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ABSTRACT

Motivation: Identifying cells in an image (cell segmentation) is essen-

tial for quantitative single-cell biology via optical microscopy. Although

a plethora of segmentation methods exists, accurate segmentation is

challenging and usually requires problem-specific tailoring of algo-

rithms. In addition, most current segmentation algorithms rely on a

few basic approaches that use the gradient field of the image to

detect cell boundaries. However, many microscopy protocols can

generate images with characteristic intensity profiles at the cell mem-

brane. This has not yet been algorithmically exploited to establish

more general segmentation methods.

Results: We present an automatic cell segmentation method that

decodes the information across the cell membrane and guarantees

optimal detection of the cell boundaries on a per-cell basis. Graph

cuts account for the information of the cell boundaries through direc-

tional cross-correlations, and they automatically incorporate spatial

constraints. The method accurately segments images of various cell

types grown in dense cultures that are acquired with different micros-

copy techniques. In quantitative benchmarks and comparisons with

established methods on synthetic and real images, we demonstrate

significantly improved segmentation performance despite cell-shape

irregularity, cell-to-cell variability and image noise. As a proof of

concept, we monitor the internalization of green fluorescent protein-

tagged plasma membrane transporters in single yeast cells.

Availability and implementation: Matlab code and examples are

available at http://www.csb.ethz.ch/tools/cellSegmPackage.zip.

Contact: sotiris.dimopoulos@gmail.com or joerg.stelling@bsse.
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Supplementary information: Supplementary data are available at
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1 INTRODUCTION

Nowadays, optical microscopy is widely used to quantify single-

cell features, such as cell size or intracellular densities of fluores-

cent markers. Accurate quantification of such features critically

depends on the spatial detection of the cells in the image, that is,

on cell segmentation (Li et al., 2013). Although there is a rapid

development of imaging hardware and image analysis software

platforms (Eliceiri et al., 2012), the development of cell segmen-

tation algorithms is lagging behind. For good segmentation re-

sults, current approaches are typically applicable to narrowly
defined image acquisition protocols (Gordon et al., 2007) or

cell types (W€ahlby et al., 2012). As summarized succintly by E.
von Meijering: ‘Rather than converging to a robust, unified

solution, it thus seems that the field is diverging, and by now

almost as many cell segmentation methods have been developed
as there exist cell analysis problems . . .’ (Meijering, 2012).
Cell segmentation is challenging (Peng, 2008) for many rea-

sons. First, segmenting cellular images requires the identification

of multiple objects in the image. The objects have heterogeneous
shapes that are typically subject to dynamic changes; mathemat-

ical shape models are therefore nearly impossible to define.
Second, cell compartmentalization as well as intra- and inter-

cell variability induces non-homogeneous marker distributions

within and across cells, leading to undesirable image features
such as intensity gradients. Third, growing cell populations usu-

ally result in dense cell regions; this makes it hard to assign image
features to the correct cell, especially among sets of spatially close

cells. Finally, different experimental configurations such as cell

types or imaging protocols generate images with greatly varying
morphological or intensity characteristics.

Most current methods use a few basic algorithms for cell
segmentation: intensity thresholding, filtering, morphological op-

erations, region accumulation or deformable models (Meijering,
2012). In particular, region accumulation approaches such as

Voronoi-based methods (Jones et al., 2005) or the watershed

transform (Meyer, 1994) can result in inaccurate cell boundaries
by misspecifications of the cell region to be divided or by

oversegmentation (Fig. 1A and B). Similarly, popular deform-
able model approaches such as geodesic active contours (Caselles

et al., 1997), which detect cell boundaries by minimizing a pre-

defined energy functional, can result in poor boundary detection
because they use local optimization algorithms that only guar-

antee to find a local minimum or use the gradient vector field of
the image to decode the boundary information (Fig. 1C).

