNR=
�n Yð Þ

�1 "ð Þ
ð3Þ

This is a conservative SNR and it is motivated by the fact that network

inference is an inverse problem, where the smallest signal is very import-

ant because it affects the largest signal in the inverse. The SNR of GNW-

generated data (median 0.00717, range [6.01� 10�8, 0.137]) was signifi-

cantly lower than the SNR of the data generated by GSP (median 0.409,

range [0.052, 2.06]). An SNR51 indicates that the largest noise signal

obscures the smallest expression signal, as was the case for most of our

datasets. Therefore most of our datasets would be considered to have low

information content and could use the help of a prior.

Synthetic priors (undirected, confidence-weighted network matrices)

were generated to have confidence score distributions similar to those

found in FunCoup. The non-zero links were approximated with a mod-

ified exponential decay distribution with an average confidence score of

0.85 and the zero links were approximated with a gamma distribution

with an average confidence score of 0.4 (Thomas Schmitt, unpublished

data). These distributions were sampled to create the prior matrix. The

initial symmetric prior matrix C 2 R
n�n; 0 � cij � 18 i; j was adjusted to

create the final prior matrix W:

W 2 R
n�n;wij=

9

10
cij i 6¼ j

1 i=j

8<
:

9=
; ð4Þ

This adjustment is necessary to avoid full confidence values (ones) in

off-diagonal elements, thereby ensuring that the prior is soft evidence.

Ones were assigned to the diagonal to represent RNA decay. We tested

priors with different accuracy, i.e. different levels of agreement with the

true network. A non-zero link in the prior was deemed accurate if there

was also a non-zero link (of any direction and sign) at the same position

in the true network. A zero link in the prior was deemed accurate if there

were no non-zero links (of any direction and sign) at the same position in

the true network. We created priors which were 50, 60, 70, 80, 90 and

100% accurate, and the accuracy applied to both zero and non-zero links.

Since functional association priors do not cover self-interactions, we did

not count these (diagonal elements) in the accuracy. There was an element

of randomness in the prior generation, so we created five ‘replicate’ prior

matrices for each level of accuracy and true network, resulting in a total

of 150 synthetic functional association priors (6 accuracy levels� 5 true

networks� 5 replicates). A na€ıve prior W=I; containing only the RNA

decay links, was also created to act as a control in the analysis.

2.4 Yeast data analysis

We used a publicly available dataset (GEO:GSE4654) from Hu et al.

(2007) containing transcriptional profiles from 263 transcription factor

knockout strains in Saccharomyces cerevisiae. The yeast strains, derived

from BY4741, were sampled in the mid-log phase (Hu et al., 2007).

Although there were 263 genes, we only used 173 in our analysis because

some data points were missing and not all the genes were represented in

our gold standard network. Our final gene expression matrix contained

173 genes and 173 experiments.

The gold standard network was derived from the Yeastract database

(Teixeira et al., 2014). We obtained 187856 activation/inhibition inter-

actions, of which 2910 were relevant to our 173 genes in the knockout

experiments.

Functional association priors were constructed from FunCoup

(Schmitt et al., 2014) and STRING (Szklarczyk et al., 2011). On the

FunCoup website we searched for the network using the default settings

except: 0.1 confidence threshold (the lowest possible threshold),

S.cerevisiae species, and 0 expansion depth. The search was done using

FunCoup version 3.0 on January 14, 2014. On the STRING website we

used the multiple names search, protein interactors and a zero required

confidence score. This search was done using STRING version 9.1 on

January 15, 2014. Both priors were adjusted according to Equation (4) in

the previous section, and the final FunCoup and STRING priors had

2685 and 6555 links, respectively.

2.5 Inferences

We used the CVX package in MATLAB to implement the GRN infer-

ences. CVX iterates until the precision cutoff (10�4) is reached. In the

synthetic analysis, we inferred networks for each experimental design and

dataset and prior and sparsity level combination, which resulted in 1.7

million inferences (150 datasets� 5 priors� 6 accuracies� 381 sparsity

levels). We used a search procedure to modify the regularization param-

eter to obtain inferences for all sparsity levels. In the rare situation in

which a sparsity level was unreachable (by modifying the regularization

parameter) the inference accuracy was assumed to be the average of the

accuracies from the adjacent sparsity levels. Often the same sparsity level

was reached with different parameter values; in this case we used the

average inference accuracy in the results.

For the yeast network, which was much larger than the synthetic net-

works, time constraints did not allow us to use the same sparsity level

search procedure. Instead we used intervals for the regularization param-

eter, approximately evenly spaced in logarithmic space, which resulted in

22 378 inferred networks for each prior. These inferences covered more

than 25% of all possible sparsity levels: 8196 using the na€ıve prior, 7911

using the FunCoup prior and 7740 using the STRING prior. For sparsity

levels with no inferred network, the accuracy was assumed to be the

average of accuracies from adjacent sparsity levels.