However, optical microscopy can generate distinctive intensity

information across the cell membrane, which, so far, has been
algorithmically used to only a small extent. For example, cell

segmentation via ring filters (Eom et al., 2010) accounts crudely
for the intensity profile across the cell membrane and imposes

strict cell-shape requirements. Furthermore, certain combinator-

ial optimization algorithms can guarantee to find the global op-
timum of a defined energy functional, such as the combinatorial

graph-cut algorithms. To segment microscopy images, previous
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applications of graph cuts in conjunction with the gradient vector

field of the image (Xu et al., 2007; Lesk�o et al., 2010) were limited

to identify the image background (Al-Kofahi et al., 2010) or to

separate cell nuclei (Dan�ek et al., 2009). Graph cuts with auto-

matic spatial constraints applied to the cellular segmentation of

RNA interference (RNAi) screening images need an additional

image (Chen et al., 2008). Other graph-cut-based object detection

approaches that do not use the gradient vector field of the image

typically only work well when the intensity distributions of the

cellular regions and the background are rather dissimilar (Zeng

et al., 2006).
Here, we present a method for cell segmentation that uses a

single image, allows for image acquisition with different experi-

mental techniques and copes with various cell shapes and densely

populated areas. The method is based on the detection of

membrane patterns, and we therefore term it membrane pat-

tern-based cell segmentation (MPCS). The membrane pattern

information is cast into a spatially constrained graph-cut frame-

work, which allows us to address the typical challenges in the

segmentation of microscopy images discussed above. We dem-

onstrate the applicability and performance of MPCS for diverse

synthetic and real biological examples, with significantly

improved performance compared with established segmentation

methods. Because accurate boundary detection is especially

important in quantitative signaling studies, we quantify the

internalization of plasma membrane transporters in yeast as a

proof of concept.

2 METHODS

Detection of cell boundaries

Overview. MPCS works with microscopy images of cells with a mem-

brane pattern, that is, a characteristic intensity profile across their mem-

brane. Based on the input image, we first specify few biologically intuitive

parameters. Then, we detect potential points inside the cells (called seeds).

Each seed is processed individually, and an optimal connected boundary

for each cell is detected by combining directional cross-correlation oper-

ations with graph cuts. Cross-correlation is a signal processing technique

that measures similarities between two signals and is used here to decode

the membrane pattern information. This pattern information is cast to a

graph, and together with automatically defined spatial constraints, we use

graph cuts to optimally separate each cell from the background. All in-

dividual segmentation results are processed to obtain the final segmenta-

tion of the image.

Input. The biologically intuitive parameters of MPCS can be set inter-

actively through the graphical user interface of CellX (Mayer et al., 2013),

set manually, or automatically derived via supervised machine learning

approaches from a small training set of segmented cells. For the example

image of budding yeast cells with aberrant morphology (Fig. 2A), we first

estimate the maximal radii of circles in the smallest and largest cells in the

image (rmin, rmax values; blue). Then, we determine the length of the major

axis of the largest cell (lm value; green line). We estimate the cells’ mem-

brane pattern (vector of intensity values M, shown in the red plot) by

averaging the intensities of a set of example membrane profile rays

(drawn from the inside of the cell to the outside, as shown by the

red arrows). We also define the position of the cell’s boundary on the

membrane pattern (index mo : MðmoÞ 2M; shown with the white filled

circle).

Seeding. In this step, we identify potential points inside the cells (seeds).

In most cases, a combination of traditional image processing operations

can easily provide us with seeds (see Supplementary Note; Supplementary

Fig. S1). Here, we exemplify the process by use of a gradient-based

Hough algorithm (Ballard, 1981) on the input image composed of a set

of pixels L=W�H, W=f1; . . . ;wg, H=f1; . . . ; hg, where w and h are

the image’s width and height (measured in number of pixels), respectively.

We compute the gradient vector field of the image (blue arrows in

Fig. 2B) and perform a counting operation for image pixels along each

gradient vector. Every time a pixel lies in the direction of a gradient vector

(at a distance between rmin and rmax), we collect a value proportional to

the gradient’s magnitude. The counts for all image pixels are stored in the

so-called accumulation array (color-coded region in Fig. 2B). Typically,

lines in the direction of the gradients originating from convex features

of the input image intersect the same pixels, thereby generating local

maxima in the accumulation array. We detect the image regions with

local maxima and use their centers as seeds (green crosses in Fig. 2B;

see Supplementary Note and Supplementary Fig. S2). For every seed

located at pixel s=ðxs; ysÞ, where xs 2W and ys 2 H, we also compute

the radial distance rc 2 ½rmin; rmax� that maximizes the gradient informa-

tion along the perimeter of the circle with center s and radius rc.

Construction of cross-correlation images. Next, we process each seed in-

dividually and center it in a square window of the image [image crop I

with width 2lm+1; new seed location at s=ðlm; lmÞ]. We first use

Fig. 1. Limitations of existing segmentation approaches. Initial cell

images (top), identified boundaries (middle; red) and final segmentations

(bottom). (A) Fluorescence image of S.cerevisiae cells. Boundaries were

automatically detected by automatic Otsu’s thresholding (Otsu, 1975)

followed by a Voronoi-based algorithm (Jones et al., 2005). Regions

inside the blue rectangles were used as seeds. (B) Phase-contrast of

S.pombe cells. Boundaries were automatically detected by the watershed

algorithm (Meyer, 1994), applied to a smoothed gradient vector field of

the initial image. Regions inside the blue rectangles were used as minima

during the flooding operation. (C) Bright-field image of alf1" S.cerevisiae

cells. Boundaries were automatically detected by active contour-based

segmentation [active contour evolution with level sets (Whitaker, 1998);

geodesic active contour as the energy model (Caselles et al., 1997)]. Blue

rectangles represent the initial state of the active contour
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Bresenham’s algorithm (Bresenham, 1965) to find which image pixels lie

in every line segment that starts at the seed and ends in each of the border

pixels of I. We then compute the intensity profiles along these directed

line segments (rays) and use cross-correlation (Orfanidis, 1996) to quan-

tify their similarity with the reference membrane pattern, M. Cross-cor-

relation values are high in regions consistent with the membrane pattern

and low in regions that do not follow the pattern. The cross-correlation

values along all rays allow us to construct a cross-correlation image

(Fig. 2C; see Supplementary Note) that is used for the formulation of

the cell boundary-tracing problem on a graph. We further refer to CC(p)

as the cross-correlation result assigned to pixel p=ðxp; ypÞ in the pixel set

P=X�X, X=f1; . . . ; 2lm+1g of I.

Graph cuts and energy minimization. For every image crop I, we use graph

cuts to separate the image region comprising the cell from the region

outside the cell (background and neighboring cells). This amounts to

assigning a binary (cell or background) label Ap to each pixel p 2 P.

We combine these assignments in a vector A of dimension 1� jPj

(where jPj � 104 for microscopy images of cells with lm=50 pixels).

We first define a directed weighted graph G=ðV;E;wÞ with vertex set

V=P. We define the neighborhood of radius r of a pixel p 2 P by the

function Nðp; rÞ=fq 2 Pj jjp� qjj2 � rg to specify the edge set as

E=[p2P [
p6¼q

q2Nðp;
ffiffi
2
p
Þ
ðp; qÞ. This connects each pixel to its vertical, horizon-

tal and diagonal neighbors in I. The edges carry a weight according to the

edge weight function w : E! R, which leads to the definition of an

energy function

ENðAÞ=
X

ðp;qÞ2E

wððp; qÞÞ � idðAp 6¼ AqÞ ;

where wðp; qÞ measures the cost of assigning two neighboring pixels to

different partitions (boundary information), and the function idð�Þ is 1 if

the condition inside the parenthesis is true, and 0 otherwise. We find the

optimal vector A that minimizes EN(A) by finding the min-cut on the

previously defined image graph. The min-cut/max-flow algorithm

(Boykov and Kolmogorov, 2004) yields the optimal solution in polyno-

mial time. According to (Boykov and Kolmogorov, 2003), if we define

the weights of the edges as

wððp; qÞÞ=
�2 � j�pqj

2 � "� � detðDðpÞÞ

2 � ½�Tpq �DðpÞ � �pq�
3=2

;