The resulting inferred networks’ interaction strengths were discretized

(values {–1, 0, 1}) for evaluation.

2.6 Evaluation

For the synthetic analysis, the inference accuracy was calculated as the

proportion of links that were equal in the true discretized network and

inferred discretized network. The accuracy from the inferences using the

na€ıve prior were subtracted from the accuracy from the inferences using

the FunCoup-simulated prior in order to determine the improvement

achieved by using the functional association prior. We also performed

an alternative evaluation considering only true non-zero links.

For the yeast analysis we used a similar procedure except we only

considered true non-zero links when evaluating accuracy because the

Yeastract network contains validated links, but not necessarily validated

non-links.

2.7 Functional association prior accuracy estimation

The accuracy of the FunCoup and STRING priors used in the yeast data

analysis was estimated with respect to the Yeastract network. Since the

functional association priors do not have signed links, sign was ignored.

In order to make this prior accuracy analogous to the prior accuracy used

in the synthetic analysis, only half of the off-diagonal links were evalu-

ated. Although there are a total of 2910 off-diagonal links in the

Yeastract network, 154 of them are symmetrical, so we only

considered 2756 links. The values in the prior matrices needed to be

discretized to differentiate links from non-links. We did two prior accur-

acy estimations. In the first estimation, all non-zero values wij40; j4i are

considered links. In the second estimation all values at or above a thresh-

old wij � 0:5; j4i are considered links.

3 RESULTS

In the synthetic analysis we generated 5 ‘true’ networks and 150

expression datasets (covering 3 experimental designs) using non-
linear (GNW) and linear (GSP) generation methods. We used

these datasets along with 150 priors (covering 6 different
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accuracy levels), and completed over 1.7 million inferences to
determine if and when a functional association prior improves
GRN inference. Since we were unable to find a method to opti-

mally set our sparsity parameter, we evaluated the inference ac-
curacy over all sparsity levels (except self-interactions were
always non-zero). There were five networks used in the analysis,

and since their individual results were similar, we have only
shown the combined results. Also, there was never a perfect in-

ference; the best inference recovered 99% of the links, so there
was always room for improvement. A perfect prior never resulted
in a perfect inference because of noise and the fact that these

priors are symmetrical (i.e. that do not give interaction direction)
and our true networks were not symmetrical. In the results

below, improvement is defined as the inference accuracy percent-
age of the method using the simulated functional association
prior minus the inference accuracy percentage of the method

using the na€ıve prior.

3.1 Accurate priors improve performance

If a functional association prior is accurate enough (i.e. enough

non-zero links in the true network are represented by undirected
non-zero links in the prior) then inference is improved over
virtually all sparsity levels. Figure 1 shows the levels of prior

accuracy that resulted in improved GRN inference for datasets
generated by GNW and GSP. It should be noted that we used

two different dataset generators to ensure that we have a
diversity of synthetic data, not to explicitly compare the two
generators. As shown in Figure 1A, a 70% accurate prior

clearly improved inference for GNW-generated data and in
Figure 1D a 90% accurate prior clearly improved inference for

GSP-generated data.
A similar overall improvement profile is also seen when only

considering true non-zero links (Supplementary Fig. S1). In this

situation, the magnitude of improvement is more dramatic but
the accuracy level at which the prior achieves improvement is
almost exactly the same as when considering all links.

Figure 2 shows the improvement over all sparsity levels for
these two types of generated datasets using these prior accura-
cies. The most improvement is seen at moderate sparsity levels.

The GNW inference improvement profile is relatively uniform,
while the GSP inference improvement profile was clearly skewed

toward the sparse end, indicating that the prior was helpful in
determining which links to keep in a sparse network. For both
dataset generators, if the prior was not accurate enough then the

resulting inferred network is worse than when using a na€ıve
prior.

3.2 Better improvement when using data generated

using noisy, nonlinear model

A comparison of Figure 1 parts (A) and (B) shows that a func-
tional association prior improves inferences for GNW-generated
data (from a noisy, nonlinear model) much more than for GSP-

generated data (from a less noisy, linear model) if the actual
sparsity level is unknown; this is shown by the difference in
mean (dark blue) or median (light blue) boxes at the same

prior accuracy. If the sparsity level is known (green boxes)
then the GSP-generated results showed a larger improvement if

the prior accuracy is 90 or 100%.

A less accurate prior showed a greater tendency to

result in worse inference for GSP-generated data, as
seen for the 50% accurate prior. The GNW-generated

data were also noisier based on over 68 000 inference profiles

(i.e. dataset/prior combinations). There appears to be a

negative relationship between SNR and improvement

(Supplementary Fig. S2).