then the min-cut corresponds to the globally optimal geodesic for the

processed cell. � denotes the side length of the square pixels (equals to

1 in our case); �pq, the vector connecting the graph vertices p and q; "�,

the angular orientation difference of the grid’s characteristic vectors

(equals to �=4 for our 8-neighborhood system); detð�Þ, the determinant

operation; and D(p) is the metric tensor in pixel p defined as

DðpÞ=gðpÞ � I+ð1� gðpÞÞ � uðpÞ � uðpÞT;

where I is the identity matrix, u(p) is a unit vector in the direction of image

gradient at pixel p and g(p) is the scalar function that maps the magnitude

of the boundary information on the weights of the graph. As in (Boykov

and Kolmogorov, 2003), we use the exponential function and include the

cross-correlation values as gðpÞ=expð�10CCðpÞÞ.

Spatial constraints. To avoid trivial solutions and constrain the number of

meaningful cell boundaries, we pose automatic spatial constraints to

our graph cut definition by transforming the problem to a multisource/

multisink max-flow problem (Fig. 2D). Specifically, we define a circular

region around the seed s of radius rc=2, C=Nðs; rc=2Þ � P, that has to be

part of the cell (orange region) as well as the pixel set in the cropped

image border B=fp 2 P jjNðp;
ffiffiffi
2
p
Þj58g � P (green region) as back-

ground. By using infinite edge weights to connect the pixels in C and B

to dedicated source and sink vertices, respectively, we constrain graph

cuts to the region between C and B (e.g. white contour). The assignment

of A with minimal energy EN(A) given by the min-cut results in an op-

timal binary segmentation of the cropped image (blue and red regions).

Final segmentation. The single-seed segmentation results are further pro-

cessed to obtain the final segmentation of the image. First, we eliminate

single-seed segmentations that represent statistical outliers with respect to

their morphology and cross-correlation values across the predicted mem-

brane pixels. Then, we merge those seeds that claim almost identical re-

gions in the image. Finally, we resolve small overlaps of cell

segmentations by assigning the pixels to the closest competing cell.

These steps (for more details, see Supplementary Note) ensure that finally

every image pixel is uniquely assigned to either the background or to one

of the cells. The segmentation result for the input image can be seen in

A

C

E F

D

B

Fig. 2. Fundamental steps of MPCS and segmentation results. (A) Initial

bright-field image (left) and parameters (right). (B) Gradient-based

Hough algorithm. Based on the gradient vector field of the image (blue

arrows; see inset), we acquire an accumulation array (color coded), and

its maxima (red) serve as seed locations (green crosses). (C) Cross-corre-

lation images for the six seeds shown in the initial image (panel A; white

numbers). The magnitude of the cross-correlation values is color coded.

(D) Spatial graph-cut constraints. The orange and green regions are

assigned a priori to the cell and to the background, respectively. The

white contour represents a feasible cut. The final optimally segmented

regions are shown in red (cell) and blue (background) of MPCS.

Segmentation results. (E) For the initial image. (F) For the rest of the

images shown in Figure 1
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Figure 2E (and for the other examples of Fig. 1 in Fig. 2F). Additional

full image segmentations are shown in Supplementary Figures S3–S10.

3 RESULTS

ALGORITHMIC FEATURES

Diverse types of microscopy images. To evaluate the applicability

of our method to different image acquisition techniques, we con-

sidered different transmission light and fluorescence microscopy

methods. Saccharomyces cerevisiae and Saccharomyces pombe

cells were imaged using out-of-focus bright-field and phase-

contrast imaging, respectively, whereas fluorescence microscopy

of endogenously tagged Mup1-GFP (green fluorescent protein)

S.cerevisiae cells was used to generate a nearly uniform intensity

pattern around the cell (Fig. 3A left). An important feature of

MPCS is that, despite differences in the characteristic membrane

patterns of the imaging methods, similar correlation images are

generated (Fig. 3A middle). As a result, the cell boundaries can

be accurately inferred (Fig. 3A right) for such image acquisition

techniques.

Flexible boundary definition. Many segmentation algorithms as-

sociate the high intensity gradient information of the image with

the cells’ boundaries. This is reasonable, for instance, when the

background intensity distribution is different from the cells’ in-

tensity distribution. However, depending on the image acquisi-

tion protocol, high intensity gradients could be present inside

a cell (e.g. out-of-focus bright-field image in Fig. 1C).

Furthermore, the intensity distribution of the background may

be different in regions around the cells (locally) than in the rest of

the image (e.g. local fluorescence effects in Fig. 1A). In such

cases, it is difficult to accurately detect the cells’ boundaries

based on the gradient information or on the identification of

the image background. MPCS circumvents these problems by

assigning the highest cross-correlation values to the pixels of

the cell membrane corresponding to the position mo (white dot

in Fig. 3B) of the membrane pattern M (red line). Thereby, we

can conveniently define the cell boundaries independent of

the local gradient information across the membrane profile

(Fig. 3B).

Dense cultures. Our method leads to a successful segmentation in

crowded image regions, as illustrated for dense S.pombe culture

images acquired in bright field (Fig. 3C left) because of the dir-

ectionality in the cross-correlation step. As every intensity ray

traverses from a seed to the border, we analyze an intensity seg-

ment that includes the cell’s membrane pattern followed by the

adjacent cell’s mirrored version of the pattern. Along this seg-

ment, the cross-correlation is high at the cell’s membrane region

(red area in Fig. 3C; middle) and low immediately afterwards

(blue area in Fig. 3C); the same effect appears for all basic forms

of membrane patterns (Supplementary Fig. S11). This suppres-

sion of the neighboring cell’s information restricts the graph cut

to optimally isolate the currently processed cell from the rest of

the image; graph cuts in low-valued cross-correlation regions

have an increased cost. As a result, MPCS successfully segments

crowded cell regions (Fig. 3C right; see Supplementary Fig. S6

for the full image segmentation).

Non-convex shapes and cell types. Cells may have non-convex and

diverse shapes, which makes segmentation difficult. MPCS deals
with non-convex shapes in two different ways. First, if the seed is

placed inside the non-convex object such that all rays cross the

membrane region in the correct direction (seed ‘S1’ in Fig. 3D),
the cross-correlation image captures the membrane information

accurately, leading to accurate segmentation (Fig. 3E). However,

Fig. 3. Exploitation of membrane patterns, dense cultures, non-convex

shapes and cell types. (A) Left: membrane patterns generated with bright

field (top), bright field (middle) and fluorescence microscopy (bottom).

The inset shows the cell’s membrane pattern across the red line segment;

automatically detected seeds are denoted with ‘S1’ and ‘S2’. Middle:

cross-correlation images for the detected seeds. Right: segmentation

results. (B) Detected cell boundary depending on the relative position

of the outer membrane (white dot) on the membrane pattern (red line).

(C) Crowded region of S.pombe culture recorded in bright field. Seeds of

two neighboring cells (left: red and orange frames; seeds denoted by ‘S’)

generate different cross-correlation landscapes (middle). The final bound-

ary detection is shown on the right image. (D) Synthetic image of a non-

convex shape with seeds. (E–F) Cross-correlation image (left) and graph-

cut result (right) for (E), seed ‘S1’, and (F), seed ‘S2’. (G) Identification of

low cross-correlation region (black line) after analysis of ‘S2’. Extra seed

placement (‘eS2’; black dot). (H) Updated cross-correlation image for

seed ‘S2’ and graph-cut result. (I) Final segmentation result. (J–K)

Initial bright-field image (left) and final segmentation result (right) for

(J), Escherichia coli cells, and (K), mouse embryonic stem cells (mESCs).