3.3 Experimental design did not significantly affect

improvement

There were three experimental designs: single-20, double-20 and

double-40. For single-20, each gene was knocked-down once and

the number of experiments, m, is equal to the number of genes,

n (m=n=20). For the double-20, each experiment perturbed two

genes: all were knockdowns except in one experiment where one

gene was overexpressed. The number of experiments equaled the

number of genes (m=n=20). For the double-40, each experi-

ment knocked-down two genes and the number of experiments

was double the number of genes (m=2n=40). All experiments

were unique within each design.
The results were similar for the three experimental designs

(Supplementary Fig. S3). However, the three different designs

did not have as much overlap for the GSP-generated data.

Here the double-20 showed the most improvement, followed

by the single-20, and finally the double-40. There was still over-

lap, and this difference can be explained by differences in SNR

which are discussed in the following section. The double-20 was

the noisiest, then the single-20, and the double-40 was the least

noisy.

3.4 Application to yeast network

We applied our method to a yeast dataset (Hu et al., 2007) with

173 genes and 173 experiments, using FunCoup and STRING as

priors, and the Yeastract database (Teixeira et al., 2014) as a gold

standard. Using only the na€ıve prior, the maximum inference

accuracy is only 49.52% of the gold standard links, so there is

plenty of room for improvement.

Figure 3 shows the improvement over all sparsity levels for the
two functional association priors when compared to the na€ıve

prior. In Figure 3A the FunCoup prior is helpful for a large

range from �19000 links and sparser, except for one small

spot �4000 links. For networks with more than 19 000 links

the FunCoup prior lowers the inference accuracy. In Figure

3A the maximum improvement is 1.10%, the minimum is

�0.61% and the average is 0.23%. These percentages equate

to roughly 32, �18 and 7 links, respectively. The STRING

prior is shown in Figure 3B. For networks with more than

19 000 links there is unlikely to be improvement, but inference

of sparser networks is improved using this prior. In Figure 3B the

maximum improvement is 1.31%, the minimum is �0.44% and

the average is 0.45%. These percentages equate to roughly 38,

�13 and 13 links, respectively.

3.5 Accuracy of FunCoup and STRING priors

In an attempt to quantify their accuracy, the FunCoup and

STRING priors were compared to the Yeastract network.

In order to make these prior accuracies analogous to our
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synthetic prior accuracies, we did not count both directions

of symmetrical links. Therefore our Yeastract network

contained 2756 links (2910 minus 154 symmetrical links).
When estimating the accuracy for the functional association

priors, we had to discretize the values to differentiate links from

non-links. When all non-zero values are considered links,

the FunCoup prior contained 1256 links, 594 of which were

in the Yeastract network, so it covered �22% of the validated

links. The STRING prior contained 3191 links, 1414 of

which were in the Yeastract network, so it covered 51% of the

validated links.
When a confidence score threshold of 0.5 is used, FunCoup

gives us 263 links, 130 of which are in common with the

Yeastract network, and STRING has 1155 links, of which 548

are in the Yeastract network. With this threshold, FunCoup and

STRING covered 5% and 20% of the validated links,

respectively.

4 DISCUSSION

Our results show that use of a functional association prior matrix

can improve GRN inference accuracy. The prior needs to be at

least 70% accurate in order to show a clear improvement over

most sparsity levels based on our testing of synthetic data.

However, our testing on a yeast dataset indicates that the prior

accuracy can be much lower and still result in a small

Fig. 1. Inference improvement and prior accuracy. As the prior gets more accurate, the GRN inference improvement increases. At each prior accuracy

level, 125 inferences are averaged and the accuracies over the sparsity levels are aggregated using the median (dark blue), mean (light blue), true sparsity

level (green) and maximum (magenta) inference improvement. The results from the GNW-generated data are shown in (A) and the GSP-generated data

in (B)
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improvement over most sparsity levels. It is important to note,

however, that we consider all possible links in the synthetic ana-

lysis and only gold standard links in the yeast analysis.
This 70% level of prior accuracy is at odds with several infer-

ence prior studies which assert that even an inaccurate prior can

aid in GRN inference. Greenfield et al. (2013) show that even if

their prior consists of more than 90% erroneous links they can

still accurately recover a GRN. Although their prior incorpor-

ation is similar to ours (they multiply unlikelihood times the

strength in the sparsity term) their inference method is different

and they limit the possible regulators to transcription factors.

In our model any gene can influence any other gene, regardless

of its known molecular function. Christley et al. (2009) were also

able to work with an inaccurate prior but they used an extra

parameter (set by cross-validation) to weight the prior informa-

tion so an inaccurate prior would simply be given less weight

than an accurate one.