Blue boxes indicate incorrectly identified parts of a cell’s boundary
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if the seed is not placed in such a region (seed ‘S2’ in Fig. 3D), the

rays may cross a part of the membrane region in the wrong

direction, leading to partially inaccurate boundary detection

(Fig. 3F). Therefore, we place extra seeds at low-valued pixels

of each initial membrane result (Fig. 3G), and we update the

cross-correlation image (Fig. 3H) to also segment non-convex

shapes (Fig. 3I). As a result, our segmentation method provides

a tool for the analysis of images of different cell types (Fig. 3J

and K; see Supplementary Figs S8–S10 for full image segmenta-

tions). Note, however, that MPCS may fail to capture highly

irregular parts of the cell boundary (Fig. 3K), as the use of the

geodesic model leads typically to smooth segmentations.

SEGMENTATION PERFORMANCE ON SYNTHETIC
IMAGES

We next aimed at a quantitative characterization of the segmen-

tation algorithm’s performance. For this purpose, we generated

realistic synthetic microscopy images that represent different

cell phenotypes as well as fluorescence, bright-field and phase-

contrast imaging (Fig. 4; see Supplementary Note for details).

We defined two measures for the cell detection quality (sensitiv-

ity, that is, the proportion of true-positive findings, and positive

predictive value, the proportion of detected cells that are true),

one measure for the spatial accuracy of the segmentation (pixel

accuracy of the cell area) and one measure to quantify the error

in the detected cell contour (see Supplementary Note for details).
Cell-shape irregularity. To evaluate the influence of cell shapes

on the segmentation performance, we generated synthetic

microscopy images with increasing cell-shape irregularities

(Fig. 4A). The shape irregularity coefficient is a multiplier of a

random term that displaces the pixels of an initial ellipse. For

regular shapes, the mean segmentation sensitivity is close to 1

and the contour error below half a pixel; sensitivity only drops

below 0.9 at an irregularity value of 0.5 (Fig. 4A). Hence, the

algorithm captures accurately a large fraction of the cells even for

non-convex cell shapes. Importantly, the positive predictive value

and the pixel accuracy are barely affected by the shape: their

respective mean values are always40.9 (Fig. 4A).
Cell-to-cell variability. Because of uneven illumination

of bright-field images or through stochastic noise in fluorescent

protein expression, intensities within the cell population can

vary, which poses additional challenges for segmentation (see

Supplementary Fig. S4 for S.cerevisiae with fluorescence stain-

ing). To examine the segmentation performance under such con-

ditions, we generated images with variable cell intensity values

(see Supplementary Note for details). Figure 4B shows that

MPCS performance is largely unaffected by this variability,

indicating high-quality segmentation for all levels of intercell

variability investigated.

METHODS COMPARISON

To compare our algorithm with popular methods for cell segmen-

tation, we quantified segmentation performance with respect to

the error in the cell contour (for definition, see Supplementary

Note) and morphological cell features such as cell area and

eccentricity. Accurate membrane identification is particularly

crucial for cell-signaling studies, for example, when densities of

fluorescent markers on the cell membrane need to be quantified

(Irani et al., 2012). Accurate morphological cell features aid sub-

stantially in the analysis of cellular phenotypes, for example,

to automatically classify subpopulations of cells (Zhong et al.,

2012).
For controlled performance comparison, we used different

types of synthetic images with various levels of imaging noise

Fig. 4. Segmentation performance of MPCS on synthetic images and

algorithmic comparison. Images were generated with varying levels of

cell-shape irregularity (A) and of cell-to-cell intensity variability (B).

Numbers in the images specify the corresponding coefficient values:

shape irregularity coefficient (A) and variation for independently drawn

random assignments of intensities for each cell (B). Statistics were

obtained for 12 randomly generated synthetic images [(A): fluorescence,

bright field and phase contrast; (B): fluorescence only] of 150 cells.

Graphs show median and quartiles for the segmentation sensitivity

(blue), the positive predictive value (green), the pixel accuracy of the

cell area (red) and the contour error (black, in pixels). (C) Example of

a synthetic image with three cell subpopulations (identified by colored

dots in the cells’ centroids) with low (green), medium (red) and high (blue)

eccentricity and area. (D) Crops of synthetic fluorescence (top), bright-

field (middle) and phase-contrast (bottom) noisy images used for com-

parison. Noise levels (numbers) are measured in decibel (see

Supplementary Note). (E) Cell classification by quadratic discriminant

analysis based on ‘true’ cell areas and eccentricities. (F–H) Comparison of

algorithms: ‘MPCS’ (our algorithm), ‘watershed’ (the watershed algo-

rithm), ‘Chan–Vese’ and ‘geodesic active contour’ (active contour evolu-

tion with level sets; Chan–Vese and geodesic active contours as the energy

model, respectively). Mean error values for cell contour (F), cell area and

cell eccentricity (G) and cell type classification (H) for the fluorescence

(blue), bright-field (green) and phase-contrast (red) image sets
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(Fig. 4C and D; see Supplementary Note). Cells were generated

such that three distinct subpopulations exist with respect to their

area and eccentricity, as verified by quadratic discriminant ana-

lysis on these cellular features (Fig. 4C–E). We compared

our method with the watershed algorithm (Meyer, 1994) and

with two algorithms that evolve active contours (implemented

with levels sets) by use of the Chan–Vese (Chan and Vese,

2001) and of the geodesic active contour (Caselles et al., 1997)

energy model, respectively (for implementation details, see

Supplementary Note). This selection represents the algorithmic

basis of numerous cell segmentation approaches.
With respect to accurate detection of the cell contour, the

mean error of MPCS never exceeds one pixel, but the other al-

gorithms yield large errors because of the high intensity gradients

inside the cell and the undesired gradients from imaging noise

(Fig. 4F). Similarly, for the extracted morphological cell features,

MPCS’s mean errors are always50.1, whereas competing algo-

rithms show substantially larger error ranges (Fig. 4G). Finally,

we quantified the effect of the morphological errors in a classi-

fication problem. We built a classifier based on the morpho-

logical features of the ground truth cell images and assessed

the effect of segmentation errors on the classification accuracy.

Segmentation errors of our algorithm lead to low misclassifica-

tion rates in contrast to wrong assignments of 15–75% of the

cells for the other algorithms (Fig. 4H; see also the distributions

in Supplementary Fig. S12).

QUANTITATIVE ANALYSIS OF BUDDING YEAST
ENDOCYTOSIS

To test the accuracy and usefulness of MPCS in a real-world

proof-of-principle application, we focused on the internalization

of plasma membrane transporters. Specifically, we used the bud-

ding yeast methionine transporter Mup1 tagged with GFP to

monitor the clearance of the protein from the plasma membrane

(Fig. 5A, Supplementary Movie). Mup1 is internalized upon the

addition of methionine to the media, and it serves as a model in

studying ubiquitin-dependent endocytosis (Lin et al., 2008).

A time-resolved single-cell quantification of this process clearly

requires faithful detection of the cell boundaries and accurate

quantification of fluorescence quantities.
As expected, shortly after the onset of the internalization pro-

cess, fluorescence transferred from the cell membrane to the cyto-

plasm. For such dynamic phenomena, accurate boundary

detection of the cells based on the fluorescence image is nearly

impossible because at the end of the experiment, fluorescence

levels in the membrane are close to zero and because low-

expressing cells are hard to detect in all frames. We performed

the segmentation on the bright-field images and used the fluor-

escence images to properly define the relative position of the cell

boundary on the membrane pattern (Fig. 5B). This allowed us to

precisely detect the cell boundaries throughout the experiment

and hence to accurately capture the GFP information in the

membrane and in other cellular compartments (Fig. 5C; see

Supplementary Note). Despite using only one of the available

fluorescence channels, the quantification process resulted in a

wealth of information on the single-cell dynamics of the Mup1

transporter (see Fig. 5D for all cells that were tracked over the

entire time course; quantities were normalized by each cell’s area

and mean initial intensity). Such single-cell quantitative data will

allow for future detailed studies of endocytosis beyond existing

studies that used bulk measurements of specific regulators

involved in vesicle maturation (Zeigerer et al., 2012) or extracted

only endosomal intensity properties via confocal microscopy

(Collinet et al., 2010).