These methods, as well as ours, can be seen as picking

the model, from the set of all models that cannot be rejected

based on the recorded data, that minimizes the objective function

Fig. 2. Prior improves inference over almost all sparsity levels. For all plots above, the inference accuracy improvement is shown over all sparsity levels.

The average improvement is shown as the black line and the gray line is one SD from the average. The vertical dotted gray line shows the average true

sparsity level of the five synthetic networks. (A) GNW-generated data, single-perturbation design with 70% prior accuracy, (B) GNW-generated data,

single-perturbation design with 90% prior accuracy, (C) GeneSpider-generated data, single-perturbation design with 70% prior accuracy and

(D) GeneSpider-generated data, single-perturbation design with 90% prior accuracy. Parts (A), (B) and (D) show that the average improvement can

be positive over almost all sparsity levels
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based on the prior. The ability to test the hypothesis made by

the prior depends on the informativeness of the recorded data. If

the data were very informative then the prior would not

be helpful nor needed and in that case the prior has no influence.
The fact that the prior improved inferences based on the

GNW-generated data much more than the corresponding in-

ferences based on GeneSpider-generated data might be ex-

plained by the differences in the two generators. We used

GeneSpider and a linear model to generate datasets, while

GNW has nonlinearities built in to its dataset generation.

Our inference method is based on a linear dynamical system,

so it follows that it is easier for it to recover a network from

data created with a linear model. Thus the inference with the

na€ıve prior works better on the GSP-generated data compared

to the GNW-generated data, and we just do not need the

functional association prior as much in that case. Another

explanation for the discrepancy between the inference of

GNW- and GSP-generated data could be due to the differ-

ences in SNR. GNW data had a lower signal than GSP data

(Supplementary Fig. S2), and it is logical that the na€ıve prior

would do worse (and thus increase the improvement) when

there is a low SNR. The SNR of some datasets generated

Fig. 3. FunCoup (A) and STRING (B) priors improve yeast network inference for most sparsity levels. The plots show inference accuracy improvement

over almost all sparsity levels for the yeast network with 173 genes using the FunCoup and STRING priors. The most fully connected network had

29 906 non-zeros and the sparsest network had 173 non-zeros (all self-interactions). Only the 2910 off-diagonal links in the Yeastract network were

considered. Only about a quarter of the sparsity levels were actually inferred; the accuracies for the other sparsity levels were estimated based on those

inferences. The vertical line shows the Yeastract network sparsity
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by GNW is so low that it is questionable that they are in-

formative for network inference (Tj€arnberg et al., 2013).

The yeast data consists of expression changes caused by

knockout of each of the 173 genes. A successful gene knockout

alters the topology of the regulatory network because the corres-

ponding node and all of its links are removed. Strictly speaking,

this implies that we are trying to infer the wild-type steady-state

network based on data recorded from 173 different knockout

steady-state networks, which should be questioned. A topology

change can be seen as a nonlinear transformation, so it is in

general also questionable if a linear model can be used.

However, in this case the number of data points equals the

number of parameters in the network model so the data can

always be explained using a linear model, which motivates why

we, following the parsimony principle, use one. In principle,

every indirect path through genes that are not included in the

model should show up in the inferred model (Nordling, 2013).

Nonetheless, we only included direct links among the 173 genes

that were in the Yeastract gold standard network.
We therefore verified that a linear model with the topology

given by this gold standard can explain the input–output rela-

tionship. Actually, such a model can explain 99.5% of the vari-

ation in the recorded data. One should bear in mind that the

dominating 20 components explain more than 75% of the total

variation and that the gene expression matrix is ill-conditioned

(condition number above 2000), so the dataset is not sufficiently

informative for complete network inference (Nordling, 2013).

On the other hand, if it was informative enough then the

prior would not be needed and it would not be an interesting

test case. The lack of information is likely to in part explain

why the prior, despite being inaccurate, leads to a small

improvement.
Functional association priors from FunCoup (Alexeyenko

et al., 2011) or STRING (Szklarczyk et al., 2011) might be

useful in GRN inference if these priors capture enough causal

information. These functional association databases do a good

job of aggregating heterogeneous experimental data, which

makes them convenient, but many of the associations (e.g. coex-

pression) are the result of correlation and not necessarily caus-

ation. Since we estimate the prior accuracies of FunCoup and

STRING to be well below the 70% threshold for our yeast ana-

lysis, it seems unlikely that these priors reflect enough causal

information for clear improvement over most sparsity levels.

However, our yeast analysis also shows, for certain sparsity

ranges, that using FunCoup and/or STRING can result in

small inference improvement.
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