4 DISCUSSION

Accurate detection of cell boundaries is a crucial and challenging

step for high-quality single-cell quantification, and, to this date,

no general cell segmentation solution exists. Our method allows

us to analyze microscopy images taken by diverse acquisition

techniques and for a variety of cells types. For the real and syn-

thetic images analyzed here, the segmentation quality is largely

independent of cell shape, density, intercell variability and image

noise. Compared with popular algorithms used for the detection

of the cell boundaries, MPCS shows small errors in the spatial

identification of the cells’ membranes and their morphological

features. Clearly, limitations of our method exist, mainly when

cells do not have a single uniform membrane pattern, or when

the cell shape is highly irregular.

The intensity pattern across the cell membrane or the cell

length is intuitive and easily accessible features of the cell popu-

lation. Our segmentation method can be easily parametrized by

annotating example cells through the graphical user interface of

CellX [for a detailed user guide, see (Mayer et al., 2013)].

In contrast, boundary detection of cells based on deformable

models, such as active contours, involves non-intuitive adjust-

ments of the parameters that control the energy terms, which

are typically correlated and problem dependent. These

Fig. 5. Quantitative dynamic analysis of yeast endocytosis. (A) Yeast cells

expressing Mup1-GFP imaged before and after addition of methionine.

The bright-field out-of-focus and fluorescence images are overlaid, and

the time after addition is indicated. (B) Image crop of a bright-field image

with its segmentation result (left). The blue frame includes an example cell

for which the fluorescence image is shown (right). (C) Detected intensity

spots (left) and membrane area (right). (D) Time courses of total fluor-

escence (normalized by the cell area and the mean fluorescence of the cells

at t=0min) in the cell (black), the cytoplasm (blue), the membrane (red)

and spots (green, scaling factor 50). Dots denote the population average,

and error bars show the standard error
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parameters need to be carefully set to avoid erroneous segmen-

tations (Meijering, 2012).
A key feature of our algorithm is to combine cross-correlation

for detecting membrane patterns with graph cuts for tracing the

cell boundary. The cross-correlation operation decodes the cell

membrane information, and the result is robust to intensity

perturbations or image noise (Supplementary Fig. S13).

Furthermore, the directional application of the cross-correlation

aids in accurately detecting the cell membrane in dense regions

by suppressing the intensity information of touching cells. Graph

cuts are a convenient and efficient method to solve the optimiza-

tion problem posed by image segmentation (Boykov and Funka-

Lea, 2006), and here they are used to find an accurate boundary

for each cell without needing prior knowledge on the cell shape.

So far, the use of graph cuts for cell segmentation has not

included a formulation with cell membrane pattern information.

Automatic placement of topological constraints has been primar-

ily used for cell tracking purposes (Ma�ska et al., 2013), and it can

improve the segmentation quality only if each cell is initialized

with one seed. An advantage of our segmentation strategy is that

it is largely unaffected by the seeding scheme. Other deformable

model-based segmentation methods that define the optimization

problem on the space of continuous functions, such as level-set

methods (Sethian, 1999), typically use optimization algorithms

that guarantee to find a local minimum of the defined energy

functional (Boykov and Funka-Lea, 2006). As a result, when the

gradient vector field of the image is used to detect the cell bound-

ary, good segmentation performance depends substantially on a

reliable initial boundary estimate, which is hard to obtain auto-

matically. MPCS, in contrast, requires easily accessible spatial

constraints, such as the image border and the region around

a seed.

To illustrate typical applications enabled by our method, we

showed for yeast endocytosis how accurate boundary detection

can be successfully performed when GFP intensities are subject

to spatiotemporal dynamics. We used only the bright-field

images to detect cell boundaries and used a single fluorescence

channel to acquire a variety of high-quality single-cell fluores-

cence measurements. Such a quantification strategy allows for

the monitoring of spatially dynamic quantities in all available

fluorescence channels, and compared with other approaches

(Carpenter et al., 2006; Chen et al., 2008), it does not need add-

itional 40,6-diamidino-2-phenylindole markers or constitutively

expressed markers for the segmentation process. We envisage

that the accurate identification of cells and cell membranes will

enable the extraction of quantitative datasets that will increase

our understanding in many biological applications.
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